
Order Dispatch System

Real-time multi-channel order updates
for an on-demand delivery service

Project Overview

The Product
Acolyte is a Massachusetts-based on-demand

cannabis delivery startup (as permitted under the

Agriculture Improvement Act of 2018) with a client

facing web app. Customers can browse products,

purchase items and have them delivered. The

fulfillment of orders is performed by independent

drivers, using a separate driver web app.

Project Duration
March 2021 to April 2021.

https://www.congress.gov/bill/115th-congress/house-bill/2

The Problem
Customers and Drivers are experiencing

miscommunication in the ordering process.

The Goal
To keep both Customer and Driver updated on

the status of each order.

Project Overview

Understanding
The User

● Research Summary

● Customer Pain Points

● Driver Pain Points

After interviewing both Customers and Drivers we gained a few insights. Both these user groups
have different problems, but they are all centered around the lack of clarity and communication in

the current system.

Both Drivers and Customers want updates on each order.

Research Summary

Confirmation Receipt

The user needs a proof of
purchase: a receipt.

 Updates

The user need to get updates on
the status of their order.

1 2 3

Customer Pain Points

The user need a confirmation that
the order is being processed after

placing it.

New Order Complete Order

Drivers need to have a way to
signal to both the user and other
stakeholders that the order has

been fulfilled.

1 2

Driver Pain Points

Drivers need to know when a new
order has been placed so that

they can fulfill it.

The
Solution

● The Goal

● Process Flow

● Technologies

Status Updates Real-Time

Updates need to be reflected in
real-time to keep the user

up-to-date.

 Multi-Channel

Multi-channel communication.
This means Email, SMS and

updates on the app UI.

1 2 3

The Goal

The user need a confirmation that
the order is being processed after

placing it.

Diagram visualizing sequence of

activities.

Process Flow

We chose technologies that would allow us to implement our solution fast and smooth by leveraging
specific benefits of each decision.

Firebase Services

SendGrid for sending order confirmation
receipt

1

Vonage to communicate order updates
via SMS

2

API Services

Cloud Functions to handle the dispatch of
each event

1

Firestore to provide real-time updates in
application UI

2

Technologies

Implementation
● Cloud Functions

● Firestore DB

● Email

● SMS

We used Firebase Cloud Function Callables to make authenticated contextualized requests
directly from the client. Doing this instead of allowing the client to directly mutate objects ensures

integrity in the ordering process.

We defined 3 functions that would act as the core of the order processing system. To start the
process, a customer places an order, calling the createOrder callable. This creates an order and

notifies the driver of a new order.

Cloud Functions

“The Cloud Functions for Firebase client SDKs let you call functions directly from a Firebase app.”

Firebase Documentation

submitOrder() acceptOrder()

Updates order status in Firestore
for real-time update in UI and

sends SMS to customer, notifying
their drivers name and ETA.

completeOrder()

Updates order status in Firestore
for real-time update in UI. Hands

over event to post-sale.

1 2 3

Cloud Functions

Creates a new Order object in
Firestore DB, giving us more

control over orders.

Sends email confirmation & SMS
notification.

By using Firebase Firestore database we gained a few advantages right out of the box. Firestore
is updated in real-time and synchronized across all connected devices allowing us to provide live

updates in the app.

Firestore and Firebase Functions are integrated and works seamlessly together. This made it easy
for us to buth present relevant data in UI, but also control the order processing flow from our

cloud functions.

Firestore DB

“Cloud Firestore uses data synchronization to update data on any connected device.”

Firebase Documentation

Receiving a receipt or proof of purchase was important to the customer. We solved this by using
SendGrid to send the user an order confirmation email directly after placing the order. This was

triggered directly by the submitOrder cloud function.

SendGrid API is simple to use and allows for pre-defined templates to be populated by
referencing a template ID and passing it data. This makes it easy to change the email designs in

the future.

Email

A large part of the notification system was achieved by using the Vonage SMS API to send text
messages to the customers and drivers. They offer many flexible services and a simple API that

we called in our cloud functions.

When the submitOrder cloud function was called the system dispatched an SMS to the driver to
notify of a new order. When the driver accepted the order with acceptOrder the customer gets

sent an SMS with the drivers name and ETA.

SMS

Results ● Demo

● Summary

When a customer completes a new order

they’re taken to the order page. Here they will

see real-time updates in the order stepper.

Demo: Submit Order

When the customer submits an order, the driver app receives a real-time notification showing that order. The

driver can then accept it and finally complete it. This is updated in real-time for the driver and customer.

Demo: Submit Order

We intentionally kept the scope of this case study limited to the order dispatch system. There are
many other parts we did not mention, such as auth and e-commerce solution, that were

foundational for the order dispatch system to work.

We reached our goals of building a solution that keeps the customer and driver updated in
real-time. Users now have a clear communication strategy from start to finish when ordering

products.

Summary

Thank You!

