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Background
The purpose of the Climate Central Temperature Attribution System (CC-TAS) is to provide high 
resolution estimates of how human-caused climate change has altered the likelihood of 
observed or forecasted air temperatures. The system works by taking the temperature T(t, x) 
observed or forecasted for day=t and location=x and comparing it to statistical distributions for 
T(x) representing the modern observed climate and a counterfactual climate without 
anthropogenic greenhouse gas emissions. The ratio of the likelihoods of T in these two climates 
gives an estimate of how human-caused climate change has influenced T. 
Gilford et al. (2022, hereafter, G22) developed a multi-method framework for creating the 
modern  and counterfactual climates. They describe two approaches that are grounded in 1

observational data and another approach that uses climate models. These three methods 
provide complementary assessments of how climate change influenced the likelihood of an 
event, and each includes a rigorous characterization of the uncertainties in its likelihood 
estimate.
The G22 empirical approaches begin by creating a time series of monthly average or median 
temperatures at a given location. For each month m, they use linear regression to compute

Tm(y, x) = 𝜷(m, x) GMT(y) + c (1)

where GMT(y) is the global mean temperature in year=y and Tm(y, x) is the expected 
temperature for month m (Figure 1, step 1). The coefficient 𝜷(m, x) is called the “scale factor”, 
and it is the key output of this process. The scale factor describes how we expect the 
temperature at x to change in response to a change in GMT.  It is the key characteristic 
calculated from empirical data; it enables the transformation of T likelihoods between a well-
known observed climate and the forced+counterfactual climates defining the attribution 
estimates.
Median Scaling: The first method in G22 is a straightforward application of the scale factors. 
They characterize the distribution of daily temperatures over a reference period (they used 
1985-2015) for each month m as a quantile distribution (i.e. T(q) = the temperature such that q = 
the proportion of observed temperatures less than or equal to T(q)) (Figure 1, step 2). They then 
create the modern climate using the scale factor:

Tmodern(q) = T(q)+ 𝜷(GMTmodern—GMTreference) (2)

 We use the term “modern” to describe the climate which we are comparing to the 1

counterfactual. The exact time period depends on the context. For G22, modern = 2010-2019. 
For our operational system, modern = 2022
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where GMTmodern is the global mean temperature averaged over the modern period (they used 
the ten-year period around 2015, i.e., 2010-2019), and GMTreference is the average over the 
reference period (Figure 1, step 3). The counterfactual climate is created in an analogous way:

Tcounter(q) = T(q)+ 𝜷(GMTcounter—GMTreference) (3)

where GMTcounter is the global mean temperature averaged over the counterfactual period (they 
used 1885-1915). If 𝜷>0 as is typically found in a human-warmed climate, then  Tmodern(q) > T(q) 
> Tcounter(q).
For an observed T, they can estimate q in both the modern and counterfactual climates (qc(I), 
where c=modern or counter). They then report a “probability ratio” expressed by the cumulative 
probabilities of T in each climate:

PR(T)= qmodern(T)/qcounter(T) (4)

Quantile Scaling: The G22 median scaling method changes the center of the temperature 
distribution. Their quantile scaling method allows for the shape of the distribution to change as 
well. They do this by computing 𝜷q(m, x):

Tm,q(y, x) = 𝜷q(m, x) GMT(y) + c (5)

where q is a particular quantile. They used 30 evenly spaced quantiles between 0.01 and 0.99. 
They then apply equations (2) and (3) using each 𝜷q  to create the modern and counterfactual 
distributions.
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Figure 1. Attribution method described in G22. The two observation-based methods begin by (1) 
relating the local temperature (orange) to GMST (gray) to get β, the change in local mean temperature 
with a change in GMST. This includes an error estimate from the linear regression. (2) Observational 
data are used to characterize a climatological (1985– 2015) distribution of temperatures (black curve). 
(3) Then, the median-scaling method uses β to shift the climatological distribution backward to a pre-
industrial counterfactual climate (blue curve and shading) and either backward or (typically) forward to 
a forced distribution of temperatures contemporary with the events being attributed (red curve and 
shading); shifts based on GMST are assumed to be completely driven by historical human-emitted 
greenhouse gases. The quantile-scaling method uses the same procedure, but models separate β 
values across thirty specified distribution quantiles. The model-based method uses climate model 
projections to characterize the local temperature under natural forcing (blue lines) or in a climate forced 
by human-emitted greenhouse gases (red lines). (4) The forced and counterfactual distributions of 
temperatures used to quantify attribution estimates are then inferred directly from the three methods. 



Daily temperatures from Berkeley Earth gridded at 1.25° formed the basis of their empirical 
analysis; G22 GMT estimates were drawn from the Met Office Hadley Centre/Climatic Research 
Unit Temperature data set, version 5 (HadCRUT5).

Model-based Method: G22’s model based method used an ensemble of CMIP5 simulations. 
Daily Berkeley Earth data were used to bias-adjust 24 historical+RCP8.5 model simulations 
using the method of Lange (2019). Eleven of these models also had pre-industrial control runs, 
and the same bias adjustment was applied to these simulations. After bias adjustment, they 
identified the year when the model’s running global mean temperature reached GMTmodern (they 
used GMTmodern =1.07° as the attributable warming since the preindustrial period). They then 
used the 31 years centered on this year to represent the modern climate and estimated q(T) for 
each of the 24 historical+RCP8.5 simulations. The counterfactual distribution was pooled from 
of all eleven available pre-industrial control simulations. They then computed probability ratios 
by dividing the 24 forced simulations by the pooled counterfactual simulation.
These methods form the basis of our system. When operationalizing the G22 methods, we 
identified several challenges including discrepancies between model-derived forecast data and 
the interpolated Berkeley data. This prompted is to identify new and improved ways to optimize 
the computations and to improve their accuracy. We identified six specific issues that prompted 
improvements to our system:
1. The coarse Berkeley data could not resolve complex coastlines and treated many important 

coastal cities as if they were in the ocean. 
➡ Solution: higher spatial resolution

2. The temperature distributions in many areas, especially in the tropics, are very narrow. This 
means that any bias between the forecast and the climatology is magnified at these 
locations. Because GFS and Berkeley are fundamentally different estimates of temperature, 
we did not trust our calculations in these regions. 

➡ Solution: use the CFSR, which uses the same data assimilation procedures as GFS, 
to establish observed temperature climatologies.

3. CMIP5 has been superseded by CMIP6. 
➡ Solution: switch to CMIP6

4. Even after debiasing, the climate model output can still contain differences in the distribution 
of temperatures among the different models. Comparing the forced output to the single 
pooled control can amplify these differences.

➡ Solution: used paired models and only compare each forced simulation to the 
control run made with the same model.

5. Using quantiles to represent temperatures and PR as the main attribution metric is designed 
to consider very warm events. We want our system to be able to speak to less extreme 
conditions and also cold events. 

➡ Solution: use parameterized distributions (skew-normal) and base the attribution 
metric on the ratio of the probability distribution functions (PDFs), instead of 
cumulative probability distribution functions (CDFs).
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CC-TAS Version 1.0, Spring 2022
The system builds on G22. Most importantly, it uses their approach of computing scale factors 
and then using them to transform an observed climatology into the modern and counterfactual 
climatologies used to compute an attribution metric. It also uses a similar strategy of directly 
estimating changes in the distributions based on climate models. The major differences are

• Berkeley Earth has been replaced with high resolution CFS reanalysis temperatures to 
define the climatology

• ERA5 reanalysis is used to compute the scale factors
• Paired forced and pre-industrial CMIP6 models
• The quantile-based method (CDF values) for assigning the likelihood of the observed 

temperatures has been replaced with a method that fits a skew-normal distribution to the 
observations or models and then uses that distribution to estimate likelihoods.

• The occurrence ratio (OR) is used as the attribution metric instead of the probability ratio 
(PR)

Details and rationale are described below.

Climatologies 
We use the National Center for Environmental Prediction’s climate forecast system reanalysis 
(CFSR) as the basis for our historical climatologies. CFSR is available starting in 1979 and 
running to present at 0.5°-by-0.5° resolution. The data are produced using the same data, data 
assimilation, and model core as the GFS forecasts. 
CFSR consists of two sequential products: 
• CFSR (v1) January 1979 to December 2010
• CFSv2 January 2011 to present

The data are publicly available at 6hr resolution. To get daily maximum (Tmax) and minimum 
(Tmin), we used the xarray groupby(‘time.day').max() (or min) function. We downloaded the 
entire record from 1979-2021 and processed to Tmin and Tmax.
We define the reference climatology for day=d as the CFSR data for the 31 day period centered 
on day d over the years 1991-2020 (i.e. the NOAA climate normal period).

Observations 
For our nowcast and forecasts operations, we get temperature data from NOAA’s Global 
Forecast System (GFS). GFS is an operational model that is run several times a day to support 
weather forecasts. We download the forecast for the next 5 days and then compute each days 
min and max temperatures. GFS is run at a 0.25°-by-0.25° resolution. We use xesmf.Regridder 
(method = “conservative”) to transfer the GFS data up to the coarser CFSR grid.
We can also apply the attribution methods to the CFSR record. We use these data for 
hindcasting past conditions.
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Scale Factors 
Scale factors (the 𝜷 s in the equations above) are central to the two empirical attribution 
methods. These are computed by regressing a temperature time series for a particular quantile 
against global mean temperature. We used the Hadley Centre’s HadCRUT temperature product 
as our global mean temperature. 
We originally tried computing scale factors using the 1979-2020 CFSR database. However, we 
found that this was not sufficient to get reliable scale factors. In particular, if a region was very 
hot or very cool for the last several years (for example, because of the PDO phase), then the 
scale factors would be stronger or weaker than we would expect based on climate projections 
and our experience with the Berkeley data. 
To correct this, we used the ECMWF ERA5 reanalysis, which extends back to 1950. We 
downloaded the data at 3 hourly resolution and then computed daily min and max temperature. 
For a day of the year d, we extracted the 31 days surrounding that data over the entire record 
and regridded from the ERA5 0.25° grid to the CFS 0.5° grid (esmf “conservative” method). We 
then computed the quantiles in each year to get a time series for each quantile level. For each 
quantile level, we computed 𝜷q(d, x). We used 24 periods in the year: the 1st and 15th calendar 
day of each month. During testing we found that we could gain computational efficiency by 
reducing the number of quantiles without noticeable changes in the output. We now use 21 
evenly-spaced quantiles between 0.02 and 0.98, including the median (q=0.5). The R2 statistic 
and the p-value of scale factor regressions were retained.

Skew Normal Distributions 
The most significant change between V1 and the methods described in G22 is the use of 
parameterized distribution functions. We found that both Tmax and Tmin are well-approximated 
by the skew-normal distribution. This function is described by the location parameter (analogous 
to a median) = L, the scale parameter (analogous to the variance) =S, and the shape 
parameter=A that defines the level of skewness. 
The SciPy stats package includes a function to fit each built-in distribution to data. We used this 
function to fit skew-normal distributions to the reference climatologies. The counterfactual 
distributions for median scaling are constructed from the reference distributions by adding 
𝜷(GMTcf - GMTref)!"#!"$%!&#'(")#*!+(,(-%"%,.!/$%!-#0%,*!0)1",)23")#*1!4#,!-%0)(*!1'(&)*5!(,%!
',%("%0!)*!"$%!1(-%!6(7.

The quantile scaling method poses a challenge to using parameterized distributions like the 
skew normal. Because this method transforms the approximation of the CDF represented by the 
quantile distributions, it impossible to use the built-in routines. We use SciPy’s optimize.leastsq 
to find the [A, L, S] at each location that minimizes the residuals between the observed quantile 
distribution and the skew-normal CDF using [A, L, S]. We use the least-squares fit to the CDF 
for the modern and counterfactual distributions.
We also fit skew-normal distributions to the data from the climate models (see below).

Estimating the Modern Climate 
The Gilford et al. methodology uses annual global mean temperature (GMT) to define the global 
climate state. Ideally, we would like to define GMT(y) as the mean over some interval p of years 
(for example, 11) surrounding y. However, this definition creates a problem for the last p/2 years 
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in the record. This is especially troubling for our main application of estimating the attributable 
state of the climate for the current year.
One approach we considered was to define GMT as the mean of the prior p years. This is highly 
conservative in that it will always be cooler than the value we would get using the centered 
mean. For p = 11, it would be about 0.2°C below the “true” GMT. We decided to define GMT(y) 
as

- the centered 11 year mean, if y < 2022-6 = 2016

- 𝜸30 y + c30, if y >=2016

where 𝜸30 and c30 are the coefficients from the linear regression of GMT against year over the 
30 preceding years (e.g. 1992-2021 for y=2022). Note that the values estimated using the 30 
year regression are strongly related to those using the 11 year mean (R2=0.97, p<0.01).

Model-based Method 
We accessed CMIP6 output (daily tasmax and tasmin) from the Google Cloud archive. We 
found 24 models that had historical runs, forced projections (SSP3-7.0 if available, SSP5-8.5 in 
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Table 1. List of climate models from CMIP6

Organization Model Names

Australian Community Climate and Earth 
System Simulator

ACCESS-CM2, ACCESS-ESM1-5

Alfred Wegener Institute AWI-CM-1-1-MR

Euro-Mediterranean Center on Climate 
Change

CMCC-ESM2

Centre National de Recherches 
Météorologiques

CNRM-CM6-1-HR, CNRM-CM6-1, CNRM-ESM2-1

Canadian Centre for Climate Modelling and 
Analysis

CanESM5

EC Earth Consortium EC-Earth3-AerChem, EC-Earth3-Veg-LR, EC-Earth3-
Veg, EC-Earth3

Geophysical Fluid Dynamics Laboratory GFDL-CM4, GFDL-ESM4

Institute for Numerical Mathematics, Russian 
Academy of Sciences

NM-CM4-8, INM-CM5-0

Institut Pierre Simon Laplace IPSL-CM6A-LR

JAMSTEC, AORI, NIES, R-CCS MIROC6

Max Planck Institute MPI-ESM-1-2-HAM,MPI-ESM1-2-HR, MPI, ESM1-2-
LR, MRI-ESM2-0

NorESM Climate Modelling Consortium NorESM2-MM

Research Center for Environmental Changes, 
Academia Sinica

TaiESM1



some cases) and pre-industrial control runs (Table 1). We concatenated the historical and 
projections for each model to create a single “forced” simulation for each model. 
We used xesmf’s regridder to regrid each model to a common 1.5°-by-1.5° grid. For the 16 
models that had coarser resolution, we used bi-linear interpolation (xesmf’s “bi-linear” method). 
For the 8 models that had finer resolution, we used the xesmf “conservative” method.
As in G22 we used the Lange (2019) methodology to bias-adjust the output of each individual 
climate model. We used the same 1991-2020 CFSR climatology (regridded to 1.5°) as in our 
empirical method as the reference data for the debiasing. The debiasing trained by the 
relationship between the reference climate and the forced simulations was likewise applied to 
debias each paired pre-industrial control simulation.
For each model, we identified the first year when its representation of GMT (smoothed using an 
11year running mean) was greater than or equal to the modern GMT as defined above. We then 
select the 31 year period centered around that year to assess the climate corresponding to that 
GMT. For each of the 24 periods in the year, as with the empirical method, we extract the 31 day 
period centered around the target day. We then fit skew normal distributions to the Tmin and 
Tmax data. We also extract the same range of days from the last 31 years of the pre-industrial 
control run and fit a counterfactual skew normal distribution.

Attribution Estimates 
We now have several skew normal distributions representing the modern and counterfactual 
climates (Table 2). The pair of distributions created by each method allow us to independently 
estimate the change in the likelihood of the temperature in question.
Let T(d, y) be the observed or forecasted temperature for day d in year y. We find dj = the day 
from the 24 periods that is closest to d. For each method, we acquire SNcounter(dj) and 
SNmodern(dj), the files with the parameters for the skew normal distributions for day dj.
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Table 2. Summary of the attribution methods. The first row shows the global mean temperature relative 
to 1850-1899 for the three periods: reference, counterfactual, and modern. The remaining rows 
summarize the process for creating the skewed normal distributions that are used to estimate the 
likelihoods.

Reference 
(1991-2020)

Counterfactual 
(1885-1915)

Modern 
(y=2022)

GMT (rel. 1850-1899) 0.90 -0.06 1.27

Median-scaling Direct fit to 1991-2020 
CFSR data

Reference distribution 
with location parameter 
shifted by 𝜷 *(GMTcf- 

GMTref)

Reference distribution 
with location parameter 
shifted by 𝜷 *(GMTmod- 

GMTref)

Quantile-scaling Fit to 1991-2020 
quantile distribution

Fit to reference quantile 
distribution shifted by 
𝜷q *(GMTcf- GMTref)

Fit to reference quantile 
distribution shifted by 
𝜷q *(GMTmod- GMTref)

Models N/A Fit to model M’s control 
run

Fit to model M’s forced 
run



Once we have the skew normal distributions, we use them to get PDFmodern (T) and PDFcounter 
(T), the PDF values from each climate and with each method. We then compute:

OR(T) = PDFmodern (T) / PDFcounter (T)

which we refer to as the “occurrence ratio.” 
The occurrence ratio is our main attribution metric. It approximates the ratio of the probability of 
encountering a temperature close to T in the two climates. Values of OR>1 indicate that 
anthropogenic climate change has made those conditions more likely, and values <1 indicate 
that climate change made those conditions less likely.

Rationale for the Occurrence Ratio 
Using the occurrence ratio as the primary attribution metric is a departure from established 
attribution methodologies. The probability ratio (sometimes called the hazard ratio) is used in 
most studies. It is defined as (cf. eqn. 4):

PR(T) = (1-CDFmodern (T)) / (1- CDFcounter (T))

The PR makes a statement about the likelihood of temperatures greater than or equal to T. It is 
well-suited to the needs of most attribution studies which focus on extreme conditions. 
A key difference between our application and most published studies is that we want to be able 
to make a statement for any T, not just extreme values. We also want to be able to discuss 
conditions like cold days that are becoming less likely. The OR provides a more intuitive way to 
do this as it refers to specific conditions and doesn’t require the a priori choice of direction of 
change.

Combining Estimates and Accounting for Uncertainty 
Our procedure provides two empirical estimates and 24 estimates from the paired climate 
models. G22 took the mean of the climate model estimates (24 models) and then took the mean 
of the model average and the two empirical methods. We use this same approach; however, 
additional testing may indicate a different weighting scheme.
G22 used a Monte Carlo procedure to estimate confidence intervals around the attribution 
metrics from the two empirical methods. A full implementation of their Monte Carlo approach 
would require us to fit multiple skew normal distributions for each time period. This is 
computationally challenging. We therefore focused on developing a conservative methodology 
that could be applied within our operational time limits. This includes the definition of our new 
attribution metric, the Climate Shift Index.
Our procedure is:
1. Convert each of the 26 estimates of OR into a climate factor (CF):

CF(T) = 2*log2(OR(T))

This creates a linear scale centered on 0. Note that CF values above 8 or below -8 were 
replaced with 8 or -8, respectively.

2. Average the 22 model-based climate factors together to create a single model average. As in 
G22, we found that the model-based estimates are generally the most conservative estimates 
(CF values closest to 0).
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3. On rare occasions when the median or quantile method could not make an estimate 
(something observed occasionally for very extreme temperatures), replace that method with the 
model-based method

4. If there is any disagreement in the sign of the CF among the median, quantile, and model-
average, then the average CF is set to 0

5. If all three agree on the sign, then average the empirical methods together. Finally, take the 
average of the two averages.


This gives the value of the climate factor (which can be converted back to OR if desired) at the 
0.5° CFSR grid points. For the initial Climate Central mapping tool, we averaged the climate 
factor into NOAA climate divisions.

We then converted the average climate factor into the categorical Climate Shift Index. For 
warm temperatures, the Climate Shift Index is


The CSI values for cold conditions are defined analogously:

CSI Descriptor OR range CF range

0 No effect 1/5-1.5 -1.17 - 1.17

1 Moderate 1.5-2 1.17-2

2 Strong 2-3 2-3.17

3 Very Strong 3-4 3.17-4

4 Extreme 4-5 4-4.64

5 Exceptional >5 4.64

CSI OR range CF range

0 1/5-1.5 -1.17 - 1.17

-1 1/2 - 1/1.5 -2 - -1.17

-2 1/3-1/2 -3.17 - -2

-3 1/4-1/3 -4 - -3.17

-4 1/5-1/4 -4.64 - -4

-5 <1/5 -4.64
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The CSI scale embeds several strategies meant to make the estimates conservative. First, it 
creates a very wide range of values around 0. This, plus the criterion that the three methods 
must agree on the sign, reduces the number of false positives. Second, the categorical nature of 
the scale means that we are effectively rounding toward zero. An event with an OR of 2.8 (CF = 
2.97) becomes a 2 on the CSI scale. Finally, the CSI caps the maximum value at 5. This limits 
extrapolation into the tails of the distributions. The conservative approach and focus on lower 
bounds is consistent with other attribution studies that found a higher degree of certainty around 
lower bounds (Risser and Wehrner, 2017)

Example Results 
Our initial public work will focus on the contiguous U. S. Our main product will be daily maps of 
the climate factor averaged over the NOAA climate divisions (Figure 2). We show the results for 
June 29, 2021, during the Pacific Northwest heat dome, and December 16, during an unusual 
winter heat event.
The Pacific Northwest heat dome is clearly identifiable and is quantified in our system with 
Climate Shift Index levels above 2 throughout Oregon and Washington and a band of level 4 
and 5 in central Washington. Philip et al. (2021) estimated that the PR for this event was 175, a 
value much larger than what is indicated by the CSI. While our system is more conservative (by 
design), it clearly identified this as an important event and would have been able to do so days 
in advance. Our system also provides attribution estimates across the U.S.. For example, the 
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Figure 2. CC-TAS output for June 29, 2021 (top row) and December 16, 2021 (bottom row). Left. CFS 
Tmax expressed as an anomaly off of the 1991-2020 normal (anomaly is in °C). Right. The Climate Shift 
Index value for that day.



CSI identifies the cool temperatures in New Mexico and Colorado as conditions that are less 
likely due to climate change. It also identifies an event in the Northeast with a significant climate 
fingerprint (CSI>1).
In many ways, the December 16 event was even more striking than the Pacific Northwest event. 
A large region that encompassed all of Minnesota and Wisconsin and parts of Nebraska, South 
Dakota, North Dakota, Iowa, and Illinois reached level 5 on the CSI. 
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