
Order Dispatch System

Real-time multi-channel order updates
for an on-demand delivery service

Project Overview

The Product
Acolyte is a Central Pennsylvania-based

on-demand consumer goods and food delivery

service with a client facing app. Customers can

browse products, purchase items, and have them

delivered. The fulfillment of orders is performed by

independent drivers, using a separate driver app.

Project Duration
September 2021 to December 2021.

The Problem
Customers and drivers are experiencing

miscommunication and a latency in updates

during the ordering process.

The Goal
Designing and implementing an order dispatch

system to keep both the customer and driver

updated on the status of each order in real-time.

Project Overview

Understanding
The Users

● User Research

● Personas

● Problem Statements

● Journey Maps

Research Summary

We conducted interviews and created empathy maps of both drivers and customers. While both

user groups had certain differences, their issues primarily centered around the lack of clarity and

communication in the current system.

A common request that was consistently brought up was the need to real-time order updates on

both the customer and driver side.

Confirmation Receipt

The user needs a proof of
purchase and order details.

 Updates

The user needs to get updates on
the status of their order.

1 2 3

Customer Pain Points

The user needs confirmation that
the order is being processed after

placing it.

New Order Complete Order

Drivers need to have a way to
signal to both the user and other
stakeholders that the order has

been fulfilled.

1 2

Driver Pain Points

Drivers need to know when a new
order has been placed so that

they can fulfill it.

Problem Statement
Katarina is a Gen Z college student

who prefers the convenience of

ordering groceries online but finds

Acolyte’s delivery experience

frustrating due to a lack of timely

order updates.

Customer Persona: Katarina Aetos

Problem Statement
Abel is a delivery driver who is

committed to providing a seamless

and timely delivery experience to

his customers. However, due to

Acolyte’s confusing order dispatch

system, he is unable to fulfil his

customer’s orders optimally.

Driver Persona: Abel Robinson

Mapping Katarina’s user journey

revealed how helpful it would be to

have timely order updates via the

app.

Customer User Journey: Katarina Aetos

Mapping Abel’s user journey

helped us determine the intricacies

of what he would need to

successfully complete a

customer’s order request.

Driver User Journey: Abel Robinson

Designing The
Customer App

● Paper Wireframes

● Digital Wireframes

● Usability Studies

Taking the time to draft iterations of various

screens in the app on paper ensured that the

elements that made it to digital wireframes would

be optimized when addressing user pain points.

Paper Wireframes

Stars were used to mark the elements of each sketch
that would be used in the initial digital wireframes.

Users are able to
view the number of
items in their cart no
matter which tab
they are currently
browsing.

Users can view
pertinent order details
and their address and
payment details on file
before they purchase
the items. Furthermore,
if required, they can
choose to quickly edit
their personal/sensitive
details.

As the initial design phase continued, we made sure

to base screen designs on feedback and findings

from the user research.

Digital Wireframes

Once a user successfully
places an order, they can
view all details including
delivery and item
information. Furthermore, if
they want to specify
additional delivery
instructions, they can
contact the driver assigned
to their order.

It was crucial to provide visual context to the user

about updates to their order and also a way for

them to verify delivery details.

Digital Wireframes
This helps display
progress through a
sequence of logical
and numbered steps
and also provide
transient feedback.

We conducted two rounds of usability studies. Findings from the first study helped guide the designs from
wireframes to mockups. The second study used a high-fidelity prototype and revealed what aspects of the
mockups needed refining.

Round 1 Findings

Users want multiple payment options for
quick and easy order placement.

1

Users want push notifications for order
updates.

2

Round 2 Findings

Users want to filter items so that they can
find products easily.

1

Users should be able to cancel an order
after they have placed it.

2

Usability Study: Findings

Designing The
Driver App

● Paper Wireframes

● Digital Wireframes

● Usability Studies

It was crucial to create a simple user flow for

drivers to accept and deliver orders in a timely

manner. The initial paper wireframes helped us to

evaluate various avenues before performing

usability studies with potential drivers.

Paper Wireframes

Stars were used to mark the elements of each sketch
that would be used in the initial digital wireframes.

Drivers are able to
quickly toggle
between different
order states. In
addition, a
notification badge
helps them ascertain
the number of new
and pending orders

Users can view key
order details such as the
address and number of
items before accepting
the delivery request

As the initial design phase continued, we made sure to

base screen designs on the evaluations generated from

the paper wireframes.

Digital Wireframes

The driver is able to view pertinent details when they

accept a delivery request. The layout in the screen is

similar to what a customer is shown when they place an

order.

Digital Wireframes A driver can tap this
button when they
finally deliver an
order. The placement
of this button is
intentional so as to
deter any false
clicks.

After accepting a
request, drivers can
view additional order
and delivery details.

We conducted two rounds of usability studies. Findings from the first study helped guide the designs from
wireframes to mockups. The second study used a high-fidelity prototype and revealed what aspects of the
mockups needed refining.

Round 1 Findings

Drivers wanted a flagging/reporting
feature for undeliverable orders that
were not residential addresses or
outside the delivery range.

1

Drivers wanted a timer feature after
accepting an order so as to gauge
appropriate delivery time limits.

2

Round 2 Findings

Drivers wanted a way to preview additional
non-sensitive order details before
accepting an order.

1

Drivers wanted a more intuitive way to
accept orders in order to avoid any
unintentional clicks.

2

Usability Study: Findings

Developing an
Interconnected

Solution

● The Goal

● Process Flow

● Technologies

Status Updates Real-Time

Updates need to be reflected in
real-time to keep the user

up-to-date.

 Multi-Channel

Multi-channel communication:
This means Email, SMS, and

updates on the app UI.

1 2 3

The Goal

Users need a confirmation that the
order is being processed after

placing it.

Diagram visualizing sequence of

activities.

Process Flow

We chose technologies that would allow us to implement our solution fast and smooth by leveraging
specific benefits of each decision.

Firebase Services

SendGrid for sending order confirmation
receipt

1

Vonage to communicate order updates
via SMS

2

API Services

Cloud Functions to handle the dispatch of
each event

1

Firestore to provide real-time updates in
application UI

2

Technologies

Implementation
● Cloud Functions

● Firestore DB

● Email

● SMS

We used Firebase Cloud Function Callables to make authenticated contextualized requests
directly from the client. Doing this instead of allowing the client to directly mutate objects ensures

integrity in the ordering process.

We defined 3 functions that would act as the core of the order processing system. To start the
process, a customer places an order, calling the createOrder callable. This creates an order and

notifies the driver of a new order.

Cloud Functions

“The Cloud Functions for Firebase client SDKs let you call functions directly from a Firebase app.”

Firebase Documentation

submitOrder() acceptOrder()

Updates order status in Firestore
for real-time update in UI and

sends notification to customer,
notifying their drivers name and

ETA.

completeOrder()

Updates order status in Firestore
for real-time update in UI. Hands

over event to post-sale.

1 2 3

Cloud Functions

Creates a new Order object in
Firestore DB, giving us more

control over orders.

Sends email confirmation &
notification.

By using Firebase Firestore database we gained a few advantages right out of the box. Firestore
is updated in real-time and synchronized across all connected devices allowing us to provide live

updates in the app.

Firestore and Firebase Functions are integrated and works seamlessly together. This made it easy
for us to buth present relevant data in UI, but also control the order processing flow from our

cloud functions.

Firestore DB

“Cloud Firestore uses data synchronization to update data on any connected device.”

Firebase Documentation

Receiving a receipt or proof of purchase was important to the customer. We solved this by using
SendGrid to send the user an order confirmation email directly after placing the order. This was

triggered directly by the submitOrder cloud function.

SendGrid API is simple to use and allows for pre-defined templates to be populated by
referencing a template ID and passing it data. This makes it easy to change the email designs in

the future.

Email

A large part of the notification system was achieved by using the Vonage SMS API to send text
messages to the customers and drivers. They offer many flexible services and a simple API that

we called in our cloud functions.

When the submitOrder cloud function was called the system dispatched an SMS to the driver to
notify of a new order. When the driver accepted the order with acceptOrder the customer gets

sent an SMS with the drivers name and ETA.

SMS

Results ● Demos

● Summary

When a customer completes a new order

they’re taken to the order page. Here they will

see real-time updates in the order stepper.

Demo: Submit Order

When the customer submits an order, the driver app receives a real-time notification showing that order. The

driver can then accept it and finally complete it. This is updated in real-time for the driver and customer.

Demo: Submit Order

We intentionally kept the scope of this case study limited to the order dispatch system. There are
many other parts we did not mention, such as auth and e-commerce solution, that were

foundational for the order dispatch system to work.

We reached our goals of building a solution that keeps the customer and driver updated in
real-time. Users now have a clear communication strategy from start to finish when ordering

products.

Summary

Thank You!

