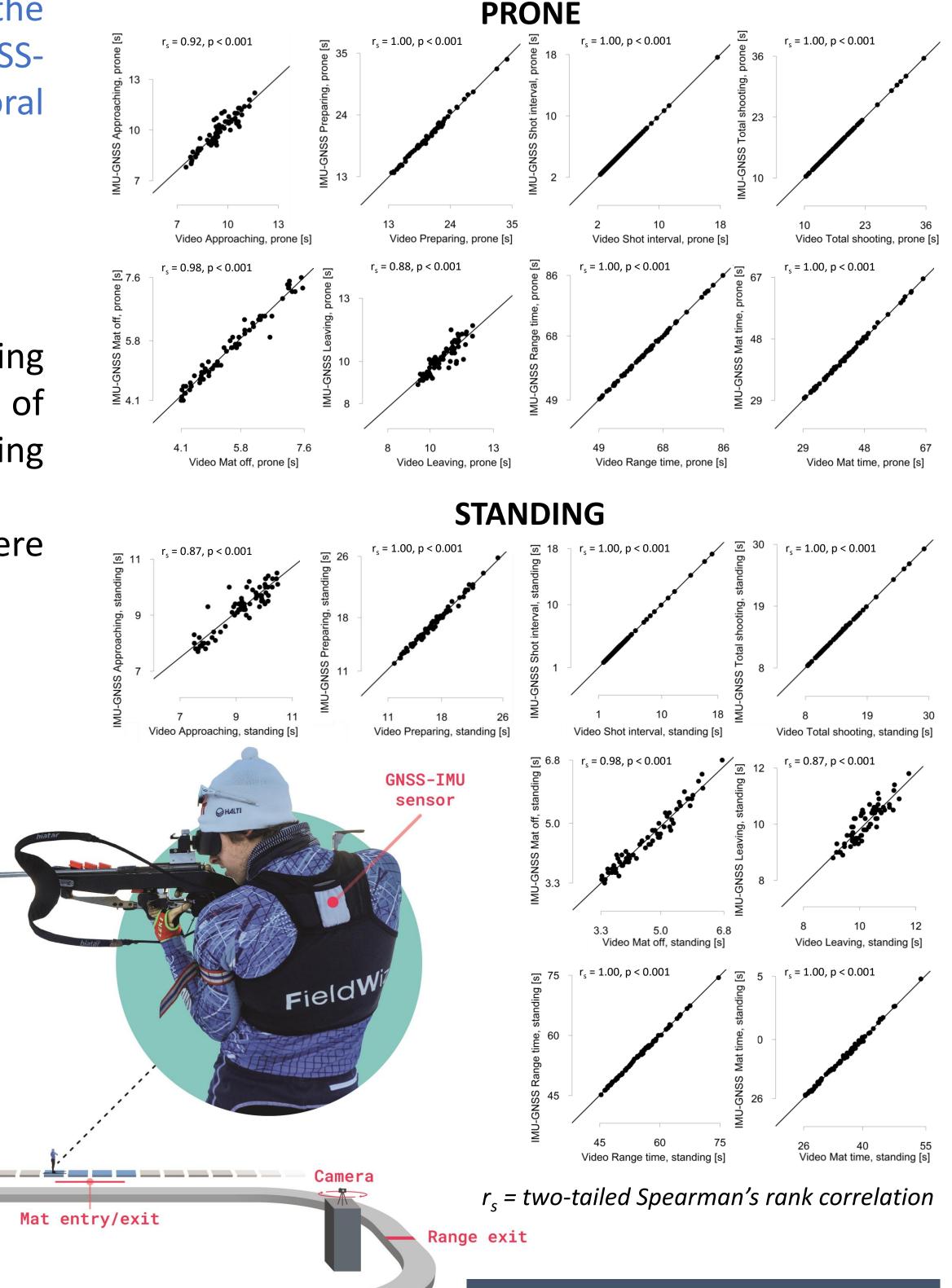
Validity of an automated GNSS-IMU system in temporal biathlon range work analysis

Köykkä, M.^{1,2}, Ruotsalainen, K.², Vierola, S.¹, Vänttinen, T.¹, Heikkinen, T.², Ohtonen, O.², Linnamo, V.²

¹ Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland

² Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland


INTRODUCTION

The purpose of this study was to examine the validity of a commercial wearable wireless GNSS-IMU system (Archinisis) in automated temporal biathlon range work analysis

METHODS

12 biathletes skied 12 laps around the shooting range and performed six times a 5-shot set of biathlon shooting from the prone and standing postures

STRONG RELATIONSHIPS BETWEEN METHODS WERE OBSERVED

- Temporal range work characteristics were simultaneously measured with
 - a wearable GNSS-IMU sensor
 - Naos sensor for biathlon by Archinisis
 - a high-speed video camera

Variable	Description		
Approaching	Range entry to mat entry		
Preparing	Mat entry to the 1st shot		
Shot interval	Time between consecutive shots		
Total shooting	Time between the 1st and last shot		
Mat off	From the last shot to mat exit		
Leaving	From mat exit to range exit		
Range time	From range entry to range exit		
Mat time	From mat entry to mat exit		

RESULTS

CONCLUSION

	Prone		Standing	
	MAE (s)	CV% _{RMS}	MAE (s)	CV% _{RMS}
Approaching	0.47 ± 0.31	4.1	0.27 ± 0.26	2.9
Preparing	0.19 ± 0.17	0.9	0.29 ± 0.19	1.4
Shot interval	0.006 ± 0.004	0.1	0.009 ± 0.010	0.3
Total shooting	0.02 ± 0.01	0.1	0.03 ± 0.04	0.2
Mat off	0.14 ± 0.13	2.5	0.15 ± 0.11	2.9
Leaving	0.46 ± 0.31	3.7	0.29 ± 0.18	2.4
Range time	0.17 ± 0.12	0.2	0.15 ± 0.11	0.2
Mat time	0.24 ± 0.20	0.5	0.28 ± 0.20	0.7

Range entry

MAE = mean absolute error

CV%_{RMS} = root-mean-squared coefficient of variation percentage

Temporal biathlon range work characteristics can be measured with reasonable accuracy with the Archinisis GNSS-IMU system. The Archinisis system can be used to collect data on biathletes' range work performance for coaching and research purposes.

UNIVERSITY OF JYVÄSKYLÄ