
OPTIMIZING CI/CD FOR
CONTINUOUS TESTING -
ADAPTING PROCESSES

As more organizations embrace Continuous Integration (CI) and

Continuous Delivery (CD) as a mechanism to release apps faster, many

find that there are a number of options to consider when making this

transformational shift. However, while there is significant thought put

into how development practices will change, very few teams consider

how CI/CD will change the way they test the code that they create.

This technical paper is the third in a series outlining various topics

development organizations of all sizes should consider when optimizing

their processes for CI/CD, and how they relate specifically to testing.

This critical piece of your engineering strategy can influence not

only the quality of your applications, but also how quickly you can

deliver them to your users. For many teams, these considerations can

effectively make or break your CI/CD initiatives.

WHITE PAPER

3 Intro

3 Adapting Processes

3 Moving to Smaller Branches

4 Storing Tests in Source Alongside Code

5 Conclusion

TABLE OF CONTENTS

INTRO

Moving to an effective and efficient CI/CD pipeline requires significant effort

from organizations. It involves process and policy changes across every team.

The payoff can be extraordinary: continual improvement as the organization

moves to consistently deliver high quality digital experiences to their

customers at speed. However, as your release velocity begins to increase,

how can you still ensure your apps are well-tested?

Adding continuous testing best practices from the outset can enable the

transformation to CI/CD by allowing code to move through an accelerated

pipeline without testing becoming a bottleneck. To achieve this requires

an entirely new set of features -- testability features -- built into the

architecture itself, along with other changes to the way software is built.

Without these changes, organizations typically struggle to see the benefits

that CI/CD promise. This technical paper is the third in a series discussing the

approaches, requirements and processes to consider when implementing

continuous testing in a CI/CD workflow, and will focus on adapting processes.

ADAPTING PROCESSES

Moving to a pipeline that constantly delivers high-quality, well-tested software is far

more a process change than a technical one. Of course significant changes will be

required to an organization’s technical practices; however, organizations will need

to adjust their delivery processes. This can often be more challenging than technical

changes, as it requires non-technical roles such as stakeholders, product owners,

and users to adjust their work habits and mindsets. Getting past the “I just want to

do my job!” mindset to “How can I improve my job?” isn’t always easy, but there are

a number of ways to help ease this transition as team members adapt how they’re

doing their work in order to successfully move to a CI/CD model.

MOVING TO SMALLER BRANCHES

Branching strategy is often as hotly debated as tabs versus spaces or Emacs

versus Vim. The branching strategy a team chooses will have a significant

impact on the team’s ability to work as smoothly as possible in a CI/CD

environment.

Small, short-lived branches (feature or smaller-sized) allow teams or even

small groups (pairs!) of team members to do their own work isolated from

others’ churn in the codebase. Development and testing can be accomplished

without interruption from other work in the database. Small branches aren’t

something new: Martin Fowler wrote about them back in 2009 based on
Learn more at saucelabs.com

3

years of his experience. Dependency management across branches is still an

issue, but it’s lessened by good communication around APIs and automated

tests to guard against regressions.

Normally each branch will have its own build job in the pipeline. Each branch

has a job to monitor that branch in source control, then pull, build, deploy,

and test as required. This requires more setup time up front; however, job/task

templates make this much easier. (Every popular CI/CD toolset offers some

form of job/task templating just for these situations.).

STORING TESTS IN SOURCE ALONGSIDE CODE

Keeping automated tests in sync with the application code they cover is

critical to automated delivery pipelines. The entire team needs to have

complete confidence in the checks guarding against regressions and

confirming high-value business features.

The smoothest approach to handling this is simply keeping automated test

code in the same repository as the system code. Having tests right alongside

the system makes it simple to pull the current branch from source, build,

deploy, and test. There’s no mess about determining versions from other

repositories, passing of messy variables, etc.

Organizing test and system code in a repository is something each project

team needs to work out for their own requirements. Larger organizations

might have a few guidelines, but teams will need to evaluate approaches that

meet their environments and pipelines. Moreover, different toolsets prefer

different organization of tests. A common approach is to have unit tests very

close in layout to the code they’re testing, as shown in the following figure

depicting a very simple Java project in IntelliJ. Source code is under /src/main

with test code under /src/test.

Learn more at saucelabs.com

4

Further organization of integration, functional, security, performance, and

other test types generally are in separate projects. Again, approaches vary

greatly across different organizations, teams, and toolsets.

CONCLUSION

While there are a number of technical considerations when building a well-

tested CI/CD pipeline (see our previous technical papers on environment

and feature management for more), no transformation is more difficult than

process. This is because it is primarily a culture change, and requires buy in

from all levels of the organization to take effect. However, when showing

the benefits of these process changes -- the ability to work autonomously

in smaller branches without fear of regressions, and full insight into quality

with tests stored alongside source code -- the barrier becomes more

surmountable. By framing these process shifts as beneficial for everyone’s

daily work, it becomes easier to get the required buy in across the

organization, and sets up your CI/CD initiative for success.

Sauce Labs provides the world’s most comprehensive Continuous Testing

Cloud. Optimized for CI/CD with integrations to the industry’s most popular

tools, Sauce Labs is the perfect platform for all of your continuous testing

requirements throughout your CI/CD pipeline. To learn more, take a look at

this tech talk on integrating continuous testing into your CI/CD pipeline.

Learn more at saucelabs.com

5

WP-24-072019

https://saucelabs.com/resources/white-papers/optimizing-ci-cd-for-continuous-testing-environment-management
https://saucelabs.com/resources/white-papers/optimizing-ci-cd-for-continuous-testing-feature-management
https://info.saucelabs.com/tech-talk-cicd-integration.html

ABOUT SAUCE L ABS

SAUCE LABS INC. - HQ

116 NEW MONTGOMERY STREET, 3RD FL

SAN FRANCISCO, CA 94105 USA

SAUCE LABS EUROPE GMBH

C/O WEWORK STRALAUER

ALLEE 6 10245 BERLIN DE

SAUCE LABS INC. - CANADA

134 ABBOTT ST #501

VANCOUVER, BC V6B 2K4 CANADA

Sauce Labs ensures the world’s leading apps and websites work flawlessly on every

browser, OS and device. Its award-winning Continuous Testing Cloud provides

development and quality teams with instant access to the test coverage, scalability,

and analytics they need to rapidly deliver a flawless digital experience. Sauce Labs is a

privately held company funded by Toba Capital, Salesforce Ventures, Centerview Capital

Technology, IVP, Adams Street Partners and Riverwood Capital. For more information,

please visit saucelabs.com.

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

