
H O W T O G E T T H E M O S T
O U T O F Y O U R C I / C D
W O R K F L O W U S I N G
A U T O M A T E D T E S T I N G

This paper is aimed at Test and QA Executives as well as Project

Managers who are considering adopting automated testing, but are

unsure of how to get started. It highlights the benefits of automated

testing, the recommended technical approach to take, and suggests

tools that enable teams to successfully adopt automated testing as

part of a healthy continuous integration and delivery process.

It also examines which tests to automate and which to

continue to do manually.

WHITE PAPER

3	 Executive Summary

3	 Automated Testing as Part of the Broader

CI/CD Pipeline

4	 The Kubernetes Effect

5	 GitOps = Fully-automated CI/CD

5	 Reality Check - The Majority of Testing is

Still Manual

6	 What is Test Automation?

7	 Manual Testing vs Automated Testing -

Weighing the Benefits

7	 Obstacles to Adopting Automated Testing

8	 The Right Approach to Test Automation

9		 Unit and Component Testing

9		 Headless Testing

9		 API or Web Services Testing

9		 UI Testing

10		 Regression Testing

10		 Functional Testing

10		 Mobile Testing

11	 Which Tests to Continue Manually

11		 Usability Tests

12		 One-off Tests

12	 Selecting the Right Test Automation Solution

12		 The Crucial Decision - In-house, Open 	

	 Source, or Commercial

13		 Selenium - The Leading Test Automation Tool

	 for Web Apps

13		 Appium - The Leading Test Automation Tool

	 for Mobile Apps

14	 Open Source Tools Require Expertise to

Run In-House

14	 The Ideal Solution Should Combine the Best of

Both Worlds - Selenium & Appium

15	 Conclusion

15	 About Sauce Labs

15	 Appendix

TABLE OF CONTENTS

EXECUTIVE SUMMARY

In today’s hyper-competitive cloud economy, it’s important to be first to

market to gain a competitive edge. This makes organizations prefer modern

software development techniques like continuous integration and continuous

delivery (CI/CD) over the traditional waterfall approach to building software.

Automated testing is an integral part of the continuous delivery pipeline.

However, despite the acknowledged benefits of automated testing, the reality

is that most organizations still use outdated manual testing processes. The

initial effort required to set up a test automation process makes teams want

to avoid the pain, and make do with manual testing. However, to benefit

from CI/CD, it’s important to use the right technical approach to integrating

automated testing, as well as the right test automation solution.

The right approach involves knowing which tests to automate, and which

to continue manually. Having a testing framework enables the process to

be scaled to larger projects and better cope with changes along the way.

When selecting the right test automation tool, organizations are faced with

three options - build one in-house, leverage an open source tool, or buy a

commercial tool. Among open source frameworks, Selenium and Appium

have emerged as the ideal way to automate testing for web apps, and mobile

apps respectively. However, they can be resource-intensive to setup and

maintain in-house. Thus, the ideal test automation tool should be based on

Selenium and Appium, but avoid the pain of manual maintenance.

This paper is aimed at Test and QA Executives as well as Project Managers

who are considering adopting automated testing, but are unsure how to get

started. It will inform organizations about the benefits of test automation, the

right approach to take, and the recommended tools to successfully adopt test

automation as part of your CI/CD pipeline.

AUTOMATED TESTING AS PART OF THE BROADER CI/CD PIPELINE

In their groundbreaking book, “Continuous Delivery”, Jez Humble and David

Farley begin by declaring that “The most important problem that we face as

software professionals is this: If somebody thinks of a good idea, how do we

deliver it to users as quickly as possible?“

Realizing that the traditional waterfall technique of software development is

inadequate to meet this goal, organizations are slowly but surely adopting agile

development techniques like continuous integration and continuous delivery.

 Learn more at saucelabs.com

3

https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912

•	 Definition of Continuous Integration (CI): ”A development practice that

requires developers to integrate code into a shared repository several

times a day. Each check-in is then verified by an automated build,

allowing teams to detect problems early.” - ThoughtWorks

•	 Definition of Continuous Delivery (CD): “The practice of releasing every

good build to users” - Jez Humble

Humble and Farley define what a typical deployment pipeline looks like using

the following illustration:

They describe this pipeline as “an automated implementation of your

application’s build, deploy, test, and release process.” They go on to

recommend that as much of this pipeline should be automated.

Commenting on this pipeline, renowned expert and ThoughtWorks Chief

Scientist, Martin Fowler says, “A deployment pipeline breaks up your build into

stages. Each stage provides increasing confidence, usually at the cost of extra

time. Early stages can find most problems yielding faster feedback, while later

stages provide slower and more thorough probing. Deployment pipelines are

a central part of Continuous Delivery.”

As seen from the above pipeline, automated testing is a vital component of

the continuous delivery process.

THE KUBERNETES EFFECT

With the launch of Docker containers in 2014, the world of DevOps has never

been the same. Shedding the heavy ‘hypervisor tax’, containers are able to

bring agility and performance gains at every step of the CI/CD pipeline. As

container usage grows explosively, Kubernetes has emerged as the de facto

standard for orchestrating containers at scale.

Kubernetes puts even more focus on the CI/CD pipeline, looking beyond

tools like Jenkins to deployment automation tools like Spinnaker and Helm.

In doing so, Kubernetes goes the full length, enforcing automation not just to

testing, but to deployments as well.

Learn more at saucelabs.com

4

COMMIT STAGE
Compile
Unit test
Analysis
Build Installers

AUTOMATED
ACCEPTANCE
TESTING

AUTOMATED
CAPACIT Y
TESTING

MANUAL
TESTING
Showcases
exploratory
testing

RELEASE

http://martinfowler.com/bliki/DeploymentPipeline.html

Kubernetes made it possible to put together a fully-automated CI/CD pipeline

that kicks off a chain reaction starting with a code commit and ending with

a deployment, without being touched by another human along the entire

process. It also enables the automated creation of environments, whether

they be for development, staging, or production. To put it in a single word -

‘GitOps’ - That’s what Kubernetes naturally leads us to.

GITOPS = FULLY-AUTOMATED CI/CD

‘GitOps’ is a term coined by Weaveworks, which they describe as ‘Operations

by pull request.’ While the CI/CD pipeline called for end-to-end automation,

in reality, most organizations were only able to perform build automation

using tools like Jenkins. On the other hand, GitOps stresses on the

importance of automating every part of the software delivery pipeline, not

just builds. Weaveworks is careful to point out that GitOps is not entirely new,

rather, it “builds and iterates on ideas drawn from DevOps.” In other words,

GitOps is what CI/CD has always strived for—end-to-end automation.

GitOps Pipeline

CODE
COMMIT

DRY RUN BUILD
AUTOMATION

TEST
AUTOMATION

CONTAINER
REGISTRY

DEPLOYMENT
AUTOMATION

K8s CLOUD
CLUSTERS

In GitOps, every code commit sets off a series of automated steps that result

in a deployment. Explaining this process, Twain Taylor comments that every

new piece of code goes through a ‘dry run’ before making it to a production

environment. If the code fails the dry run, the deployment is not carried

out. This dry run is an automated test that acts as the gatekeeper for every

deployment. The dry run is an indispensable part of the GitOps pipeline and

points to the fact that GitOps cannot be achieved without test automation.

REALITY CHECK - THE MAJORITY OF TESTING IS STILL MANUAL

Test automation is an integral part of the broader CI/CD methodology. But

surprisingly, most organizations still do the bulk of their testing manually.

According to the annual World Quality Report from Capgemini, “99% of

respondents were using DevOps at least in some part of their business.” While

this is a promising sign, on the downside, “Organizations are not able to tap

the full benefits [of DevOps]… due to low levels of test automation.” The

report goes on to say that the levels of basic test automation are very low -

between 14%-18%.
Learn more at saucelabs.com

5

https://www.weave.works/blog/gitops-operations-by-pull-request
https://www.weave.works/blog/gitops-operations-by-pull-request
https://www.weave.works/technologies/gitops/
https://thenewstack.io/from-gitops-to-adaptable-ci-cd-patterns-for-kubernetes-at-scale/
https://software.microfocus.com/en-us/assets/application-delivery-management/world-quality-report-2018

% of functional
test cases that are

generated with
test generation

tools

% of functional
test cases that are

executed with
test automation

tools

% of security tests
that are executed

with test
automation tools

% of performance
test cases that are

executed with
test automation

tools

% of end-to-end
business scenarios
that are executed

with test
automation tools

% of test data
that is generated
by test data tools

% of API test
cases that are

automated

INDICATIVE PROPORTION OF AUTOMATION OF EACH OF THE FOLLOWING ACTIVITIES

18
%

16
%

2018 2017

16
%

16
%

16
%

13
% 16

%

13
%

15
% 16

%

15
% 16

%

14
%

Source: Microfocus.com

Digging deeper into the issue, the survey found that 50% of respondents are

unable to “apply test data at appropriate levels.” Further, 55% mentioned a

“lack of end to end automation from build to deployment” as a key challenge.

This is another reminder that test automation is an integral part of the CI/CD

pipeline. The report concludes that “Test automation is the biggest bottleneck

holding back the evolution of QA and testing today.”

WHAT IS TEST AUTOMATION?

Manual testing involves a human tester using a computer or mobile device,

trying various usage and input combinations, comparing the results to the

expected behavior and recording their observations. Automated testing, on

the other hand, uses tools to execute pre-scripted tests on a web or mobile

app, and records the test data in detailed reports that can be reviewed by a

human tester after the tests are run.

•	 Definition of test automation: It is the use of special software (separate

from the software being tested) to control the execution of tests and the

comparison of actual outcomes with predicted outcomes. - Wikipedia

Learn more at saucelabs.com

6

https://software.microfocus.com/en-us/assets/application-delivery-management/world-quality-report-2018
http://en.wikipedia.org/wiki/Test_automation
Petre Spassov

MANUAL TESTING VS AUTOMATED TESTING - WEIGHING THE BENEFITS

CRITERIA MANUAL TEST AUTOMATED TESTING

Faster time to market

Ideal for cross-platform mobile tests

Improves test coverage

Accurate & error-free

Performs complex tests

Increases frequency of feedback

Supports agile methodology

Frees up testers for their best work

Scales to larger projects

Is repeatable

Enables after-hours testing

Improves documentation & traceability

Cost e�ective

Ideal for one-o� tests

Improves over time

Ideal for exploratory tests

Easy to adopt

Easy to maintain after adoption

OBSTACLES TO ADOPTING AUTOMATED TESTING

In the landmark book, ‘Implementing Automated Software Testing’ Elfriede

Dustin refers to an IDT survey in which 37% of respondents that were not

users of test automation claimed a lack of time to be the main reason.

Considering that one of the key benefits of test automation is quicker time to

market, this leads to the common ‘chicken and egg’ paradox:

WE DON’T AUTOMATE

because because

WE DON’T AUTOMATE

While it is necessary to

spend adequate time

testing an app to

maintain quality, the

goal of a testing

project should be to

continually reduce the

time spent on manual testing and automate as much of the tests as possible.

Learn more at saucelabs.com

7

However, when they take their

first steps towards this goal, QA

teams find that there is normally

a “hump of pain” associated

with the change in workflow,

and mindset of the team

members. This is when teams

are most likely to give up on

test automation.

However, persisting with the test

automation strategy will pay off.

If done right, the rewards can be

worth the temporary pain. Over

time, the effectiveness of manual

testing reduces, while that of

automated testing only increases.

When adopting test automation, being prepared for the “hump of pain” makes

all the difference. As Igor Khrol, a test automation specialist, says, “Select the

right tool, the right framework, and the right technical approach.”

THE RIGHT APPROACH TO TEST AUTOMATION

The right technical approach involves knowing which tests to automate and

which to continue manually. Tasks that are repeated most often and are the

most labor-intensive are often the best candidates for automation.

[The Appendix includes a checklist with questions for deciding which tests to automate.]

Acceptance Tests
(API Layer)

MANUAL TESTS

GUI
Tests

Unit Tests/Component Tests

The test automation pyramid

developed by Mike Cohn

suggests automating more low-

level unit tests than high-level

end-to-end tests.

This is a great way to start your

journey in test automation -

begin with the basic building

blocks - unit tests.

Learn more at saucelabs.com

8

Time

E
�

o
rt

HUMP OF PAIN

Current Trend

Time

Test Coverage & Quality

Cost & Time to Deliver

Increased Quality &
Test Coverage

Reduced Time & Cost

Automation Implemented

A
U
T
O
M
A
T
I

O
N

http://www.slideshare.net/khroliz/why-test-automation-projects-are-failing

Unit and Component Testing

Unit tests are a way to test individual units of the source code to determine

whether they are fit for use. They are a series of low-level tests that pinpoint

exactly where to search to find bugs very early on in the cycle. The vast

majority of commit tests should be comprised of unit tests.

Because of the need for quick feedback, unit tests should be very fast to

execute and be run in memory. They should cover a large proportion of the

codebase (around 80%) to give a good level of confidence that when they pass,

the application is fairly likely to be working. As Humble & Farley caution, “If your

team is not automating unit tests, its chances of long-term success are slim.

Make unit-level test automation and continuous integration your first priority.”

Headless Testing

Considering the thousands of commits per day in a large organization, it would

take a lean and fast testing solution to execute the dry run tests we referred to

earlier when talking about GitOps. These tests need to return results at near-

real-time speeds. This calls for a stripped-down test framework that is powered

by lightweight containers and sheds the weight of a full-blown browser.

Headless testing, or browserless testing, is just the solution for a frantic GitOps

pipeline. Headless testing provides live feedback to a developer while they are

in the process of writing code. This is very early in the software delivery pipeline.

The result is that developers start to own the quality of the code they write.

Bugs are caught early, saving the organization time and money. Lastly, this

approach greatly improves the quality of code at every step of the pipeline.

API or Web Services Testing

API testing operates at the business logic layer of the software. Instead of using

standard user inputs (keyboard) and outputs, in API Testing, you use software to

send calls to the API, get output, and note down the system’s response.

One challenge with API testing is to set up the test environment. The database

and server should be configured as per the application requirements. Once

the installation is done, the API function should be called to check whether

that API is working.

UI Testing

The goal of UI testing is to ensure the frontend interface of the application

works as expected on all devices, browsers, and platforms. In the early days,

UI testing used to be done by testers manually rendering the app on every

Learn more at saucelabs.com

9

https://saucelabs.com/platform/sauce-headless

possible combination of browsers and platforms. However, this is not possible

in today’s fragmented mobile ecosystem.

Cross-platform testing is a big challenge as the two major mobile platforms

- iOS and Android - are poles apart in their approach to mobile app testing.

A mature UI testing solution should then be able to transcend these barriers

and enable true cross-platform testing across iOS and Android. This means

a ‘write once, run anywhere’ approach with test scripts. Additionally, UI tests

benefit greatly from testing solutions that are strongly visual in nature.

Regression Testing

Regression testing seeks to uncover new bugs or regressions after changes

such as enhancements and configuration changes have been made to

the application. Before a new version of the application is released, the

old test cases are run against the new version to make sure that all the old

capabilities still work.

With more frequent releases, teams typically tend to compromise on

regression testing to save time, and in the process let bugs slip through the

cracks. To keep up with faster development times, regression tests can be

made faster using automation. Changes in the application may require the

regression test scripts to be updated as well, which may require some manual

intervention. However, automating regression tests saves time as teams don’t

need to run the same tests over and over again.

Functional Testing

Functional testing starts with a list of specifications or a design doc. Based on

the specifications, various functionalities of the app is tested by feeding them

input and examining the output against expected output. Functional testing

doesn’t consider the internal structure of the app being tested and is purely

focused on the functionality of the app from an outcomes point of view.

For a web application, a functional test could be simply that a user manually

navigates through the application to verify the application behaves as

expected. But since automating a test is the best way to make sure it is run

often, functional tests should also be automated whenever possible.

Mobile Testing

While much of what’s been discussed so far applies to both web and mobile

app testing, automating tests on mobile is more complex than for web apps.

Learn more at saucelabs.com

10

Here are some of the differences to keep in mind when automating

mobile app tests:

•	 Cross platforms & devices testing is even more complex with mobile.

Testers carry multiple devices around and need to chase trends to test

new and upcoming devices and OS releases. To add to this, mobile apps

can be either native, HTML5, or hybrid, further increasing the complexity.

Cross-platform and device compatibility is one of the main reasons

mobile app testing requires automation rather than manual testing

•	 Emulators may not give you the pixel-perfect resolution you might need

for some testing, or allow you to see how your app functions with the

quirks of real-life phone hardware. But they do allow you to do cost-

efficient testing at scale

•	 Testing on real mobile devices is indispensable, because of having to test

each device’s specific features like battery life, carrier networks, and OEM

firmware. Additionally, there are numerous sensors like a touchscreen

sensor, accelerometer, gyroscope, GPS, light sensor, fingerprint

sensor, proximity sensor, and many more. While humans can test the

performance of some of these aspects, only a machine can thoroughly

test all variations accurately. In the past automating tests on real-mobile

devices was difficult because of the lack of tooling. Today, however, there

are powerful real mobile device cloud solutions that offer every possible

combination of iOS and Android on a huge range of devices - all on-

demand without the hassle of buying and maintaining those devices in an

expensive in-house device lab.

WHICH TESTS TO CONTINUE MANUALLY

Usability Tests

Usability testing is done to discover how easy it is for users to accomplish

their goals with your application. There are several different approaches to

usability testing, from contextual inquiry to sitting users down in front of your

application and filming them performing common tasks.

Usability testers gather metrics, noting how long it takes users to finish their

tasks, watching out for people pressing the wrong buttons, noting how long

it takes them to find the right text field, and getting them to record their level

of satisfaction at the end. Usability, consistency of look and feel, and so on are

difficult things to verify in automated tests and are ideal for manual testing.

Learn more at saucelabs.com

11

https://fossbytes.com/which-smartphone-sensors-how-work/
https://saucelabs.com/platform/real-device-cloud

One-off Tests

Tests that are run only one time or infrequently will not be high-payoff

tests to automate. They are better done manually. If the one-off tests keep

coming back after a point, it makes sense to consider automating them too.

Thus, it makes sense to have a threshold for how much one-off testing you’d

like to keep manual.

SELECTING THE RIGHT TEST AUTOMATION SOLUTION

This is an important step that can have a big impact on the success of your

automation efforts. Choosing the wrong tool can complicate the “hump of

pain” problem, and increase the chances of giving up on test automation.

Because of this, it’s important to select a tool that’s suitable for your needs.

If your app targets only a few platforms and browsers, a niche testing tool

may just do the job, but most of today’s web and mobile apps are built to

run on all possible combinations of operating systems and browsers, and

you will most likely need a tool that covers all required platform and browser

combinations. Additionally, the tool should be compatible with your existing

technology stack.

For today’s web and mobile apps, cloud-based testing tools are gaining

popularity because of their ease of installation, low maintenance, and secure

handling of data.

The Crucial Decision - In-house, Open Source, or Commercial

Considering the varying needs of a test and QA team, it’s most likely that you’ll

need a combination of tools to support your entire software testing lifecycle

(STLC). That said, it helps to focus on one tool that meets most of your testing

automation needs first, and then find tools that perform specific tasks that the

primary tool doesn’t perform.

When selecting the primary testing tool, the important decision is to choose

between in-house, open source, and commercial tools. In-house tools give you

the most control, but require expertise to build, and are hard to maintain. They

also turn out to be expensive if you factor in all internal resources required.

Open source tools have proven to be very capable of handling the most

advanced automation projects, and are being preferred by more and more

organizations. While they are easier to set up than building an in-house

tool from scratch, they can become cumbersome to maintain. They require

experts who specialize in open source tools. With no formal support available,

the project can be delayed when complex issues arise. Learn more at saucelabs.com

12

Commercial tools are available in plenty, and they require careful examination

before adoption. They are typically easier to set up and maintain as the

vendor would take on the load of keeping the tool up to date. Interestingly,

many commercial solutions are based on open source tools. This enables

them to follow industry-standard technologies, and prevent vendor lock-in.

Commercial tools also come with support, which gives organizations that are

new to test automation a great deal of confidence.

Considering the importance of open source tools in test automation, let’s

look at two of the most popular open source test automation tools, and

consider how they may fit into your testing workflow.

Selenium - The Leading Test Automation Tool for Web Apps

Selenium is the most widely used open source test automation tool. It gives

you the freedom to test your web app across browsers automatically, through

test scripts. It is a technology that allows testers to send commands to web

browsers to make them perform tasks as though they were being used by a

human. In this sense, it is like a robot for web browsing.

SELENIUM ARCHITECTURE

Client Libraries JSON Wire Protocol Browser Drivers

Chrome Driver

Firefox Driver

Safari Driver

Opera Driver

Edge Driver

Real Browsers

Jason Huggins, the creator of Selenium, says on LinuxInsider that “Selenium’s

success came from its ability to test Firefox and IE on Windows or Mac

or Linux and be able to drive it from Ruby or Python.” When thinking of

automated testing for web apps, a Selenium-based solution is an ideal choice.

Appium - The Leading Test Automation Tool for Mobile Apps

Appium is the leading open source test automation framework for use with

native, hybrid and mobile web apps. It drives iOS and Android apps using

the WebDriver protocol, the same API that controls the behavior of browsers

with Selenium.

Appium allows automated tests to be written in any programming language.

This is a big advantage over iOS’ XCTest framework which lets you write tests

using only Objective-C or Swift, or Android’s UI Automator which supports
Learn more at saucelabs.com

13

https://saucelabs.com/platform/automation-tools/selenium
http://www.linuxinsider.com/story/78019.html#sthash.8I1Je4uu.dpuf
http://appium.io/
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html

Java or Kotlin. Under the hood, Appium still runs tests using XCTest and UI

Automator, which are native frameworks. Thus, it doesn’t sacrifice on the

experience of running tests. Appium opens up the possibility of true cross-

platform native mobile automation and has become an indispensable tool for

test automation.

Investing in the WebDriver protocol means you are betting on a single, free

and open protocol for testing that has become a defacto standard. This way,

you won’t lock yourself into a proprietary stack.

OPEN SOURCE TOOLS REQUIRE EXPERTISE TO RUN IN-HOUSE

While Selenium and Appium are powerful tools for browser-based test

automation, and mobile test automation, these tools require a team with prior

experience to be able to set up and maintain them.

Builds with Selenium tests can take longer to run, and need to be optimized

regularly. It can be hard to cover all the relevant browsers and platforms

which will need to be manually installed, and configured frequently. This

adds manual effort and defeats the purpose of test automation. Also, scaling

up a testing project can be complex and will require the Selenium Grid to be

deployed, and tests to be rewritten to support multi-threading.

Unless there’s an in-house team with adequate experience in both

frameworks, organizations looking to leverage Selenium and Appium on their

own may be setting themselves up for failure. Because of this, it makes sense

to evaluate a commercial option that leverages both Selenium and Appium.

THE IDEAL SOLUTION SHOULD COMBINE THE BEST OF BOTH

WORLDS - SELENIUM & APPIUM

The ideal test automation solution would need to be cloud-based, and still

deliver the high level of security that’s required when testing apps behind

firewalls. The solution you choose should start a pristine new VM or container

for every browser instance to make sure your tests aren’t polluted by data

from previous activity.

Most commercial testing solutions today run their VMs or containers on

public cloud infrastructure. This results in false positives associated with

browsers that don’t close completely. Solutions that capture screenshots

and videos of tests can make debugging a lot easier and would be preferred

over solutions that don’t offer these features.

Learn more at saucelabs.com

14

Learn more at saucelabs.com

15

Other desirable features include enabling massive amounts of parallel tests,

supporting tests written in any programming language, and integration with

your CI server. Finally, the tool would need to be easy to configure, have a large

existing user base, and be topped off with prompt customer support.

A solution that meets these requirements would make the ideal test

automation tool, resulting in a smoother transition from manual testing,

a more effective CI/CD workflow, and eventually, higher-quality software

that reaches the market much faster.

CONCLUSION

Organizations making the transition to CI/CD, or even GitOps, should

simultaneously evolve their testing efforts from being predominantly manual

to being increasingly automated. Despite the initial pains, the benefits of test

automation make it worthwhile to invest in the right tool, the right methodology,

and the right technical approach.

Selenium and Appium have emerged as the right tools for testing web and

mobile apps, but they are tedious to maintain with in-house resources. The

ideal test automation solution would be based on Selenium and Appium

without the load of manual configuration. It would deliver pristine VMs for each

browser instance, and a secure path to test apps behind a firewall, among other

important features.

Organizations that invest in their test automation efforts are poised to get the

most out of their CI/CD workflows. They will eventually be the ones to ship higher

quality products faster, and in doing so, will put their competition to the test.

ABOUT SAUCE LABS

Sauce Labs is the most secure, reliable solution for automated functional

testing for desktop, mobile, and hybrid apps. We believe continuous integration

and delivery should be simple and painless for software teams. Based on the

acclaimed Selenium and Appium open source frameworks, our cloud testing

platform enables modern organizations to bring quality applications to market

faster and more cost-effectively.

Learn more at saucelabs.com

16

WP-02-102019

APPENDIX

Checklist for Deciding What to Automate

Use this checklist to assess which tests to automate, and which to continue manually. Tests with

more yes’ than no’s are the best candidates for automation.

TEST AUTOMATION CRITERIA

Is the test executed more than once?

Is the test run on a regular basis, i.e., often reused, such as part of regression
or build testing?

Does the test need to be run on multiple device and platform combinations?

Does the test cover the most critical feature paths (often the most error-prone)?

Is the test run on a dynamic, ever-changing application?

Does the test require multiple data inputs to test the same feature?

Will someone else in the organization need to run the same test to reproduce
or verify an issue?

Is the test very time-consuming?

Is the test expected to return a response in real-time?

Is it more effective to run the test in parallel with many other tests?

Is the test prohibitively expensive to perform manually?

Will you require high definition reporting for the test results?

ABOUT SAUCE L ABS

Sauce Labs ensures the world’s leading apps and websites work flawlessly on every

browser, OS and device. Its award-winning Continuous Testing Cloud provides

development and quality teams with instant access to the test coverage, scalability,

and analytics they need to rapidly deliver a flawless digital experience. Sauce Labs is a

privately held company funded by Toba Capital, Salesforce Ventures, Centerview Capital

Technology, IVP, Adams Street Partners and Riverwood Capital. For more information,

please visit saucelabs.com.

saucelabs.com/signup/trial

FREE TRIAL

SAUCE LABS INC. - HQ

116 New Montgomery Street, 3rd Fl

San Francisco, CA 94105 USA

SAUCE LABS EUROPE GMBH

Stralauer Allee 6

10245 Berlin DE

SAUCE LABS INC. - CANADA

128 West Pender Street, 8th Floor

Vancouver, BC V6B 1R8, Canada

SAUCE LABS - POLAND

Złota 59 St., 4th Fl.

00-120 Warsaw, Poland

https://saucelabs.com/

