
1

M O B I L E A P P T E S T I N G :
M A I N C H A L L E N G E S , D I F F E R E N T

A P P R O A C H E S , O N E S O L U T I O N

E-BOOK

3 Introduction

4 What is mobile application testing and why is it

important?

4 What are the main challenges of mobile app

testing?

6 Manual testing

7 Main Challenges of manual testing

8 Costs of Manual Testing

9 Automated Testing

9 UI Testing for the Best User Experience

10 Continuous Integration/continuous delivery

11 Benefits and drawbacks of automated testing

13 Conclusion – manual and automated testing

13 Mobile Automation Testing Frameworks

14 Appium

14 Calabash

15 XCUITest

16 Robotium

16 Espresso

17 Testing infrastructure

17 Non-professional testing infrastructure

18 Professional testing infrastructure

18 Cloud solutions

19 Conclusion

20 References

TABLE OF CONTENTS

3

1 . INTRODUCTION

In a heavily fragmented mobile environment, developing applications, which are compatible

with multiple platforms and meet increased user expectations, represents a big challenge.

Good user experience is expressed through ratings and rankings in the app stores, which

directly influences the lifecycle of any app and determines its failure or success rate. Therefore,

assuring an app’s compatibility and functionality is crucial, as is using different test scenarios.

Many organizations are still struggling to implement effective testing approaches that

fit with current software development processes. Most of today’s available testing

methodologies are based on traditional waterfall development methods. While more than

30% of organizations have already implemented the agile development methodology to

some degree, just 9% of organizations are fully agile [26].

Although agile projects show an overall higher percentage of success rates, an essential

success factor for agile projects is to have the right skill set within the application delivery

team. Lacking the right test automation tools means that teams of developers and testers

spend excessive time in testing manually and having to cover multiple devices, operating

systems, and various configurations.

Cloud infrastructure presents an optimal solution for businesses who are looking for

convenient and accessible tools

that fit into their development

processes without setting up their

own infrastructure. Enabling testing

on hundreds of real devices, cloud-

based automated testing services

can provide an almost instant

reduction of downtime, which lowers costs, and helps deliver applications to the market faster.

This paper will discuss different challenges in mobile application testing and will introduce

advantages and disadvantages of manual testing as well as test automation. In addition,

this paper will give an overview of different open source frameworks and suitable test

infrastructures. Finally, this report will suggest ways to optimize mobile application testing

and show how Sauce Labs can overcome challenges and inefficiencies.

4

2. WHAT IS MOBILE APPLICATION TESTING

AND WHY IS IT IMPORTANT ?

The number and variety of consumer and enterprise mobile applications

has grown exponentially over the last few years. In December 2016, Android

users were able to choose between 2.6 million apps, while Apple’s App Store

remained the second-largest app store with 2 million available apps [1].

But even though release cycles become shorter, mobile devices and

platforms are extensively moving towards fragmentation and usability

requirements have become more complex. Mobile users are not forgiving

and no company can afford a bad rating in the app stores. To prevent revenue

loss, lost productivity and damage to brand reputation, organizations need

to ensure that every application runs flawlessly and meets the highest quality

standards. This is where mobile app testing comes in.

In general, mobile application testing can be described as the process by

which application software developed for handheld mobile devices is tested

for functionality, usability and consistency [2].

Apart from functional testing, which – most importantly – ensures that the

application is working per the requirements, performance testing (behavior &

performance under certain conditions; bad connections or low battery), security

or compliance testing are also very important [3]. Usability is one of the keys to

commercial success and therefore testing is crucial to verify if the application is

achieving its goals and if it is getting a favorable response from users.

For the best possible solution to get applications to market on time and within

budget, a comprehensive testing strategy is required. This mobile testing strategy

should include a device and a network infrastructure, an optimized selection of

target devices, and an effective combination of manual and automated testing

tools to cover both functional and non-functional testing [4].

3. WHAT ARE THE MAIN CHALLENGES OF

MOBILE APP TESTING?

As already stated, mobile application testing is different and more complex

than testing traditional desktop and web applications and has its own set of

(new) challenges [5]. We will now review the main challenges.

Learn more at saucelabs.com

5

First of all, the increasing fragmentation of mobile devices marks

a major problem for mobile application developers and testers. The

Android Fragmentation Report 2015 [6] states that there had been

24,093 distinct Android devices until August 2015 (compared to 11,868

devices in 2013). All of those Android devices differ in their shapes and

sizes, with vastly different performance levels, screen sizes and input

methods with different hardware capabilities.

Figure 1: Device Fragmentation: 24,093 distinct Android devices had been seen until August 2015 [6].

Also the overwhelming diversity in mobile platforms and operating

systems (OS) poses a unique challenge for testers. Not only are there

many different OSs with their own limitations available in the market,

but also a great variety of (older or recent) versions of the same OS.

This phenomenon is perfectly described within Margaret Rouse’s

device fragmentation definition on TechTarget. For her, mobile device

fragmentation is “[...] a phenomenon that occurs when some mobile

users are running older versions of an operating system, while other

users are running newer versions” [7].

In addition, the fast release cycles of mobile applications make it

difficult for QA teams to ensure high quality standards for the apps. This

can only be made possible through test automation and regression

testing (the process of testing changes to computer programs to make

sure that the older programming still works with the new changes [8]).
Learn more at saucelabs.com

6

4. MANUAL TESTING

Manual testing can be described as the part of [mobile] testing that requires

human input, analysis, or evaluation [11]. Consequently, manual testing is

a user-centric approach, mainly focusing on explorative ways of monitoring

whether a mobile application meets user requirements and expectations.

Finally, the international use of applications marks an important

challenge in mobile testing. As many apps are developed for

international markets – apart from the mere translation of contents

– regional traits, time zones and target audiences must be taken into

account. Also, Arabic script or other right-to-left languages can be

a serious problem for developers and testers [10].

Last but not least, data security becomes a serious concern. Users

share a great amount of private and personal information with apps,

so they want to make sure that information cannot be accessed by

unauthorized third parties. All this information and data needs to be

secured and kept safe from hacking attempts.

Another challenge in testing mobile application is represented by the

huge number of Mobile Network Operators. At the moment there are

more than 670 Mobile Network Operators in the world, using different

network standards and different kinds of network infrastructure.

Furthermore, the mobility of users and the fact that they are moving

around while using apps can also be seen as a problem for app

developers and testers, since they require an internet connection to

fetch data and serve the user with updates and information. Daniel

Knott illustrates this challenge by a striking example of an application

that tracks the speed of snowboarders. Even if there is a good network

connection with high speed at the top of the mountain, he writes, this

does not mean that the connection will be good down in the valley.

Whether the app crashes or still works must also be considered in test

scenarios [9].

Learn more at saucelabs.com

http://www.gsma.com/mobileeconomy/

7

Especially when it comes to the testing of the application’s look and feel,

the usability or the reproduction of bugs, manual testing on real devices is

absolutely vital.

Furthermore, a manual testing approach is needed since not every device-

specific function, such as location data or other environmental sensor data,

can be automated. Therefore, running only automated tests is not sufficient

and manual mobile app testing must be seen as an important component

of QA testing [9].

In the following chapter, we will introduce the key challenges of manual testing.

MAIN CHALLENGES OF MANUAL TESTING

In many cases manual testing is quite inefficient and time-consuming,

as live testers have to repeat different, but simple routines (e.g. login

tests) on a variety of different OS platforms and end devices over and

over again.

Another source of inefficiency is the lack of productivity of live testers

(respectively the efficiency of devices) as they have to test an array of

multiple devices. Consequently, this means that most of these devices

remain unused, because testers can only test on one device at a time.

Device efficiency can also become a problem, when testers have to

share a single pool of devices. Especially when they have to work

across different locations, this could lead to coordination issues and

unnecessary delays.

Furthermore, manual testing can be error-prone. As long as human

testers are involved, misunderstandings are possible, particularly

in situations in which multiple app versions must be tested and

complexity multiplies [12].

Learn more at saucelabs.com

8

COSTS OF MANUAL TESTING

As stated above, manual testing often goes along with inefficiencies and

heavy costs. These costs especially arise from:

• A high number of test devices, which must be bought or lent, to ensure

adequate testing and to achieve certain coverage of different types

(see: device fragmentation)

• Labor costs for the staff (group of live testers)

TIME

C
o

st
 o

f
C

h
a

n
g

e

Requirements
Analysis
& Design

Coding
Testing in
the Large

Production

Figure 2: With manual testing bugs are likely to be found at a very
late stage of the development process [13]

Moreover, manual testing is often conducted after the actual

development. This means that bugs are likely to be found at a very

late stage of the development process, which leads to high costs of

change (especially compared to an early detection of an error through

continuous integration and regression testing).

Testers taking mobile devices and removing them from the company’s

environment always carries a potential security risk. In doing so,

viruses can be caught on infected pages or a new version of an OS can

be downloaded accidentally. In addition, the risk that mobile devices

are getting lost or stolen is much higher.

Learn more at saucelabs.com

https://opensignal.com/reports/2015/08/android-fragmentation/

9

• Potential delays, which are caused by the shipping of devices

• Increased coordination and administrative efforts caused by the allocation

of tested devices – especially among groups which are locally separated

• Eventual additional costs through loss of devices or security issues

5. AUTOMATED TESTING

Test automation can be described as the process of automating different test

cases or scenarios by using a specific tool and language, instead of testing

manually with a group of human testers and physical devices [14].

User Interface testing and continuous integration are two integral parts of test

automation, which shall be introduced in the following. The second part of the

chapter focuses on the advantages and disadvantages of automated testing.

UI TESTING FOR THE BEST USER EXPERIENCE

GUI (graphical user interface) testing ensures that an application renders the

desired UI output in response to a sequence of user actions on a device.

Regarding mobile app GUI testing, the tester analyzes the way an app handles

different user input events and components, such as menu bars, toolbars,

dialogs, buttons, edit fields, list controls and images.

As a black box and functional practice, GUI testing does not require testers

to know the internal implementation details of the tested app. It only ensures

that the user interface meets its written specifications and expected output

when a user performs a specific action or enters a specific input.

Therefore, UI testing should never be skipped, as it tests specifically what

users will visually experience on their devices. Implementing GUI testing at an

early stage in the software development cycle speeds up the productivity of

developers and testers, improves the code’s quality and reduces the risks of

finding bugs towards the end of the development cycle.

GUI testing is commonly approached manually by testers who run tests to

verify that the app is behaving as expected. But as stated above, manual

testing can be time-consuming, tedious, and error-prone. New methods of

testing that have proved to be more efficient and reliable include automated

UI testing using a software testing framework.

Learn more at saucelabs.com

10

CONTINUOUS INTEGRATION /CONTINUOUS DELIVERY

A prominent practice that brings out the best in automated testing is

continuous integration (CI) and continuous delivery (CD), a workflow that

enables constant testing of each new build or change made in the source

code [15]. CI/CD offer development and testing teams an agile development

process with the ease of automated testing that is executed continuously

each time a new update is presented to the software.

In traditional integration testing, which would be implemented as a waterfall

process, testing would be done with two methods. The first one would be

to let a sampling of users try out the application (crowd testing) once the

writing process is over. In the second method, a number of test cases will be

executed at a late stage of the software development process, usually after all

development is done. CI/CD testing is flexible and executed at all stages of

the software’s development, starting as early as possible.

In practice, CI/CD orchestrate the way new code is introduced regularly

by teams of developers to a shared mainline code. The CI/CD workflows

start with a shared source code repository that team members use. With

each significant change in the code, an automated build is conducted.

When a team runs this cycle successfully, code is constantly developed and

committed back to the mainline.

With the right CI/CD toolsets, testers and developers are able to automate

and speed up the workflow by eliminating problems, which are often

caused by long integration cycles. CI provides developers with a stress-free

development environment as their software is being continuously tested

every time new code is deployed. Testers can notify developers of any failed

tests immediately, enabling quick updates, fixes, and iterations, resulting in

continuous delivery.

Benefits:

• Developers concentrate on coding

• Faster iterations and release to the market

• Blind spots are eliminated by reducing the risk of broken code

• A bug free product is provided to the customers

Learn more at saucelabs.com

11

In summary, test automation helps to save time and to reduce costs. The testing

process and software quality can be increased through the reliability, repeatability

and extent of the test suite. Finally, automation helps to increase the test coverage

and to re-use these tests for different software versions and interfaces.

Another important advantage of automated testing is cost reduction.

Since it requires fewer resources, test automation also reduces the

overall costs involved in testing [14].

Furthermore, testers benefit from the repeatability of tests while using

an automated approach. Consequently, tests can be re-run in exactly

the same manner. This helps to avoid the risk of human errors such

as testers forgetting their exact actions or missing out steps from the

test script, which can result in either defects not being identified or the

reporting of invalid bugs [14].

A powerful automated testing test suite helps to ensure that test

scripts are kept up to date, and testers are able to cover every feature

(increased coverage) within the application [14].

Finally, automated tests are re-usable and can be applied on different

versions of the software – even if the interface changes [14].

Learn more at saucelabs.com

The biggest benefit of automated testing is time savings, especially

achieved through regression testing and continuous integration. Apart

from regression testing, teams can also save time through the use and

increased speed of tools that run tests much faster than human live

testers do.

BENEFITS AND DRAWBACKS OF AUTOMATED TESTING

Benefits:

12

Learn more at saucelabs.com

Drawbacks:

• The initial effort of automated mobile testing seems often rather high

due to initial direct costs. But already after a few test executions the

return on investment (ROI) increases rapidly and test automation pays off.

This correlation is clearly illustrated in Stefan Münch’s paper The Return

on Investment (ROI) of Test Automation, where the following figure is

taken from [16].

• Furthermore, automated testing requires expert knowledge especially

when it comes to writing automated test scripts. Here, in-depth

knowledge of the scripting languages of the used tool is mandatory.

• Not every test can be automated and not every project is suitable for

automated testing, for example location data, and other environmental

sensor data is really hard to test in a lab situation [9].

P
o

si
ti

ve
 R

O
I

Number of Test Executions

0 1 2 3 4 5 6 7

N
e

g
a

ti
ve

 R
O

I

Variability in ROI due to
various test parameters

Typical ROI between 3
and 4 test executions

Figure 3: The typical ROI from the use of test automation tools [16].

13

C
u

m
u

la
te

d
 C

o
st

s
($

)

Time

AUTOMATED TESTING

M
AN

U
AL T

ESTIN
G

CONCLUSION – MANUAL AND AUTOMATED TESTING

As described above, neither the exclusive performance of manual nor the

exclusive performance of automated testing is sufficient to cover all test

scenarios and mobile features. Therefore, a comprehensive mobile testing

strategy requires both approaches to overcome the different challenges and

limitations mentioned [9].

6. MOBILE AUTOMATION TESTING

FRAMEWORKS

There are a number of great mobile testing frameworks that should be

considered when defining an individual mobile testing strategy. All have

different ways of tackling mobile automation and the right solution for

a project will ultimately come down to which framework fits best to the

specific needs of a user or customer [18]. Furthermore, many mobile testing

frameworks are open source and supported by strong communities.

In the following section we will introduce and compare four different mobile

testing frameworks. Learn more at saucelabs.com

14

6.1 APPIUM

Developed by Dan Cuellar, Appium is an open source test automation tool for

native and hybrid mobile apps. Using JSON wire protocol and the Selenium

WebDriver, it is compatible with both Android and iOS native apps, as well as

hybrid and web apps.

In contrast to most other automation tools available, it does not require an

extra agent, which needs to be compiled with the application code so that the

tool can interact with the mobile app. This ensures that the tested app is in

fact the app which will be submitted to the app store afterwards. Appium is an

HTTP server written in node.js which creates and handles multiple WebDriver

sessions for different platforms. One of the key principles of Appium is that test

scripts can be written in any framework or language such as Ruby on Rails,

C# and Java without having to modify the apps for automation purposes.

The fact that Appium is open source – with improvements and changes freely

shared within the community – as well as the fact that it seamlessly runs on

a variety of devices and simulators/emulators, makes it one of the best

choices for mobile test automation [19].

Benefits:

• All complexities are under the hood of the Appium server – there are no

restrictions towards programming language or the platform that

is automated

• Supports cross-platform mobile testing – the same test can work on

multiple platforms

• Does not require any extra agents

• Automation of web, hybrid and native mobile applications possible

6.2 CALABASH

Calabash is a cross-platform mobile test automation framework for native

and hybrid Android and iOS apps, maintained by Xamarin. The framework

enables automated UI Acceptance Tests written in Cucumber.

Learn more at saucelabs.com

15

With the help of Cucumber, it is possible to express the behavior of the

tested app using a natural language [9]. This approach is called Behavior

Driven Development (BDD) and can be very helpful when business experts

or non-technical colleagues are involved in the acceptance criteria process.

Cucumber uses Gherkin as the Domain Specific language (DSL) to annotate

the behavior of the application [9].

The actual test automation, however, is performed with the programming

language Ruby and within so-called step definitions. In summary, Gherkin

is responsible for describing the behavior of the application, Ruby is needed

for the actual coding, and Cucumber is the framework that executes

everything together on real devices or emulators. The framework’s tests can

be executed either from the command line, from an IDE or from a continuous

integration server [9].

Benefits:

• Through the Behavior Driven Development (BDD) philosophy with

Calabash, application behaviors are specified, instead of creating tests that

describe the shape of APIs

• Cross-platform approach

• Supporting Android and iOS native apps

6.2 XCUITEST

This tool comes directly from Apple, created for developers. You can use

this tool to test iOS native and hybrid apps from Xcode 7 IDE. XCUITest is

a recorder that enables creating automated tests easily inside Xcode 7. With

the latest update, you can take advantage of Appium Webdriver architecture

to run XCUITest tests.

Tests can be written/recorded for real devices or emulators/simulators with

either Objective C or Swift. This framework supports both app and device

contexts to test apps comprehensively.

Benefits:

• Supported by Apple

• Integrated in Xcode IDE

• It’s a recorder - easier for test writing
Learn more at saucelabs.com

16

• Hybrid and native apps

• Languages: Objective C/Swift

6.3 ROBOTIUM

Another open source mobile testing framework is Robotium, which has

full support for native and hybrid Android applications. Developed in 2010

by Renas Reda, this framework makes it easy to write powerful and robust

automatic black box UI tests for applications. With the support of Robotium,

test case developers can write function, system and user acceptance test

scenarios, spanning multiple Android activities [21].

Regularly updated, Robotium also provides a so-called productivity tool – the

Robotium Recorder. This commercial offering enables Android developers

and testers to gather outputs and screenshots [21].

Benefits:

• Requires minimal knowledge of the application under test and minimal

time to write solid test cases

• Test cases are more robust due to the run-time binding to UI components

• Fast test case execution

• Integrates smoothly with Maven, Gradle or Ant to run tests as part of

continuous integration [21]

6.4 ESPRESSO

Open sourced by Google, Espresso is the latest Android test automation

framework that enables developers and testers to run tests on x86 machines

in the cloud and to apply their UI tests [22].

Espresso’s core API is small, predictable, and easy to learn and yet remains

open for customization. Without the distraction of boilerplate content,

custom infrastructure, or messy implementation details, Espresso tests state

Learn more at saucelabs.com

17

expectations, interactions, and assertions clearly [23]. Being supported up to

API level 25, Espresso allows its users to quickly write concise and reliable

Android UI tests [23].

Benefits:

• Small, well-defined and predictable API, which is open to customization

• Seamless synchronization of test actions and assertions with the UI of the

application under test

• Clear failure information – Espresso provides rich debugging information

when a failure happens [24]

• Deep integration with Android

7. TESTING INFRASTRUCTURE

Mobile application testing is often conducted under different environmental

and infrastructural conditions. These conditions range from a nonprofessional

infrastructure with limited device capacities and without the use of CI/CD, to

professional infrastructural conditions with private or shared cloud, enabling the

use of test automation and continuous integration/ continuous delivery.

Irrespective of professional or nonprofessional testing conditions, all testers

have to do a selection of “top devices” to ensure a best possible coverage of

their target group.

In this context Daniel Knott recommends a selection of the top 10 to 15

devices used by (…)[the] target group in different variations [9]. Here, especially

variations including smaller and older device types are very helpful to also

cover “statistical outliers”.

 After distinguishing between nonprofessional and professional testing

infrastructure, the following chapter will introduce the benefits of both cloud

and on-premise solutions.

NONPROFESSIONAL TESTING INFRASTRUCTURE

The term nonprofessional testing infrastructure refers to a testing

environment with little device capacities and without standardized buying

processes. In a nonprofessional environment, several teams have to share

the same pool of devices, which leads to inefficiencies and higher costs.

Learn more at saucelabs.com

18

Furthermore, neither parallelization of test automation nor continuous

integration can be applied. Consequently, automation cannot be integrated

in the agile development process.

PROFESSIONAL TESTING INFRASTRUCTURE

Within a professional testing infrastructure, a sufficient number of test devices

is available to run manual tests. In addition, a professional infrastructure

contains private and public cloud solutions that offer the opportunity to

access a variety of additional real devices directly from the customer’s

browser. Here, standard test cases can be automated and integrated into CI/

CD processes.

CLOUD SOLUTIONS

A mobile test cloud gives testers the opportunity of accessing hundreds of

simulators, emulators and real devices to run their automated and manual

tests on. Test can also run in parallel with test automation to save testing time,

while results can be recorded and illustrated through screenshots and videos.

In addition, cloud services support tests through the most popular automation

platforms like Appium, Robotium and Espresso. The upfront investment can

vary depending on your needs, but it will save you a lot of money in the long

run, because licensing and renewal costs are minimized, which reduces total

cost of ownership. These are the main reasons that make the concept of

a mobile testing cloud an attractive proposition for developers and testers [25].

Sauce Labs offers public and private cloud solutions to test on real devices, as

well as a cloud to test on emulators and simulators. Any native, hybrid or web

app can be uploaded and tested easily directly from your browser.

Public Cloud

Public cloud is a secure solution that enables manual and automated testing

on over 200 iOS and Android devices. High concurrency is also one of the

benefits of the private cloud, even though not all the devices that you want

to test on might be available when you need them. Devices are thoroughly

cleaned after each use, so no user’s data will be left on the testing devices.

Private Cloud

Private cloud is designed for customers that need the highest security, as well

as for those customers who test frequently and at higher concurrencies as part

of a CI/CD delivery pipeline. Having devices at exclusive use 24/7 enables faster

Learn more at saucelabs.com

19

development and deployment. Being the sole users of dedicated devices will add

an extra layer of security on top of a secure IP SEC VPN connection.

This solution will give you the option to use CI/CD at full capacity, deploying

hourly or daily. A private cloud can be an addition to public cloud if the

needed devices are not available in the public cloud.

NONPROFESSIONAL
INFRASTRUCTURE

PROFESSIONAL
INFRASTRUCTURE

Little device capacities Sufficient number of test devices

No standardized buying processes Standardized buying processes

Test automation cannot be parallelized Parallelization of test automation possible

Automation cannot be integrated in

the agile development

Standard test cases can be automated

and integrated into CI/CD processes

Figure 5: Main characteristics of nonprofessional and professional testing infrastructures

CONCLUSION

In the ongoing development of an app, automated testing provides a safety

net for both developers and testers. The daily test runs ensure that the core

functionality is working properly, the overall stability and quality of the app is

transparently reflected by the test statistics, and identified regressions can be

easily correlated to recent changes.

Used in the right manner, testing can be a powerful tool in fighting against the

fragmented mobile device landscape. The crucial component of an effective

testing strategy is to define custom tailored test cases for the application at

hand and define a workflow or process that streamlines testing.

 As stated above, testing mobile apps is a major challenge, but it can be solved

efficiently with a structured approach, the right set of tools, and expertise.

Learn more at saucelabs.com

20

REFERENCES

1.) Statista, (2015). Number of apps available in leading app stores 2015 | Statistic. [online] Available

at: http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

[Accessed 5 Jul. 2015].

2.) Smartbear.com, (2015). What Is Mobile Testing?. [online] Available at:

http://smartbear.com/all-resources/articles/what-is-mobile-testing/ [Accessed 5 Jul. 2015].

3.) Veracode.com, (2015). Mobile Application Security | Veracode. [online] Available at:

http://www.veracode.com/products/mobile-application-security [Accessed 5 Jul. 2015].

4.) TATA Consultancy Services, (2015). [online] Available at:

http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Mobility_Whitepaper_Mobile-

Application-Testing_1012-1.pdf [Accessed 5 Jul. 2015].

5.) Mona Erfani Joorabchi. Ali Mesbah. Philippe Kruchten, (2013). Real Challenges in Mobile App

Development. University of British Columbia. Vancouver, BC, Canada.

6.) Opensignal.com, (2015). Android Fragmentation Report August 2015. [online] Available at:

https://opensignal.com/reports/2015/08/android-fragmentation/ [Accessed Feb. 3rd 2017].

7.) Rouse, M. (2012). What is mobile device fragmentation? - Definition from WhatIs.com. [online]

Available at: http://searchconsumerization.techtarget.com/definition/mobile-device-fragmentation

[Accessed 30 Jun. 2015].

8.) Rouse, M. (II) (2015). What is regression testing? - Definition from WhatIs.com. [online]

SearchSoftwareQuality. Available at: http://searchsoftwarequality.techtarget.com/definition/

regression-testing [Accessed 19 Jul. 2015].

9.) Knott, D. (2014). Hands-on mobile app testing.

10.) Testlio, (2014). 6 key challenges of mobile app testing - Testlio. [online] Available at:

https://testlio.com/blog/post/6-key-challenges-of-mobile-app-testing [Accessed 30 Jun. 2015].

11.) Softwaretestingclass.com, (2015). What is Manual Testing | Goal of Manual Testing | Manual Testing

types | Software Testing Class. [online]

Available at: http://www.softwaretestingclass.com/what-is-manual-testing/ [Accessed 19 Jul. 2015].

12.) Mobilelabsinc.com, (2015). Manual Mobile App Testing - Mobile Labs. [online]

Available at: http://mobilelabsinc.com/solutions/mobile-app-testing/manual-mobile-app-testing/

[Accessed 30 Jun. 2015].

13.) Agilemodeling.com, (2015). Examining the Agile Cost of Change Curve. [online] Available at:

http://www.agilemodeling.com/essays/costOfChange.htm [Accessed 19 Jul. 2015].

14.) Red-badger.com, (2015). Benefits of Automated Testing - Red Badger - Red Badger. [online]

Available at: http://red-badger.com/blog/2013/02/01/benefits-of-automated-testing/

[Accessed 4 Jul. 2015].

15.) Rouse, M. (2015). What is continuous integration (CI)? - Definition from WhatIs.com. [online]

SearchSoftwareQuality.

Available at: http://searchsoftwarequality.techtarget.com/definition/continuous-integration

[Accessed 5 Jul. 2015].

Learn more at saucelabs.com

21

16.) Stefan Münch et al. (2012). The Return on Investment (ROI) of Test Automation. In: Pharmaceutical

Engineering, July/August 2012, Volume 32, Number 4.

17.) Methodsandtools.com, (2009). Metrics for Implementing Automated Software Testing. [online]

Available at: http://www.methodsandtools.com/archive/archive.php?id=94 [Accessed 4 Jul. 2015].

18.) Saucelabs.com, (2015). Mobile Testing Tools - 11 Open Source Frameworks Compared. [online]

Available at: https://saucelabs.com/resources/mobile-testing-tools [Accessed 4 Jul. 2015].

19.) 3Pillar Global, (2013). Appium: A Cross-browser Mobile Automation Tool. [online]

Available at: http://www.3pillarglobal.com/insights/appium-a-cross-browser-mobile-automation-

tool [Accessed 4 Jul. 2015].

20.) Developer.xamarin.com, (2015). Introduction to Calabash - Xamarin. [online]

Available at: http://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/

[Accessed 4 Jul. 2015].

21.) Code.google.com, (2015). robotium - The world’s leading Android™ test automation framework -

Google Project Hosting. [online]

Available at: https://code.google.com/p/robotium/ [Accessed 5 Jul. 2015].

22.) Avram, A. (2015). Google Espresso: Fast Automated Android UI Testing in the Cloud. [online] InfoQ.

Available at: http://www.infoq.com/news/2013/10/google-espresso-testing [Accessed 5 Jul. 2015].

23.) Code.google.com, (2013). Espresso - android-test-kit - a fun little Android UI test API - Google’s

Testing Tools For Android - Google Project Hosting. [online]

Available at: https://code.google.com/p/android-test-kit/wiki/Espresso [Accessed 5 Jul. 2015].

24.) Stackoverflow.com. (2015). Google Espresso or Robotium. [online] Stackoverflow.com.

Available at: http://stackoverflow.com/questions/20046021/google-espresso-or-robotium

[Accessed 5 Jul. 2015].

25.) www.gfi.com, (2015). [online]

Available at: https://www.gfi.com/whitepapers/Hybrid_Technology.pdf [Accessed 5 Jul. 2015].

26.) 10th annual state of agile report (https://versionone.com/pdf/VersionOne-10th-Annual-State-of-

Agile-Report.pdf) [Accessed March, 1st, 2017]

Learn more at saucelabs.com

Sauce Labs provides the world’s largest cloud-based platform for the

automated testing of web and mobile applications. Its award-winning

service eliminates the time and expense of maintaining an in-house testing

infrastructure, freeing development teams of any size to innovate and

release better software, faster.

Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Triage Ventures and the Contrarian Group. For more information,

please visit saucelabs.com.

SAUCE LABS INC. 539 BRYANT STREET #303 SAN FRANCISCO, CA 94107 USA

ABOUT SAUCE L ABS

http://saucelabs.com

