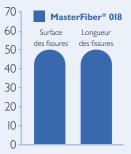


MasterFiber®

MasterFiber®: Objectif atteint avec la fibre parfaite – une solution économique, viable et durable.

Fibres non structurelles

MasterFiber® 006


Protection contre le feu pour le béton, recommandée pour les piliers, les parois intérieures de tunnels et les composants spéciaux

• Améliore la résistance au feu avec un dosage recommandé de 2 kg/m³. En cas d'incendie, les microfibres fondent et créent des microcanaux dans le béton, permettant à la pression de vapeur d'eau de s'échapper et empêchant ou réduisant nettement l'écaillage.

Réduction [%]

MasterFiber® 018

Limitation des fissures de retrait pour le béton et le mortier, recommandée pour les sols industriels et revêtements

- Le retrait plastique est causé par le changement de volume du béton frais en cas d'évaporation (perte d'eau) après la pose, lorsque le mélange est plastique et n'a pas encore durci. Des fissures peuvent apparaître si l'on empêche ce retrait.
- Le réseau de fibres tridimensionnel MasterFiber® est l'une des méthodes les plus efficaces pour réduire la tendance à la fissuration lors du retrait plastique (voir le schéma).

Aperçu	MasterFiber® 006	MasterFiber® 018	MasterFiber [®] ISI SPA	MasterFiber [®] 235 SPA	MasterFiber [®] 245 SPA	MasterFiber® 400	MasterFiber [®] 401	MasterFiber® 040
Plage de dosage recommandée [kg/m³]	0.6-3.0	0.6-3.0	4-10	2.5-10.0	2.5-10.0	5–35	5-35	Béton: 0.5–5.0 BUHP: 15–45
Туре	Microfibres classe la	Microfibres classe la	Macrofibres classe II	Macrofibres classe II	Macrofibres classe II	Microfibres classe la	Microfibres classe la	Microfibres classe la
Polymère	PP	PP	PP	PP	PP	PVA	PVA	PVA
Densité [kg/dm³]	0.91	0.91	0.91	0.91	0.91	1.30	1.30	1.30
Longueur [mm]	6	18	50	30	48	18	12	env. 8
Diamètre équivalent [µm]	34	34	850	700	700	200	200	env. 40
Rapport d'élancement [-]	176	529	59	43	69	90	60	env. 200
Module d'élasticité (sécant) [GPa]	_	_	4.0	6.0	6.0	7.1	8.5	_
Module d'élasticité (Young) [GPa]	_	_	≥ 4.7	≥8.0	≥ 8.0	≥ 27.0	≥ 27.0	env. 41.0
Résistance à la traction [MPa]	_	_	490	500	500	750	800	env. 1600
Point de fusion T _s [°C]	150-170	150-170	150-170	150-170	150 – 170	200-230	200-230	200-230
Incidence sur la consistance du béton (Vébé sans/avec)	0.6 kg/m³: 8s/8s	0.6 kg/m³: 8s/13s	4.0 kg/m³: 6s/8s	5.0 kg/m³: 9s/14s	4.0 kg/m³: 6s/6s	32.5 kg/m³: 3s/15s	32.5 kg/m³: 3s/17s	_
Dosage pour obtenir la résistance à la flexion résiduelle requise	-	-	4.0 kg/m³	5.0 kg/m³	4.0 kg/m³	32.5 kg/m³	32.5 kg/m³	

Fibres structurelles

MasterFiber® I5I SPA

Béton projeté par voie sèche ou humide

 Ces fibres améliorent la puissance de dissipation et réduisent les rebonds pour les applications de béton projeté. Un dosage de 6 kg/m³ correspond à env. 35 kg/m³ de fibres d'acier.

MasterFiber® 235 SPA

Armature alternative, recommandée pour les sols industriels et les dalles

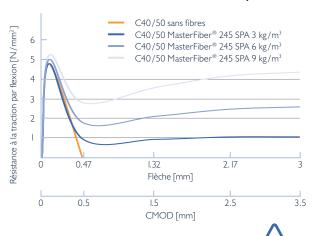
- Ces fibres limitent la formation de fissures liée au retrait lors du séchage et aux variations de température sur le béton frais.
- Elles améliorent la ductilité, augmentent la résistance à la flexion après fissuration ainsi que la résistance aux chocs du béton.
- Alternative au renforcement de treillis secondaire.

MasterFiber® 245 SPA

Armature alternative, recommandée pour les éléments préfabriqués et le BUHP

- Ces fibres améliorent la ductilité des composants en béton.
 La résistance à la flexion après fissuration ainsi que la résistance aux chocs du béton sont également améliorées.
- Permet de remplacer complètement ou partiellement les armatures en acier.

MasterFiber® 400, 401 & 040


BHP et BUHP à base de fibres en polymères, recommandés pour les éléments préfabriqués fins et de haute qualité

- Ces fibres limitent la formation de fissures liée au retrait lors du séchage et aux variations de température sur le béton frais.
- Elles améliorent la ductilité, augmentent la résistance à la flexion après fissuration ainsi que la résistance aux chocs du béton fin.
- Augmente la résistance à la déformation des matériaux composites à base de ciment avec des dosages à partir de 20 kg/m³ environ.

Sans armature ni fibres, le béton se fissure et se brise immédiatement après avoir dépassé le seuil de résistance à la flexion (courbe orange sur le schéma ci-dessous).

Le béton fibré est un matériau composite constitué d'une matrice en béton et de fibres. Les fibres structurelles n'agissent que lorsque le béton est fissuré. Les macrofibres MasterFiber® permettent de répartir les tensions, de transférer les forces de traction entre les fissures (courbes bleues sur le schéma ci-dessous) et d'améliorer nettement la ductilité du béton.

SN EN 14651 - Résistance résiduelle à la traction par flexion

Avantages par rapport aux armatures/fibres en acier:

- Bonne résistance aux produits chimiques (résistances aux substances acides et alcalines)
- Absence de rouille
- Utilisation simple et facile
- Faible usure des malaxeurs et des convoyeur

Votre interlocuteur direct

Julien Bizzozero Innovation & Fiber Manager Suisse

M +41 79 801 79 82 • julien.bizzozero@masterbuilders.com

Master Builders Solutions® dédié à l'Industrie de la Construction

MasterAir®

Solutions pour bétons avec air entraîné

MasterCast®

Solutions pour l'industrie de la préfabrication légère

MasterCem®

Solutions d'additifs pour la production du ciment

MasterCO₂re[™]

Solutions pour le béton pauvre en clinker

MasterEase®

Solutions pour l'optimisation de la viscosité et de la rhéologie des bétons

MasterFinish®

Solutions pour le démoulage du béton et des bétons décoratifs

MasterFiber®

Solutions pour les bétons renforcés de fibres

MasterGlenium®

Solutions pour les bétons fluides et hyperfluides

MasterKure®

Solutions pour la cure des bétons

MasterLife®

Solutions pour une durabilité accrue

MasterMatrix[®]

Solutions pour le contrôle de la stabilité des bétons fluides et autoplaçants

MasterPel®

Solutions pour l'hydrophobicité, la réduction des efflorescences et la protection des surfaces

MasterPolyheed®

Solutions pour la fabrication de bétons de consistance très plastique à fluido.

MasterPozzolith®

Solutions pour les bétons plastiques à très plastiques

MasterRheobuild®

Solutions pour les bétons avec superplastifiants

MasterRoc®

Solutions pour les travaux souterrains

MasterSet®

Solutions pour le contrôle de la prise de béton

MasterSphere®

Solutions pour une résistance garantie au gel et au sel de déverglaçage

MasterSuna®

Solutions pour bétons intégrant des sables concassés

MasterSure®

Solutions pour le contrôle de la rhéologie

Master X-Seed®

Solutions innovantes d'accélération du durcissement des bétons

Quantified Sustainable Benefits Advanced Chemistry by Master Builders Solutions®

Nous laissons les chiffres parler: nous aimerions vous présenter certaines de nos solutions les plus économes en énergie pour l'industrie de la construction. Découvrez comment optimiser vos coûts, économiser votre temps et votre consommation d'énergie.

sustainability.master-builders-solutions.com

Master Builders Solutions Suisse SA

Im Schachen, 5II3 Holderbank T +4I 27 327 65 87 info-as.ch@masterbuilders.com www.master-builders-solutions.ch

Les informations contenues dans cette publication sont basées sur nos connaissances et expériences les plus récentes. Elles ne doivent pas être considérées comme une source d'information contractuelle sur la qualité de nos produits, car de nombreux facteurs peuvent influencer leurs utilisations ou leurs applications, et de ce fait, ne dispensent pas l'utilisateur final de réaliser ses propres essais de convenance. Les caractéristiques contractuelles des produits sont contenues dans la dernière version de la fiche technique. Le contenu de la brochure, tels que dessins, photographies, caractéristiques, proportions, poids, etc... peut changer sans préavis. Il convient aux utilisateurs de nos produits, de s'assurer et de respecter tout droit de propriété intellectuelle et la législation en vigueur. (09/2023)

® marque déposée de Master Builders Solutions® dans de nombreux pays à travers le monde

