
C O R E E L E M E N T S O F
C O N T I N U O U S T E S T I N G

Today’s modern development disciplines -- whether Agile, Continuous

Integration (CI) or Continuous Delivery (CD) -- have completely transformed

how teams develop and deliver applications. Companies that need to

compete in today’s fast-paced digital economy must also transform how

they test. Successful teams know the secret sauce to delivering high

quality digital experiences fast is continuous testing. This paper will define

continuous testing, explain what it is, why it’s important, and the core

elements and tactical changes development and QA teams need to

make in order to succeed at this emerging practice.

WHITE PAPER

3 What is Continuous Testing?

3 Why Continuous Testing?

4 Core Elements of Continuous Testing

6 Tactical Engineering Considerations

7 Benefits of Continuous Testing

TABLE OF CONTENTS

WHAT IS CONTINUOUS TESTING?

Continuous testing is the practice of executing automated tests throughout

the software development cycle. It’s more than just automated testing; it’s

applying the right level of automation at each stage in the development

process. Unlike legacy testing methods that occur at the end of the

development cycle, continuous testing occurs at multiple stages, including

development, integration, pre-release, and in production. Continuous testing

ensures that bugs are caught and fixed far earlier in the development process,

improving overall quality while saving significant time and money.

WHY CONTINUOUS TESTING?

Continuous testing is a critical requirement for organizations that are shifting

left towards CI or CD, both modern development practices that ensure faster

time to market. When automated testing is coupled with a CI server, tests

can instantly be kicked off with every build, and alerts with passing or failing

test results can be delivered directly to the development team in real time.

Continuous delivery means that once all tests have passed, updates can be

pushed directly to production with confidence.

Learn more at saucelabs.com

3

CORE ELEMENTS OF CONTINUOUS TESTING

We’ve found that customers who are delivering quality digital experiences at

high velocity focus on six essential pillars of continuous testing:

1. Cultural commitment to quality

Since a robust quality user experience is so critical to success, it must be

owned by the entire team. From a cultural perspective, continuous testing

succeeds when everyone owns quality. Test cases are outlined before

coding even begins or tests are written as needed. Either way, developers

and test automation architects work together to ensure that the code is

optimized for test automation. In addition, teams collaborate on test results

via tools such as Slack and HipChat to speed feedback and debugging.

2. Testing at every stage of the development cycle

The key to moving from one stage of the development cycle to the

next is often predicated on the passing of tests. These are the “gates”

of development, as it’s required you pass through that gate in order to

proceed. Using testing as a gate to each step of the process ensures

the code continues to operate as designed when new changes are

introduced. Testing early and often enables you to catch bugs sooner

in the development cycle, when it is much less expensive than catching

and remediating that same bug in production. We typically see our most

successful customers executing the following types of functional tests

throughout the software development cycle:

• Unit testing. Unit tests exercise only a single behavior. The goal of

a unit test is to get fast feedback on whether the new code works

as intended. Well-designed unit tests, especially when developed

with Test Driven Development, lead to well-structured code that has

isolated components. This will mean fewer failures, and when those

failures occur, they will tend to be isolated, easy to debug, and fix.

• Integration Testing. In this phase, individual software modules

(components) are merged into the shared pipeline and tested. The

goal of an integration test is to ensure the build remains stable as

new code is introduced, and that no existing functionality is broken

by new code. These “pull request tests” can be automated and

kicked off via a CI server to ensure that new features that are added

work as desired and don’t break existing functionality or conflict with

other new feature.

Learn more at saucelabs.com

4

• Automated End-to-End and Regression Testing. Once the code is

finalized, it must be packaged and deployed across various servers

and resources to demonstrate that the application works for a user

from login to logout in an environment that mirrors production.

The goal here is to ensure that the entire system works as expected.

Automated testing at this point ensures all the capabilities work with

each other as planned, and that there are not any problems with

dependencies or other environment specific issues.

• Production Testing. Testing doesn’t stop once you’ve released the

software, it must be tested frequently to ensure it continues to work

as designed. Testing the actual code in production serves to alert you

quickly to issues before they cause major problems for your users

and your business.

• Exploratory and Live Testing. While automation is essential to

Continuous Testing, manual (or live, interactive) testing is still a

necessity. Computers are ideal for covering a broad swath of well

defined, repetitive tasks; however, it takes creativity and human

intervention to dream up ways to try and break an application or

notice an unexpected result.

3. Using expertise to build out automation

Organizations are departing from the legacy testing paradigm of taking

manual test cases and automating them with simple methods like

record and playback; while that provides an easy way to get started, it

also creates brittle tests that do not scale as the amount of automation

increases. Now, more experienced teams leverage intelligent frameworks

to write automated test scripts as part of the development process.

Automation is the future and we will increasingly see businesses deploy

automation within their organizations. Manual testing still serves an

important purpose but it doesn’t scale to meet all the needs of today’s

modern development practices. Automated tests have to fill the gap and

do what manual testing can’t---accurate repetitive, parallel checks of

expected behavior. Freeing up manual testing from repetitive tasks to

focus on intelligent, creative exploratory and usability testing.

4. Test execution platform that provides you with comprehensive coverage

To ensure your digital experiences will work for all your users, it’s essential

to have a test execution platform that includes virtually any combination

of browser, OS and device. This provides development and QA teams with
Learn more at saucelabs.com

5

the coverage and flexibility they need to deliver a flawless user experience

for all users. It also provides the ability to reproduce bugs in virtually any

environment as users report issues.

5. Ability to scale up and down your test infrastructure instantly as needed

As your team begins to automate more tests at multiple stages in the

development cycle, scalability becomes a critical requirement. Whether

you are preparing for a major launch or a busy season, testing will likely

surge at various times throughout the year, particularly as multiple teams

check in and test new code throughout the day. One way to instantly

scale up the amount of tests you can run is to implement parallel testing,

that is running multiple tests across various environments in parallel

rather than in serial order, so you achieve the coverage without adding

significant test run time. To ensure scalability and flexibility, you need a

test execution platform that can scale seamlessly as well as stay up to

date as new releases and devices come out.

6. Visibility and analytics

To know where you’re going, you must be able to see where you’ve been.

Analytics are critical to understanding how tests are performing and

quickly identifying bottlenecks and quality issues. Teams need real-time

visibility into coverage, test run times, failures and efficiency, so they can

identify trends and make changes to code or practices to increase quality

and speed releases.

TACTICAL ENGINEERING CONSIDERATIONS

We’ve reviewed the essential elements to Continuous Testing, as well as the

cultural and operational requirements that can help it succeed. There are also

a number of engineering considerations that teams should take into account

in order to make Continuous Testing successful in their organizations.

Keep the tests green. If the team is spending a great deal of time “greening”

the tests, they may be covering a user interface that is not mature enough

to handle them. Alternatively, a passing test run might be required to call

the story done. Keeping the test run passing should be a whole team

responsibility, not something done by Software Development Engineering in

Test (SDET) at the end of the cycle after a handoff.

Having the engineering practices in place to make a release decision

automatically. Continuous Testing can actually slow down delivery if the team

has a low first time quality or high bug-injection rate. If the team is spending
Learn more at saucelabs.com

6

a large amount of time on bug fixes, work on engineering practices like unit

tests, code reviews, user experience and better shared understanding of what

to build before building it.

A full run in under 5 minutes. It’s easy to start a new project with a CI

system and five minute build; the challenge is maintaining it as the feature

list increases. Larger applications will want to move to a component

architecture, run tests in parallel, or both, to make this happen.

What tests to put in the build. Some organizations, especially those that don’t

run tests in parallel, maintain two or more test suites. The first, smaller test

suite is a “sanity” run, designed to keep the build fast. A larger, slower set of

more (or all) tests can run in a continuous loop. This creates two feedback

loops: A tight loop of under an hour (actually we prefer under fifteen minutes)

and a multi-hour run that provides more coverage.

Continuous testing without continuous delivery. For teams with a legal

requirement for final User Acceptance Test (UAT), such as medical devices, it

might make sense to use Continuous Testing without Continuous Delivery.

Continuous Testing, after all, is just good engineering work. The result will be

incredibly high quality code delivered to UAT with considerably less rework

at the end, faster code delivery, along with the ability to de-scope and begin

UAT immediately several times a day.

BENEFITS OF CONTINUOUS TESTING

Continuous testing is not simply a nice-to-have technology or a way to

make engineers’ work a little easier. It is an essential resource for helping the

business to remain competitive and continue to innovate. By implementing

continuous testing practices, you can delight your customers by automatically

releasing new features at an extremely rapid pace.

Amazon is an excellent example of these practices in action. They test at all the

integration points between development and production, and automate the

testing of production code. Along with continuous delivery, they average an

update release every 11.6 seconds. You may not have that kind of release velocity,

but it’s reassuring to know that by implementing the core elements of continuous

testing covered in this paper, you can set yourself on a path to accelerate the

release of high quality software at a pace much faster than you do today.

For help setting up a continuous testing discipline in your organization, please

contact the experts in continuous testing at sales@saucelabs.com

Learn more at saucelabs.com

7

WP-14-022018

mailto:mailto:sales%40saucelabs.com?subject=

Sauce Labs ensures the world’s leading apps and websites work fl awlessly on every browser, OS and

device. Its award-winning Continuous Testing Cloud provides development and quality teams with

instant access to the test coverage, scalability, and analytics they need to deliver a fl awless digital

experience. Sauce Labs is a privately held company funded by Toba Capital, Salesforce Ventures,

Centerview Capital Technology, IVP and Adams Street Partners. For more information, please visit

saucelabs.com.

ABOUT SAUCE L ABS

SAUCE LABS INC. - HQ

116 NEW MONTGOMERY STREET, 3RD FL

SAN FRANCISCO, CA 94105 USA

SAUCE LABS EUROPE GMBH

NEUENDORFSTR. 18B

16761 HENNIGSDORF GERMANY

SAUCE LABS INC. - CANADA

134 ABBOTT ST #501

VANCOUVER, BC V6B 2K4 CANADA

