
S O LV I N G T H E M O B I L E
T E S T I N G C O N U N D R U M

Even though mobile testing is complex, it can be done successfully

with the correct strategy.

A sound mobile test automation strategy must include test automation

frameworks, real devices, and emulators and simulators.

A global overview by WeAreSocial.com revealed that more than half of the

world’s web traffic now comes from mobile devices. So, it is not surprising

that today’s software development is based on a mobile-first or even a

mobile-only imperative. But for all these dramatic changes, developers still

struggle when it comes to mobile testing. This paper will outline the factors

to consider when building an effective mobile test automation strategy

and weigh up the benefits and disadvantages of popular test automation

frameworks.

There are many factors that can make or break the success of a mobile

app. For example, consider device fragmentation. With the advent of new

smartphones released every year and a trend of mobile phone users hanging

on to their devices for a longer life span, this further complicates the amount

of firmware and hardware testing to be completed. When your app needs to

work across a variety of devices, it can become a serious burden for testers.

Another factor that contributes to this complexity is the device itself: varying

screen and device sizes, resolutions and orientations. Next, we have multiple

app types, such as web, hybrid and native. These multitudes of devices

operate differently on various device and OS combinations. Finally, you

have users all over the world in different regions that must be tested for

translations, timezones and targets. These factors make testing with mobile

a challenge. The good news is that even though mobile testing is complex,

it can be done successfully with the correct strategy. When building a mobile

testing strategy, there are three key areas of focus:

1. Real device testing

2. Emulator and simulator testing

3. Test automation frameworks

By focusing on these three areas, organizations will thrive in the fast-paced

world of mobile software development.

SCALE CONTINUOUS TESTING WITH EMULATORS AND SIMULATORS

For several years, the use of emulators and simulators to test mobile

applications has been met with some resistance. This is based on the

perception that if you’re not testing on a real device, you’re not testing at all.

Learn more at saucelabs.com

2

LAPTOPS &

DESKTOPS

MOBILE

PHONES

Year-On-Year Change:

TABLET

DEVICES

45% 50% 5%

-20% +30% -5%

Figure 1: The user numbers driving the mobile challenge all use cases

Although real devices give more accurate test results, using them alone is

not ideal for continuous testing and continuous delivery. Due to budget

issues, some organizations forgo real devices altogether as they’re too

expensive, and instead opt for emulators and simulators. But the reality

is that effective and efficient mobile app development requires both

emulators/simulators and real devices.

An emulator, as the term suggests, emulates the device software and

hardware on a desktop PC, or as part of a cloud testing platform. The Android

(SDK) emulator is one example.

A simulator, on the other hand, delivers a replica of a phone’s user interface,

and does not represent its hardware. It does not run the real device OS;

rather, it’s a partial reimplementation of the operating system written in a

high-level language. The iOS simulator for Apple devices is one such example.

Emulators give teams the ability to implement parallel testing and test

automation via external frameworks like Appium or Espresso. Selenium

revolutionized the world of web app testing by pioneering browser-based test

automation. Today, Appium is its counterpart for mobile app testing. Appium

uses the same WebDriver API that powers Selenium, and enables automation

of native, hybrid, and mobile web apps. This brings huge improvements in the

speed of tests for organizations coming from the manual world of testing on

real devices. Emulators enable parallel testing in a way that can’t be achieved

with devices in a lab. Because tests on emulators are software-defined,

multiple tests can be run on tens of emulators at the click of a button without

Learn more at saucelabs.com

3

having to manually prepare each emulator for the tests. Further, automation

is easier with emulators as the tests can be executed without manual

intervention, and be controlled remotely.

DEVOPS, CONTINUOUS TESTING AND CONTINUOUS DELIVERY

The speed of release and change demands that mobile development is agile.

Mobile requires that continuous testing (the process of executing automated

tests as part of the software delivery pipeline to obtain immediate feedback

on the business risks) is a key component to the overall regression testing

strategy. In order to properly build out a mobile regression testing strategy,

it is imperative that the dev/test teams are well equipped with the following:

• A comprehensive web and mobile testing platform

building a test lab from the ground up is timely and expensive. The

best option is to use a cloud-based, device lab solution that provides

an extensive choice of real devices, as well as emulators and simulators.

This should also include parallel testing so that test execution can be

done in a shorter amount of time.

• Highly scalable, highly available solution

developers and testers need to ensure that the infrastructure for mobile

testing allows the team to expand coverage as the test suite grows. The

goal is to decrease test execution time while providing fast feedback, and

to ensure that the team spends less time chasing false failures and more

time on actual testing and defect remediation.

• CI/CD optimization

in order for the regression testing efforts to keep up with the fast pace

of continuous delivery, the process must have a tight integration with the

development workflow and mobile app delivery pipeline. The goal is to

eliminate any unnecessary manual steps, and promote an automation-

first philosophy throughout the testing process.

Although mobile regression testing can be a challenge, the risks of flaky

software can be reduced by making sure your organization has the right

strategy in place.

Mobile test automation frameworks

Test automation frameworks are an integral part of mobile test automation.

There are many test automation frameworks freely available, but the top

mobile testing frameworks are Appium, Espresso and XCUITest. Sauce Labs

Learn more at saucelabs.com

4

recently conducted a survey of teams using test automation frameworks

for mobile app testing. The survey found that 63 percent of the participants

use the Appium framework, while 31 percent didn’t use any test automation

framework at all. Since Appium is based on Selenium (the popular open

source functional testing framework), it wasn’t a huge surprise that most of

the users surveyed were using Appium. But the main question is why is it that

over 30 percent of users were not using some sort of testing framework?

The answer lies in the implementation, or lack of a mobile testing strategy.

When implementing a mobile testing strategy, it is very important to understand

• Use for stable features

• Distribute features across device models and form factors

• Important for UX Testing

• Combine with WANem or similar tools for simulating

 network connectivity conditions

• High volume functional tests for large integration builds

• Frequent builds with high concurrency to reduce build

 times, enabling dev teams to not block each other

• Recommended only for small subset

 of network-dependent use cases
Device
Testing

(in network)

Device Testing
(on WI-FI + networks

Simulation Tools)

Emulator & Simulator Testing

Figure 2: Emulators, stimulators and real devices cover all use cases

TESTER AUTOMATION SKILL SET

When evaluating frameworks, it’s important to understand the technical

background of your team. Some frameworks take a “black box” test approach,

which is typically best for traditional test automation engineers. While other

frameworks take a “white box” approach suitable for developers. There are

pros and cons to each framework, but let’s explore the top three.

Appium

From Appium.io:

“Appium is an open-source tool for automating native, mobile web, and

hybrid applications on iOS and Android platforms. Native apps are those

written using the iOS, Android, or Windows SDKs. Mobile web apps are web

apps accessed using a mobile browser (Appium supports Safari on iOS

Learn more at saucelabs.com

5

1. The skillset of the test automation team and

2. The framework that best fits the organization’s preferred

development methodology.

and Chrome or the built-in ‘Browser’ app on Android). Hybrid apps have

a wrapper around a “webview” – a native control that enables interaction with

web content.” The key advantages of Appium are:

• A single, cross-platform framework for both Android and iOS

• The ability to automate mobile web, native and hybrid applications

• Tests can be run on emulators, simulators and real devices

Supports any language supported by Selenium, such as Ruby, Java,

JavaScript, Python, C#, etc.

Appium is one of the more popular testing frameworks for those organizations

that typically have testers who have worked with Selenium and are currently

making the transition to mobile development. Since Appium is a black box

type framework, the tester has less insight into the code, and the focus of

testing is limited to what is exposed by the mobile application under test.

WHAT MOBILE AUTOMATION
FRAMEWORK DO YOU USE?

POLL RESULTS

Appium 63%

Espresso 3%

Calabash 1%

XCUITest 3%

No automation framework 31%

Figure 3: User survey of test automation framework

Espresso

The Espresso testing framework provides a set of APIs to build UI tests to test

user flows within an app. These APIs let you write automated UI tests that

are concise and that run reliably. Espresso is well-suited for writing white

box-style automated tests, where the test code utilizes implementation code

details from the app under test.

Learn more at saucelabs.com

6

Learn more at saucelabs.com

7

The key advantages of Espresso are:

Espresso is highly performant and reliable. It is is fully integrated with Android

Studio, the preferred mobile development platform for Android apps. It’s

based on Java or JUnit, which many android developers are familiar with.

Since Espresso is integrated with Android Studio, it’s automatically CI/CD

ready, allowing teams to easily incorporate their test with existing continuous

integration & delivery tools and frameworks.

Another advantage of the Espresso test framework is that it automatically

provides updates to the latest and greatest features of the Android operating

system. This helps keep testing in sync with new features and improvements

as they become available. In addition, Espresso’s integration with Android

Studio provides backward and forward compatibility. This allows teams to

ensure their app works on previous releases of the Android OS.

A huge benefit for testing with the Espresso framework is automatic

synchronization. Many testers struggle with UI testing reliability because of

waits for elements to become visible or active. With other frameworks, the

developer must write code to manage these issues. Once the object appears,

Espresso handles the execution on that object for you. This results in less

“flakiness” of test scripts and more reliable regression test suites.

XCUITest

XCUITest is the automation framework that ships with Apple’s XCode.

The XCTest framework lets iOS app developers create and run unit tests,

performance tests and UI tests for XCode projects. It provides developers with

capabilities similar to those found in Espresso. However, Espresso is dedicated

to code written for the Android operating system and XCUITest is dedicated to

Objective-C and Swift code that runs under iOS.

XCUITest was created specifically for testing iOS apps and is maintained by

Apple. This ensures that developers get the best support from the Apple

developer community as well as the latest updates for new releases on iOS.

Additionally, the ability to run unit, UI and performance tests allows more

comprehensive testing within a single framework.

Learn more at saucelabs.com

8

Criteria Espresso XCUITest Appium

Scope Andriod only iOS only iOS and Andriod

Language Support Java Swift/Objective C Java, #C, Ruby, Python

Publishers Google Apple Open Source, Sauce Labs

Testing Artifact APK and Test APK Internal Target APK or IPA

Need access to source

to create tests?

Yes Yes No

Allows Remote Testing? Yes No Yes

Ease of use for test

creation

Easy, has internal recorder Easy, has internal recorder Medium, has recorder that

produces testing source code

If the development of the app is strictly for iOS then the developer has

everything at their fingertips. If the app is cross platform using XCUITest it can

be a slight disadvantage - for instance, the issue of developer skill set. Tests

written for XCUITest can only be written in Objective-C or Swift code. A team

that has developers experienced in Java, JavaScript, or any language that

Selenium supports must now learn another scripting language and manage

two frameworks. This is another reason Appium has become popular with test

automation engineers that support multiple mobile app platforms.

Espresso, XCUITest and Appium are all useful frameworks for writing tests for

mobile applications. But a question to be answered is really what is the best

framework for the job. No one tool is applicable to all situations. Espresso and

XCUITest are great tools for mobile testing when source code is available and

the developer is working in an IDE. Appium is the mobile application testing

tool to use when all that is available is the API or APP deployment artifacts.

And all come with tradeoffs. Finding the right test automation framework for

the right job is a hard determination to make.

Testing frameworks are a key component of mobile application

development. With Agile, DevOps, continuous testing and integration,

developers and test automation engineers must continue to develop, test

and execute at a rapid pace.

Frameworks such as Espresso, XCUITest and Appium make automation easier

to scale for small to medium sized organizations to large enterprises.

Learn more at saucelabs.com

9

CONCLUSION

A sound mobile test automation strategy must include test automation

frameworks, real devices, and emulators and simulators. Each component is

critical to the rapid release of realease of high quality software.

Agile, DevOps and continuous testing are the norm. Mobile software

development naturally follows this paradigm. Implementing these

components as part of the mobile testing strategies will increase the chances

of successful releases and decrease the chances of poor app quality.

WP-21-112019

ABOUT SAUCE L ABS

Sauce Labs ensures the world’s leading apps and websites work flawlessly on every

browser, OS and device. Its award-winning Continuous Testing Cloud provides

development and quality teams with instant access to the test coverage, scalability,

and analytics they need to rapidly deliver a flawless digital experience. Sauce Labs is a

privately held company funded by Toba Capital, Salesforce Ventures, Centerview Capital

Technology, IVP, Adams Street Partners and Riverwood Capital. For more information,

please visit saucelabs.com.

saucelabs.com/signup/trial

FREE TRIAL

SAUCE LABS INC. - HQ

116 New Montgomery Street, 3rd Fl

San Francisco, CA 94105 USA

SAUCE LABS EUROPE GMBH

Stralauer Allee 6

10245 Berlin DE

SAUCE LABS INC. - CANADA

128 West Pender Street, 8th Floor

Vancouver, BC V6B 1R8, Canada

SAUCE LABS - POLAND

Złota 59 St., 4th Fl.

00-120 Warsaw, Poland

https://saucelabs.com/

