
How to Ace Hopper’s
Engineering Interviews

Introduction
We know how stressful interviews can be so we want to see you at your best! This guide will give you some
insight on what to expect during our interviews. We hope that knowing our process beforehand will make you
more comfortable and simplify your preparation.

Our interview process has both technical challenges that you will need to solve, as well as behavioural questions
tailored towards our leadership principles that help us learn more about your motivations, previous achievements,
and values.

Technical Challenges
CODING

Both the screen and the onsite require you to write
code without the help of an integrated
development environment (IDE). It’s not expected
that you know a particular programming language
prior to your interview, but you should be fluent in
at least one. You are expected to be familiar with
some of the nuances of your preferred language,
such as how memory management works and
commonly used libraries. Also, it is important to
think of edge cases and remember that you are not
only allowed but even encouraged to ask some
clarifying questions instead of making assumptions.
Don’t stress about small syntactical errors or if your
code compiles, but your code is expected to be
correct (no pseudocode!).

DATA STRUCTURES

You must be capable of showing the different
applications of common data structures by
highlighting their fundamental principles, such
as runtime and memory complexity for common
operations. You should be familiar with most
frequently used data structures, such as arrays,
linked lists, stacks, queues, hash-sets,
hash-maps, hash-tables, dictionaries, trees and
binary trees, heaps and graphs.

EXTENSIBLE & MAINTAINABLE CODE

You should be able to explain how you would test
your code. Ensure that your code is easily
readable, verify any edge cases, and check for
incorrect inputs. As you design your code, think
about how you would modify it when new
constraints or business requirements are added
later. Many coding problems involve thinking
recursively and potentially coding a recursive
solution. Use recursion to find more elegant
solutions to problems that can be solved
iteratively.

DOMAIN KNOWLEDGE

During any round of the interview, we might poke
around technologies/ tools/ languages/ frameworks
you’ve included in your resume/ linkedIn profile so
we expect you to be comfortable having an in depth
discussion on any of these topics at any given time
during the interview process.

ALGORITHMS
For this part of the interview, we want to see a solid
understanding of the most typical algorithms which
will help you solve our questions that much easier.
While we don’t expect you to memorize algorithms,
you should be familiar with the most common types.
You’ll be expected to calculate the time and space
complexity of your algorithm and know if/how you
can improve it. We recommend working through
requirements and discussing the algorithm you
have in mind before writing code. You should also
review the tradeoffs for common algorithms such
as divide and conquer, dynamic
programming/memoization, graph traversals, and
breadth-first search vs. depth first search.

SYSTEM DESIGN

System design questions are used to assess your
ability to combine knowledge, theory, experience
and judgement towards solving a real-world
engineering problem. The questions asked are
deliberately underspecified because our
interviewers want to see how you engage with the
problem. For each question, talk through your
thought process and ask clarifying questions
before you dive into a solution. It’s important to
have an understanding of fundamental distributed
computing concepts such as concurrency, locking,
caching, load balancing, and
service-oriented/microservices architecture.

Experience questions
In addition to technical challenges, we’ll also ask you about past situations or challenges you’ve faced and
how you handled them. Specifics are key: avoid generalizations. Give a detailed account of one situation for
each question you answer and use data or metrics to support your example as you need to remember that
we’re all about data! Refer to recent situations whenever possible, and don’t embellish or omit parts of the
story. Ultimately, we’re looking for examples that showcase your experience and demonstrate that you’ve
taken risks, succeeded, failed, and grown over the course of your career.

https://www.hopper.com/people

