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In Brief
In 2018, Climate Central released CoastalDEM v1.1, a near-global coastal digital elevation model (DEM)
that used an artificial neural network to reduce errors present in a DEM derived from NASA’s Shuttle Radar
Topography Mission (SRTM). CoastalDEM v1.1 was tested against lidar-derived elevation data in the US and
Australia, and showed greatly reduced vertical bias and root mean square error (RMSE) compared to SRTM in
both forests and cities.

Here we present CoastalDEM v2.1, the newest version of Climate Central’s digital elevation model. We have
made a number of substantial improvements to our neural network architecture, input datasets, and training data,
resulting in a DEM that outperforms not only SRTM and CoastalDEM v1.1, but all leading, publicly-available,
global-scale models tested. This is especially true in low-lying and densely populated areas, which are most
important for assessing coastal vulnerability, but also where most DEMs struggle due to the presence of tall
buildings.
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1. Introduction
Accurate elevation data is essential to accurately assess the
vulnerability of coastal communities to threats from sea level
rise (SLR) and coastal flooding. While a few developed
countries, such as the US, Australia, the UK, and others in
Europe, have released high-quality elevation data derived
from airborne lidar, most of the rest of the world, particularly
in developing countries, relies on lower-accuracy global
digital elevation models (DEMs) derived from satellite radar.
These DEMs suffer from large vertical errors with a positive
bias [1, 2]—especially in densely populated areas, where
accurate vulnerability statistics are most important, but where
satellite radar sensors see building tops as hills and mountains
[3, 4, 5].

In recent years, efforts have been made to improve global
elevation models by predicting and reducing their errors,
though most attempts have either covered a very small area
[6, 7] or only sought to reduce bias in vegetated areas, rather
than cities [8, 9, 10, 11]. CoastalDEM v1.1 [2] was the first
global-scale DEM that used an artificial neural network to
correct errors present in NASA’s SRTM. We tested this model
against lidar-derived elevation data in the US and Australia,
and found it greatly improved vertical bias and RMSE
compared to SRTM in both forests and cities. However, as
version 1.1 was trained on ground truth data in the US alone,
and despite its high performance in Australia, there must be
less confidence in its accuracy in areas with dissimilar

vegetation, architecture, and population density.

Ideally, an error-correcting model would instead use high-
quality globally-available ground truth data to train the model.
However, at the time CoastalDEM v1.1 was generated, the
best available candidate global dataset was ICESat, which
was a 2003-2010 NASA satellite mission that, among other
objectives, collected elevation profile measurements at points
along straight lines across Earth’s surface using a single laser
altimeter beam (satellite lidar). These points had a large
footprint (70 m) and were about 170 m apart along the linear
tracks [12]. These data were also noisy, suffering from a multi-
meter positive bias in certain terrain types, including forests
[13]. While useful to help validate global elevation models,
the data from the first ICESat mission were not suitable for
use in training a neural network.

In late 2018, NASA launched the ICESat-2 mission,
which promised much more dense and accurate land
elevation measurements compared to its predecessor.
Specifically, ICESat-2 features 6 beams (in 3 pairs, spaced
3 km apart) and gives elevation values every 100 m along
track (each value is based on an algorithmic assessment of
multiple photon measurements within each 100 m segment).
[14]. Additionally, ICESat-2 computes vegetation height at
every point, largely reducing this source of error, though no
such correction is performed for urban structures. Early
validation results [15, 16] suggest ICESat-2 terrain
measurements contain vertical bias of less than 10 cm, and
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RMSE less than 1 m, though these studies do not investigate
performance in urban areas.

2. Technological Advances in
CoastalDEM v2.1

• Trained on high-quality global elevation data.
CoastalDEM v1.1 was trained using airborne
lidar-derived elevation models in the US alone, which
risked overfitting the model. CoastalDEM v2.1 is
trained using data from NASA’s recent ICESat-2
mission [14], which covers land across the entire world.
This choice was aimed at further improving
performance in other countries where architecture and
population density can be very different than what
exists in the US.

• More accurate base elevation. CoastalDEM v1.1
was based off of NASA’s SRTM v3.0, whose errors
were particularly severe with a >2 m positive bias and
>4 m RMSE. CoastalDEM v2.1 instead uses NASA’s
recently-released NASADEM dataset, a more accurate
reprocessing of SRTM’s source data [17]. This gives
CoastalDEM v2.1 a better “starting point” from which
improvements are made.

• Wider input elevation range. CoastalDEM v1.1 only
considered pixels whose SRTM elevation lies between
1-20 m. CoastalDEM v2.1 instead predicts corrections
for all pixels on land between -10 m and 120 m. This
choice was aimed at improving results both in low,
flat regions with areas of negative vertical error due to
random noise, as well as locations with tall skyscrapers
that cause errors exceeding 20 m.

• Larger and more sophisticated convolutional
neural network (CNN) architecture. CoastalDEM
v1.1 used a small and multilayer perceptron neural
network with 40 hidden units to predict errors present
in SRTM. CoastalDEM v2.1 employs a far larger CNN
with many thousands of hidden units, which is better
suited to learn the highly nonlinear relationships
between each of the input variables and the actual
elevation.

• New and updated input variables. CoastalDEM v1.1
used a total of 23 input variables, including SRTM
elevation, population density, and vegetation density.
Since then, we have acquired more accurate versions of
many of these datasets (such as NASADEM and
WorldPop [18]), as well as added new ones. In
addition, the convolutional neural network architecture
allows us to utilize large input windows about each
target, effectively resulting in over a thousand input
variables for each pixel. These give the neural network
much more context for each location to better improve
predictions and reduce errors.

3. Results
3.1 Validation against ICESat-2
Here we use land elevation measurements from NASA’s
ICESat-2 as ground truth to assess the global accuracy of
global DEMs. We include the six most-recently released
products – CoastalDEM v2.1, CoastalDEM v1.1 [2],
NASADEM [17], TanDEM-X [19], MERIT [8], and
AW3D30 [20]. We assess each of the DEMs at their native
horizontal resolutions, including CoastalDEM v1.1 at
1 arc-second. We disregard all ICESat-2 points flagged as
being covered by clouds or snow. Additionally, all error
values exceeding 50 m are treated as outliers and removed
from the assessment (fewer than 0.005% of points have a
discrepancy this large).

We have empirically found that DEM performance varies
by elevation. Since CoastalDEM’s intended purpose is for
coastal flood modeling on land presently above sea level
especially in populated areas, we primarily focus on land
between 0-5 m relative to the EGM96 geoid (spanning the
range of most storm and projected sea-level rise scenarios
through the year 2100 [21, 22]), and where population
density exceeds 1,000 people per square kilometer. More
specifically, when assessing vertical accuracy of a DEM, we
consider only grid cells where the “true” (ICESat-2) or the
“estimated” (DEM) elevations are greater than zero and lower
than the given maximum elevation (most often, 5 m). For
brevity, for the rest of this report we only list the upper
elevation bounds assessed (<5 m, <10 m, or <20 m), with
the lower bound of 0 m left implied. All available data points
present in ICESat-2 that meet the above requirements and
given filters are used in the following assessments.

In the whole of the <5 m elevation band (including all
areas, regardless of population density), the 30 m version of
CoastalDEM v2.1 virtually eliminates global median bias to
less than 0.01 m, contains an RMSE of 2.63 m, and LE90
(90th percentile linear error) of 2.99 m (Table 1), and
outperforms the other global DEMs by a considerable margin.
CoastalDEM v1.1 is found to contain errors with a slight
negative bias. The updated CoastalDEM corrects that
observed bias, while also reducing RMSE/LE90 by 20-50%
compared to its competitors. CoastalDEM v2.1 thus shows
the highest global accuracy when evaluated with these
criteria.

In coastal areas with at least moderate development
(greater than 1,000 people per square kilometer, where
roughly half of the world’s total population lives [18]) and in
the elevation range at greatest risk from tides, storms and sea
level rise (<5 m), mean vertical bias improves by more than
80%, from -0.5 m with CoastalDEM v1.1 to -0.1 m with
CoastalDEM v2.1. These results reflect bias reductions from
91-95% compared to the other comparable DEMs, while
maintaining RMSE/LE90 improvements of 20-40%. In
segments of coastline with very high population density
(greater than 10,000 people per square km, where errors
caused by tall buildings are most severe) and the same
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elevation range (<5 m), CoastalDEM v2.1 contains a slightly
positive bias, though still outperforms CoastalDEM v1.1 by
20%, and other DEMs by 80%.

At higher elevations (<20 m), CoastalDEM v2.1 contains
slightly elevated errors, with a negative bias at about -0.2 m
across all population densities. However, even here,
CoastalDEM v2.1’s median bias, RMSE, and LE90
outperform each of the other global DEMs. Across the board,
performance at <10 m falls between the <5 m and <20 m
results.

DEMs can contain spatially-autocorrelated errors even
when they exhibit strong global performance, so it is
important to also assess bias and RMSE at smaller spatial
scales. Here we employ the GADM 2.0 dataset [23], a
collection of global administrative units, to assess error
distributions across regions. These distributions are computed
at the smallest-available units by binning error values
between -50 m to +50 m at 0.01 m intervals, which are added
and aggregated to estimate error distributions at wider spatial
scales, including across countries. We then use these binned
distributions to estimate all relevant error metrics, including
the median and LE90. Detailed error statistics by nation are
presented in Supplementary Dataset S1.

Importantly for more local applications, CoastalDEM’s
performance is strong across most nations. In Figures 1 and 2,
we present choropleth maps of nations’ median biases and
RMSE’s under CoastalDEM v2.1, as well as TanDEM-X and
MERIT. These maps only consider areas with at least
moderate population density (more than 1,000 people per
square kilometer) and below 5 m elevation. Only countries
with at least 1,000 pixels meeting these requirements
(n ≥ 1000) are shaded. Under these metrics, CoastalDEM
v2.1 consistently outperforms other global DEMs, with
median bias lower in 90% of countries, and RMSE lower in
at least 78% of countries. This is particularly notable in Asia
and South America, which contain large populations near the
coastline, and in many cases do not have lidar-derived
elevation models available. National-level error statistics are
available in Supplementary Dataset 1.

Figure 3 provides further evidence of consistent
performance across small spatial scales. Here we assess error
across smaller (‘level 1”) administrative units, roughly
equivalent to US counties. We applied the same domain
filtering as the preceding figures (>1,000 people per square
kilometer, <5 m elevation). This figure presents median bias
and RMSE density plots based on all (roughly 1,000 in count)
of these small regions. Results for each of the global DEMs
are represented by the colored curves, with steeper curves
closer to 0 m corresponding to more consistent and accurate
results. Again we find CoastalDEM v2.1 outperforms each of
the competing DEMs, especially in terms of median bias.

Elevation profiles in select cities comparing ICESat-2,
CoastalDEM v2.1, TanDEM-X, and MERIT are presented in
Figures 4 and 5. We can see more clearly here that ICESat-2
is an imperfect truth set, especially in such densely populated

areas - there are substantial noise and “spikes” in these
measurements that can exceed tens of meters. That said,
CoastalDEM v2.1’s profiles generally do a better job than the
other DEMs in following ICESat-2’s curves. In fact,
CoastalDEM appears to generate an even smoother elevation
profile than ICESat-2. CoastalDEM v2.1’s increasingly
negative computed bias at higher population densities may
not reflect true bias, but rather may be explained at least in
part by the possibility that ICESat-2 has increasingly positive
bias with density.
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Table 1. Global error statistics across each DEM, three elevation thresholds (5 m, 10 m, and 20 m), and three population
density bands (any density (Any), more than 1,000 people per km2 (>1K), and more than 10,000 people per km2 (>10K)).
ICESat-2 is used as ground truth. For each row, only pixels are included whose elevation falls below the elevation threshold
(according to ground truth or the DEM), and whose population density falls within the given band. Rows presenting
CoastalDEM v2.1 statistics are in bold. All units are in meters except for population density, which is people per km2.

DEM Max Elev Pop Density Mean Bias Median Bias RMSE LE90
CoastalDEM v2.1 5 Any -0.03 0.00 2.63 2.99
CoastalDEM v1.1 5 Any -0.06 -0.45 4.02 4.24

NASADEM 5 Any 1.59 0.66 4.65 6.40
TanDEM-X 5 Any 1.81 0.31 4.67 6.43

MERIT 5 Any 1.46 1.26 3.39 4.00
AW3D30 5 Any 2.41 1.43 5.54 7.97

CoastalDEM v2.1 10 Any -0.24 -0.12 2.89 3.39
CoastalDEM v1.1 10 Any -0.14 -0.62 4.42 4.75

NASADEM 10 Any 1.55 0.65 4.67 6.40
TanDEM-X 10 Any 1.74 0.29 4.63 6.43

MERIT 10 Any 1.43 1.26 3.46 4.11
AW3D30 10 Any 2.26 1.38 5.45 7.70

CoastalDEM v2.1 20 Any -0.33 -0.15 3.23 3.75
CoastalDEM v1.1 20 Any 0.31 -0.45 4.83 5.73

NASADEM 20 Any 1.49 0.63 4.72 6.41
TanDEM-X 20 Any 1.72 0.30 4.78 6.65

MERIT 20 Any 1.41 1.27 3.71 4.36
AW3D30 20 Any 2.14 1.33 5.45 7.54

CoastalDEM v2.1 5 >1K -0.11 0.08 2.53 3.01
CoastalDEM v1.1 5 >1K -0.47 -0.29 3.01 3.81

NASADEM 5 >1K 1.21 1.01 3.56 5.29
TanDEM-X 5 >1K 1.81 1.35 3.21 4.89

MERIT 5 >1K 1.95 1.79 3.40 4.86
AW3D30 5 >1K 2.60 2.19 4.39 6.70

CoastalDEM v2.1 10 >1K -0.40 -0.14 2.79 3.33
CoastalDEM v1.1 10 >1K -0.70 -0.55 3.26 4.25

NASADEM 10 >1K 1.23 1.03 3.62 5.35
TanDEM-X 10 >1K 1.75 1.31 3.34 5.05

MERIT 10 >1K 1.89 1.76 3.51 4.90
AW3D30 10 >1K 2.58 2.19 4.41 6.71

CoastalDEM v2.1 20 >1K -0.47 -0.18 2.97 3.63
CoastalDEM v1.1 20 >1K -0.32 -0.45 3.59 4.92

NASADEM 20 >1K 1.27 1.07 3.69 5.44
TanDEM-X 20 >1K 1.74 1.31 3.44 5.11

MERIT 20 >1K 1.90 1.76 3.67 5.05
AW3D30 20 >1K 2.54 2.18 4.43 6.63

CoastalDEM v2.1 5 >10K -0.20 0.42 3.73 3.71
CoastalDEM v1.1 5 >10K -1.15 -0.52 4.83 5.57

NASADEM 5 >10K 2.05 2.01 4.74 6.76
TanDEM-X 5 >10K 2.85 2.59 4.21 5.93

MERIT 5 >10K 2.85 2.88 4.75 6.42
AW3D30 5 >10K 4.25 3.70 6.57 9.69

CoastalDEM v2.1 10 >10K -0.85 -0.07 4.40 4.78
CoastalDEM v1.1 10 >10K -1.19 -0.67 5.15 6.53

NASADEM 10 >10K 2.06 2.05 5.04 7.33
TanDEM-X 10 >10K 2.72 2.58 4.73 6.73

MERIT 10 >10K 2.66 2.83 5.11 6.96
AW3D30 10 >10K 4.40 3.80 6.88 10.37

CoastalDEM v2.1 20 >10K -1.09 -0.24 4.77 5.62
CoastalDEM v1.1 20 >10K -0.50 -0.38 5.48 7.84

NASADEM 20 >10K 1.99 2.04 5.34 7.76
TanDEM-X 20 >10K 2.60 2.54 5.08 7.25

MERIT 20 >10K 2.65 2.84 5.50 7.72
AW3D30 20 >10K 4.36 3.73 7.12 10.72
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Figure 1. Choropleths presenting median bias under CoastalDEM v2.1, TanDEM-X, and MERIT in low-elevation regions
across coastal nations, using ICESat-2 as ground truth. Only grid cells with elevation <5 m and population density >1000
people per km2 are considered, and only nations with n ≥ 1000 of these grid cells are evaluated.
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Figure 2. Choropleths presenting RMSE under CoastalDEM v2.1, TanDEM-X, and MERIT in low-elevation regions across
coastal nations, using ICESat-2 as ground truth. Only grid cells with elevation <5 m and population density >1000 people per
km2 are considered, and only nations with n ≥ 1000 of these grid cells are evaluated.
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Figure 3. Density plots of median bias (left) and RMSE (right) for each of the global DEMs across level-1 administrative units
(GADM 2.0), using ICESat-2 as ground truth. CoastalDEM v2.1 is highlighted in blue. Only grid cells whose elevations are
lower than 5 m and contain >1000 people per square km are considered.
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Figure 4. Elevation profiles under CoastalDEM v2.1, TanDEM-X, MERIT, and ICESat-2 in Amsterdam, Dakar, and Guayaquil
along an ICESat-2 beam path. For each city, the left panel presents estimated elevation along the path according to each dataset,
with ICESat-2 and CoastalDEM v2.1 highlighted in black and red, respectively. The right panel shows a map view where the
path lies on the city in red, with water bodies highlighted in purple.
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Figure 5. Elevation profiles under CoastalDEM v2.1, TanDEM-X, MERIT, and ICESat-2 in Jakarta, London, and Shanghai
along an ICESat-2 beam path. For each city, the left panel presents estimated elevation along the path according to each dataset,
with ICESat-2 and CoastalDEM v2.1 highlighted in black and red, respectively. The right panel shows a map view where the
path lies on the city in red, with water bodies highlighted in purple.
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3.2 Validation against airborne lidar-derived DEMs
While ICESat-2 is the best global elevation data source
presently available, the fact that we train the CNN using it as
ground truth means we risk misstating accuracy if ICESat-2
is our only validation. For instance, systematic errors present
in ICESat-2 measurements could potentially have been
learned by the neural network and propagated across the
output dataset. Further, while we use all available and
applicable ICESat 2 measurements to assess the DEMs, a
small fraction (under 20%) of them was also used to train the
CNN model, potentially skewing the results. Finally, since
our results above (Figures 4 and 5) suggest that ICESat-2
itself contains significant error in densely-populated areas,
we seek further validation to better understand CoastalDEM
v2.1’s performance in such regions. To resolve these
concerns, we use two high-accuracy elevation DEMs derived
from airborne lidar as ground truth in the error assessments.

In the United States, NOAA makes publicly available
high-quality DEMs across the entire US coastline, which are
classified to bare earth elevation, with vertical errors <20 cm
RMSE [24]. These data are released at about 5 m horizontal
resolution, which we downsample to 1 arc-second (about
30 m) using median filtering. Meanwhile, in Australia,
Geospace Australia [25] collected and publicly released
bare-earth lidar-derived elevation data along much of their
coastlines. These data offer <16 cm vertical RMSE [26] at
roughly 25 m horizontal resolution, which we also
downsample to 1-arcsecond to match CoastalDEM v2.1.

National results for both the US and Australia are
presented in Table 2. We focus on grid cells with population
densities exceeding 1,000 per square kilometer. We can again
see that CoastalDEM v2.1 exhibits median bias substantially
closer to zero than each competing global DEM, and lower
RMSE/LE90 values in the elevation band <5 m.
CoastalDEM v2.1 even outperforms CoastalDEM v1.1 in the
US, which is particularly notable, as the latter was
specifically trained using NOAA’s lidar-based US coastal
DEMs as ground truth.

Figure 6 presents error maps in select cities in the US and
Australia. Colors represent the difference between elevation
according to the designed global DEM and the corresponding
lidar-derived DEM. We can see how CoastalDEM v2.1
performs strongly relative to the other DEMs overall. Of
special note is the region around Miami, FL – possibly due to
dense development and vegetation, multi-meter biases are
present in all past global DEM’s across most of south Florida.
CoastalDEM v2.1 is the first to have brought down and
flattened errors here, without appearing to compromise
accuracy in other areas of the US.

Finally, US state-level choropleths of median bias and
RMSE for each global DEM can be found in Figures 7 and 8.
Again considering points below 5 m and with >1,000 people
per square kilometer, we find that CoastalDEM v2.1 median
bias outperforms the competing global DEMs in all but three
states (Maine, Rhode Island, and Pennsylvania).

These error statistics derived from DEMs based on
airborne lidar are overall similar to the global results using
data based on ICESat-2 satellite lidar. The airborne lidar
ground-truth values were not used in computing CoastalDEM
v2.1. The consistency in error assessment across testing
approaches mitigates concerns about potential overfitting of
our neural network model.
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Table 2. Error statistics in the USA and Australia across each DEM and three elevation thresholds (5 m, 10 m, and 20 m).
Airborne lidar-derived elevation data are used as ground truth. For each row, only pixels are included whose elevation falls
below the elevation threshold (according to ground truth or the DEM), and whose population density exceeds 1K per square
kilometer. Rows presenting CoastalDEM v2.1 statistics are in bold. All units are in meters

Nation DEM Max Elev Mean Median RMSE LE90
USA CoastalDEM v2.1 5 -0.12 -0.06 1.95 2.83
USA CoastalDEM v1.1 5 0.47 0.59 2.42 3.30
USA NASADEM 5 1.89 1.66 3.60 5.49
USA TanDEM-X 5 2.38 1.91 3.36 4.79
USA MERIT 5 3.19 3.11 3.97 5.72
USA AW3D30 5 3.65 3.54 5.06 6.94
USA CoastalDEM v2.1 10 -0.27 -0.20 2.11 3.09
USA CoastalDEM v1.1 10 0.16 0.23 2.58 3.50
USA NASADEM 10 1.99 1.72 3.63 5.59
USA TanDEM-X 10 2.49 1.98 3.49 5.02
USA MERIT 10 2.90 2.82 3.71 5.35
USA AW3D30 10 3.45 3.23 4.85 6.69
USA CoastalDEM v2.1 20 -0.36 -0.24 2.36 3.43
USA CoastalDEM v1.1 20 0.72 0.38 3.37 4.95
USA NASADEM 20 2.02 1.72 3.71 5.68
USA TanDEM-X 20 2.66 2.09 3.75 5.40
USA MERIT 20 2.74 2.65 3.67 5.26
USA AW3D30 20 3.36 3.14 4.87 6.70

Australia CoastalDEM v2.1 5 -0.23 0.10 2.49 3.63
Australia CoastalDEM v1.1 5 -0.24 -0.19 2.33 3.33
Australia NASADEM 5 1.53 1.23 3.54 5.41
Australia TanDEM-X 5 2.01 1.50 2.99 4.26
Australia MERIT 5 2.51 2.43 3.98 5.54
Australia AW3D30 5 2.97 2.67 4.06 5.43
Australia CoastalDEM v2.1 10 -0.75 -0.34 3.00 4.53
Australia CoastalDEM v1.1 10 -0.29 -0.35 2.71 3.71
Australia NASADEM 10 1.80 1.51 3.67 5.54
Australia TanDEM-X 10 1.98 1.46 2.99 4.25
Australia MERIT 10 2.57 2.45 4.11 5.74
Australia AW3D30 10 3.10 2.79 4.15 5.41
Australia CoastalDEM v2.1 20 -0.97 -0.51 3.55 5.29
Australia CoastalDEM v1.1 20 0.66 0.17 3.43 5.13
Australia NASADEM 20 1.94 1.63 3.73 5.69
Australia TanDEM-X 20 2.01 1.50 3.06 4.41
Australia MERIT 20 2.62 2.50 4.31 6.15
Australia AW3D30 20 3.24 2.97 4.22 5.51
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Figure 6. Maps of select US and Australian cities presenting the difference between global DEMs (CoastalDEM v2.1,
NASADEM, TanDEM-X, and MERIT) and a lidar-derived DEM. Black areas represent existing water bodies, and gray areas
represent pixels whose elevation exceeds 20m.
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Figure 7. Choropleths presenting median bias under CoastalDEM v2.1, NASADEM, TanDEM-X, and MERIT in low-elevation
regions across US states, using elevation data from NOAA’s coastal lidar as ground truth. Only pixels whose elevations are
lower than 5 m are considered. Only areas with population densities above 1,000 people per square kilometer are included.
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Figure 8. Choropleths presenting median RMSE under CoastalDEM v2.1, NASADEM, TanDEM-X, and MERIT in
low-elevation regions across US states, using elevation data from NOAA’s coastal lidar as ground truth. Only pixels whose
elevations are lower than 5 m are considered. Only areas with population densities above 1,000 people per square kilometer are
included.
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4. Discussion
Climate Central has invested and will continue to invest
significant resources and energy into improving CoastalDEM.
As more and improved additional data sets become available,
we intend to add them in improving the neural network.

As proud of CoastalDEM performance as we are, we
acknowledge that neither CoastalDEM nor any global
product is likely to ever outperform high-quality airborne
lidar elevation data. While acknowledging the high current
cost of comprehensive airborne lidar data collection, we
strongly encourage coastal countries and allied entities to
develop and freely release quality airborne lidar data for use
in evaluating coastal flood risk – and in so doing, retire the
need for higher-error global datasets like CoastalDEM.

We also acknowledge that the original SRTM data from
which NASADEM and CoastalDEM were derived was
collected in year 2000. The surface of the earth is changing
with time, especially in areas prone to subsidence due to high
rates of groundwater or fossil fuel extraction, or
river-delta-sediment compaction. In addition, artificial earth
works have the potential to alter the coastal risk profiles
represented by SRTM, NASADEM, and CoastalDEM. This
temporal quality calls for more up-to-date and regular
refreshes of coastal DEMs with airborne lidar and new
remote sensing capabilities that may become available.

5. Conclusion
CoastalDEM was developed to provide an improved, widely
available, near-global digital elevation model for the primary
purpose of evaluating coastal flood risk considering storms
and sea level rise. With this use case in mind, elevations below
5 m are of particular interest as they span the range of most
tides, storms, and projected sea-level-rise scenarios through
the year 2100.

In addition, coastal areas with high population density are
both areas where accurate vulnerability assessments are
especially important and areas where the urbanized, built
environment has challenged remote sensing technologies
intended to measure ground elevations, resulting in material
vertical bias that negatively impacts coastal flood risk
assessments. Reducing vertical bias was the primary
objective of creating CoastalDEM v1.1 and the objective of
investing in the improvements with CoastalDEM v2.1.
Reducing error scatter, measured by RMSE and LE90, was
the secondary objective.

Performance data indicate vertical bias and error scatter
are consistently and substantially reduced with CoastalDEM
v2.1. With version 2.1, CoastalDEM further improves its
reduced-bias performance lead over comparable global DEMs.
CoastalDEM v2.1 is particularly strong in the elevation range
below 5 m where coastal flood risk is acute and in densely
populated regions where buildings and the built environment
adversely affect other global DEMs. Near-zero bias means
smaller elevation errors propagating into coastal flood analysis

so critical to understanding the threat posed by sea level rise.

6. Availability
CoastalDEM v2.1 is available at 30 m and 90-m horizontal
resolution by license from Climate Central via https:
//go.climatecentral.org/coastaldem/.
No-cost, non-commercial licenses at 90 m horizontal
resolution are available to qualified academic and research
organizations (see Supplementary Dataset 2 for 90 m error
statistics). With no-cost licenses available and vertical bias
demonstrably near zero, CoastalDEM v2.1 is a superior
global DEM for sea level rise and coastal flood risk
assessments.

7. Methods
7.1 ICESat-2
NASA distributes ICESat-2 measurements as a large
collection of HDF5 files. Here, we download the entirety of
the L3A Land and Vegetation Height Version 3 (ATL08)
dataset [27], which contains a number of elevation metrics at
points 12 m apart along six beam tracks. For each point, we
extract the fields h_te_mean, latitude, longitude, and
layer_ f lag. The variable h_te_mean refers to the mean
height returned by photons within the point’s footprint, and
layer_ f lag is a binary variable that is 1 if the point is likely
covered by snow or clouds (points flagged as such are
removed). Elevations are referenced to WGS84, which we
convert to EGM96 using NOAA’s VDatum tool [28]. All
points in the entire ICESat-2 dataset meeting the given
requirements and filters described in this report were used in
the assessments.

7.2 CoastalDEM v2.1
Like CoastalDEM v1.1, CoastalDEM v2.1 uses an artificial
neural network to predict errors present in another global
DEM (here, NASADEM), using a number of global datasets
as inputs. These inputs include elevation, population density,
and vegetation density and height metrics. In total,
CoastalDEM v2.1 ingests 7 independent input datasets to
feed the model.

Instead of using a multilayer perceptron network as with
CoastalDEM v1.1, CoastalDEM v2.1 employs a larger and
more sophisticated convolutional neural network architecture
[29]. CNNs are specifically designed for and are widely used
in tasks involving imagery, making them a good fit for the
raster datasets used here.

Where CoastalDEM v1.1 was trained using airborne
lidar-derived elevation data as ground truth, in the US only,
CoastalDEM v2.1 was instead trained using global ICESat-2
elevation measurements. While these data are not as accurate
as airborne lidar, using such a global dataset reduces the risk
of overfitting the model on US-centric data. Further, while
CoastalDEM v1.1 was trained and defined only where SRTM
elevations were between 1 and 20 m, CoastalDEM v2.1 is

https://go.climatecentral.org/coastaldem/
https://go.climatecentral.org/coastaldem/
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generated where NASADEM elevations are between -10 and
120 m, capturing a much larger domain.
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