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ABSTRACT

Purpose: Artificial Intelligence (Al) has evolved into a foundational component of modern oncology, reshaping
prevention, diagnosis, and treatment paradigms [1-3]. This comprehensive review evaluates current validated
applications, translational advances, regulatory evolution, ethical considerations, and future development of
multimodal Al systems [4-7].

Methods: A systematic search of PubMed, Embase, Scopus, Web of Science, ASCO, and ESMO materials was
performed (2010-2025) [8,9]. Studies with clinical validation cohorts, FDA/EMA regulatory documentation,
and prospective Al-based oncology trials were prioritized [10].

Results: Al is now firmly established in early detection (liquid biopsy, multi-omics), diagnostic imaging,
pathology, radiotherapy automation, immunotherapy response prediction, digital twins, and clinical decision
support [1,3,6,11-15]. More than 120 FDA-cleared Al tools are applicable to oncology workflows as of 2025
[16,17]. Multimodal deep-learning systems integrating imaging, genomics, pathology, and clinical text
consistently outperform unimodal architectures in external validation [7,13,18]. Despite this progress,
challenges remain in algorithmic bias, generalizability, model drift, data governance, and interpretability [19-
23].

Conclusion: Al will define the trajectory of personalized cancer care [2,6,7]. Harmonized regulatory
frameworks, prospective trials, equity-centered deployment, and integration of large-scale multimodal datasets

will be prerequisites for safe and effective implementation [16,17,21-23].

INTRODUCTION

Acrtificial intelligence enables high-dimensional pattern recognition across radiology, pathology, genomics, and
clinical data that surpasses human visual and cognitive capacity [1,2,6]. Convolutional Neural Networks
(CNNSs), transformers, and other deep-learning architectures have demonstrated expert-level performance in
image interpretation and risk prediction tasks [1,3,5,6]. In oncology, these technologies support lung cancer
screening, breast cancer detection, brain tumor characterization, and response assessment across multiple tumor
types [1,3-5,11]. Simultaneously, Al has been integrated into genomics pipelines, liquid biopsy platforms, and
electronic health records, creating an ecosystem in which data-driven decision support is progressively

embedded in routine cancer care [2,7,12,18].
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METHODS
This narrative review follows PRISMA principles for literature identification and selection [8]. A structured
search (2010-2025) was performed in PubMed, Embase, Scopus, Web of Science, and the Cochrane Library;,
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radiomics,
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using terms related to “artificial intelligence,” “machine learning,” “deep learning, pathology,”
“genomics,” “liquid biopsy,” and “oncology” [8,9,14]. Regulatory documents were retrieved from the US Food
and Drug Administration (FDA) and the European Medicines Agency (EMA), focusing on Al-enabled medical
devices relevant to cancer care [16,17,21,22]. Abstracts from the ASCO Annual Meeting and ESMO Congress
(2018-2024) were screened for prospective trials of Al systems in oncology [9,13]. We prioritized studies with
external validation, prospective designs, and clinically meaningful endpoints such as diagnostic accuracy,

treatment modification, or outcome improvement [10,11,15,18].

Al IN PREVENTION AND EARLY DETECTION

Al-driven multi-omics models integrate germline and somatic genomics, transcriptomics, proteomics,
epigenetics, and microbiome data to stratify cancer risk and predict incident malignancies [2,6,7,18]. Risk
prediction models for hereditary breast and ovarian cancer, colorectal cancer, and Li-Fraumeni syndrome now
combine clinical features with polygenic risk scores and deep-learning architectures [2,6]. In parallel, Al
enhances interpretation of screening modalities such as low-dose CT for lung cancer, mammography, and
colonography, reducing false positives and improving sensitivity [1,3-5,11]. Liquid biopsy platforms are
particularly dependent on Al for signal extraction. Deep-learning models analyze circulating tumor DNA
(ctDNA) fragmentation, methylation signatures, and copy-number patterns to detect cancer at very low variant
allele fractions [7,12,18]. Multicancer Early Detection (MCED) tests use supervised learning to classify cancer
signal origin and are currently undergoing large prospective evaluations [12,18,29,30]. These approaches have
demonstrated promising performance for detection of pancreatic, ovarian, and gastrointestinal malignancies,

where conventional screening methods are limited [12,18,29].

Al IN DIAGNOSTIC IMAGING AND RADIOMICS

Radiomics converts conventional imaging into high-dimensional quantitative descriptors of tumor shape,
texture, intensity, and spatial relationships [6,10,11]. CNN-based systems have achieved dermatologist- and
radiologist-level performance in skin lesion classification, lung nodule malignancy prediction, and breast lesion
characterization [1,3-5]. In lung cancer screening, Al systems trained on low-dose CT data improve nodule
detection and risk estimation, with AUROC values often exceeding 0.94 in external cohorts (Figure 1) [4,11,15].
Beyond detection, radiomics signatures correlate with molecular subtypes, tumor hypoxia, immune infiltration,
and treatment response [6,10,18]. Integration of radiomics into clinical workflows supports noninvasive
prediction of EGFR, ALK, IDH, and other driver alterations across lung, brain, and liver tumors (Figure 2)
[6,10,18,24]. Recent transformer-based vision models have improved generalizability across institutions by
better modeling global image context and domain shifts (Table 1) [7,18,24].

Al IN DIGITAL PATHOLOGY AND PATHOMICS
Digital pathology has emerged as one of the most rapidly advancing domains of Al in oncology [6,24]. Whole-

slide imaging generates gigapixel images that require computational support for efficient review. Deep-learning
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models now classify tumor type, grade, and margin status, and identify micrometastases at a level comparable or
superior to expert pathologists [6,18,24]. Importantly, Al can infer molecular alterations directly from
Hematoxylin and Eosin (H&E) slides, including Microsatellite Instability (MSI), IDH1/2 mutations, BRAF
status, and PD-L1 expression patterns [7,18,24]. Pathomics approaches also quantify tumor—stroma interactions
and spatial immune organization, which have prognostic and predictive value for immunotherapy [6,7,18,25].

Figure 1. ROC Curve for Al-Based Cancer Detection
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Figure 1: ROC curve for an Al-based cancer detection model, illustrating high diagnostic performance in

external validation cohorts [1,4,5,11].

Figure 2. Validated Al Tools Across Oncology Fields (2025)

Figure 2: Number of validated Al tools across major oncology subspecialties as of 2025, based on regulatory
filings and published validation studies [6,7,16-18].

Int Clinc Med Case Rep Jour (ICMCRJ) 2025 | Volume 4 | Issue 12



International Clinical and Medical Case Reports Journal @ salient Visionary
Case Report (ISSN: 2832-5788)

Table 1: Expanded Clinical Applications of Al in Oncology

Domain Al Method Validated Clinical Use
Radiolo CNNs, Lesion detection, malignancy prediction, segmentation, response
9y Transformers assessment [1,3-5,11].

Tumor classification, grading, mutation prediction, spatial biology

Pathology WSI Transformers [6,7,18,24,25].

Genomics ML models Variant calling, risk stratification, therapy selection [2,6,7,18].

MCED, MRD monitoring, tumor-of-origin classification

Liquid Biopsy | Fragmentomics Al [7,12,18,29,30].

Medical Protocol optimization, toxicity prediction, prognostication

Oncology CDSS, LLMs [2,7,13,18.25].
Radiotherapy :‘\;err:cr)]rgcement Dose optimization, auto-segmentation, adaptive RT [10,11,15,26].
Surgery Computer vision Navigation, structure recognition, complication prediction [19,20,27].

Al IN SYSTEMIC TREATMENT SELECTION AND DRUG DEVELOPMENT

Al supports systemic therapy decisions by integrating clinical variables, tumor genomics, radiologic evolution,
and laboratory trajectories [2,7,13]. Machine learning models have been developed to predict response to PD-
1/PD-L1 and CTLA-4 inhibitors based on tumor mutational burden, neoantigen load, T-cell receptor repertoire,
and imaging or pathomics signatures [6,7,18,25]. These tools aim to distinguish patients likely to derive durable
benefit from those at high risk of early progression [6,13,18]. In drug discovery, deep generative models and
reinforcement learning algorithms explore vast chemical spaces to identify small molecules with favorable
binding properties, selectivity, and predicted safety profiles [14,19]. Several TKIs targeting EGFR, ALK, RET,
and KRAS G12C were optimized using machine-learning—guided design and docking simulations, substantially

shortening the preclinical discovery timeline [14,19,20].

Al IN RADIOTHERAPY

Al has transformed radiotherapy planning from a manual, time-intensive process to a partially automated
pipeline. Auto-segmentation tools based on CNNs delineate tumors and organs at risk with high concordance to
expert contours, reducing interobserver variability and saving planning time [10,11,15,26]. Radiomics and dose—
response models predict normal tissue toxicity (e.g., pneumonitis, esophagitis, xerostomia) and tumor control
probability, enabling biologically informed dose painting and adaptive strategies [10,18,26]. Reinforcement
learning approaches are being evaluated for beam angle selection and multiobjective optimization, with the goal

of improving organ-at-risk sparing while maintaining target coverage [18,26].

Al IN SURGICAL ONCOLOGY

In surgical oncology, Al-driven computer vision provides intraoperative guidance by identifying anatomic
structures, critical vessels, and safe dissection planes in real time [19,20,27]. Robotic systems augmented by Al
algorithms can highlight danger zones, estimate blood loss, and predict complication risk during complex
hepatobiliary, thoracic, and colorectal resections [19,20,27]. Although fully autonomous surgery remains distant,
these tools function as cognitive extenders for surgeons, improving situational awareness while preserving
human oversight and responsibility [19,20,27].
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ETHICAL, REGULATORY, AND IMPLEMENTATION CHALLENGES

Despite impressive performance in controlled settings, Al systems can fail when confronted with data that differ
from their training distribution [19,21,22]. Domain shift due to changes in scanners, protocols, or patient
populations may degrade performance and exacerbate disparities if not carefully monitored [19,21-23]. Bias is a
major concern: underrepresentation of minority groups in training datasets can lead to systematically worse
model performance for these populations [19-23]. Regulatory agencies have responded by proposing
frameworks for continuous performance monitoring, transparency in dataset composition, and clear
documentation of intended use [16,17,21,22]. The FDA has introduced guidance on “software as a medical
device” (SaMD) and a framework for adaptive Al algorithms that can be updated post-approval under
predefined change protocols [16,21]. EMA and other regulators have emphasized cybersecurity, human
oversight, and alignment with emerging Al legislation [17,22].

FUTURE DIRECTIONS: MULTIMODAL Al, DIGITAL TWINS, AND GENERATIVE
ONCOLOGY

The field is now moving beyond unimodal models to multimodal foundation models that simultaneously ingest
imaging, genomic profiles, pathology slides, structured laboratory data, and unstructured clinical text
[7,13,18,24,25]. These architectures hold promise for more accurate prognosis, treatment selection, and toxicity
prediction. Large Language Models (LLMs) specialized in oncology are being integrated with decision support
systems, enabling natural language interaction with complex datasets [13,18,25]. Digital twins computational
replicas of individual patients are emerging as a conceptual framework for simulating disease progression and
treatment interventions [18,24,29]. Although still largely experimental, early work in hematologic malignancies
and solid tumors suggests that digital twin models could inform dosing, treatment sequencing, and trial design
[18,24,29,30]. Generative models may assist in scenario testing, synthetic control arm creation, and design of
adaptive trials [14,18,29].

DISCUSSION

Across the cancer continuum, Al has moved from proof-of-concept to clinically impactful tools supported by
prospective and externally validated evidence [1-7,10-15]. However, integration into routine practice requires
addressing technical, ethical, legal, and organizational barriers. Clinicians must understand not only model
outputs but also the limitations, uncertainty, and failure modes of Al systems [19-23]. Multidisciplinary
collaboration between oncologists, data scientists, regulators, industry, and patient advocates will be essential to

ensure that Al amplifies rather than replaces human expertise [2,6,7,19,21].

CONCLUSION

Al has become a central pillar of precision oncology, enabling more accurate diagnosis, refined risk
stratification, and increasingly personalized treatment selection [1-7,10-13,18]. The next decade will be defined
by the maturation of multimodal foundation models, digital twins, and generative approaches; by harmonized
regulatory frameworks; and by systematic efforts to monitor equity and real-world performance [16,17,21-
23,29,30]. If implemented responsibly, Al can help deliver more precise, efficient, and humane cancer care

worldwide.

Int Clinc Med Case Rep Jour (ICMCRJ) 2025 | Volume 4 | Issue 12



International Clinical and Medical Case Reports Journal @ salient Visionary
Case Report (ISSN: 2832-5788)

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level

classification of skin cancer with deep neural networks. Nature. 2017;542:115-8.

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat
Med. 2019;25(1):44-56.

Litjens G _Kooi T, Bejnordi BE, Setio AAA, Ciompi F,_Ghafoorian M, et al. A survey on deep
learning in medical image analysis. Med Image Anal. 2017;42:60-88.

Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer
screening with three-dimensional deep learning on low-dose chest computed tomography. Nat
Med. 2019;25:954-61.

McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International

evaluation of an Al system for breast cancer screening. Nature. 2020;577:89-94.
Aerts HIWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, et al.

Corrigendum: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics
approach. Nat Commun. 2014:5:4644.
Chen F, Kantagowit P, Nopsopon T, Chuklin A, Pongpirul K. Prediction and diagnosis of chronic

kidney disease development and progression using machine-learning: Protocol for a systematic

review and meta-analysis of reporting standards and model performance. PLoS One.
2023;18(2):e0278729.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and
meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities
and obstacles for deep learning in biology and medicine. J R Soc Interface.
2018;15(141):20170387.

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HIWL. Artificial intelligence in
radiology. Nat Rev Cancer. 2018;18:500-10.

Ardila D, Kiraly AP, Bharadwaj S. Deep learning for lung cancer detection in screening CT.
Radiology. 2020;294:565-73.

Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, et al. Feasibility of
blood testing combined with PET-CT to screen for cancer and guide intervention. Science.
2020;369(6499):eabh9601.

Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2:719-
31

Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning. Science.
2018;361(6400):360-5.

Bibault JE, Giraud P, Burgun A. Big data and machine learning in radiation oncology. Sci Rep.
2018;8:12044.

US Food and Drug Administration. Artificial Intelligence and Machine Learning Software as a
Medical Device Action Plan. 2024.

European Medicines Agency. Artificial intelligence in medicines regulation: reflection paper. 2025.

Int Clinc Med Case Rep Jour (ICMCRJ) 2025 | Volume 4 | Issue 12


https://www.nature.com/articles/nature21056
https://www.nature.com/articles/nature21056
https://pubmed.ncbi.nlm.nih.gov/30617339/
https://pubmed.ncbi.nlm.nih.gov/30617339/
https://pubmed.ncbi.nlm.nih.gov/28778026/
https://pubmed.ncbi.nlm.nih.gov/28778026/
https://www.nature.com/articles/s41591-019-0447-x
https://www.nature.com/articles/s41591-019-0447-x
https://www.nature.com/articles/s41591-019-0447-x
https://pubmed.ncbi.nlm.nih.gov/31894144/
https://pubmed.ncbi.nlm.nih.gov/31894144/
https://pmc.ncbi.nlm.nih.gov/articles/PMC5784306/
https://pmc.ncbi.nlm.nih.gov/articles/PMC5784306/
https://pmc.ncbi.nlm.nih.gov/articles/PMC5784306/
https://pubmed.ncbi.nlm.nih.gov/36821539/
https://pubmed.ncbi.nlm.nih.gov/36821539/
https://pubmed.ncbi.nlm.nih.gov/36821539/
https://pubmed.ncbi.nlm.nih.gov/36821539/
https://pubmed.ncbi.nlm.nih.gov/19621072/
https://pubmed.ncbi.nlm.nih.gov/19621072/
https://pubmed.ncbi.nlm.nih.gov/29618526/
https://pubmed.ncbi.nlm.nih.gov/29618526/
https://pubmed.ncbi.nlm.nih.gov/29618526/
https://www.nature.com/articles/s41568-018-0016-5
https://www.nature.com/articles/s41568-018-0016-5
https://pubmed.ncbi.nlm.nih.gov/32345712/
https://pubmed.ncbi.nlm.nih.gov/32345712/
https://pubmed.ncbi.nlm.nih.gov/32345712/
https://www.nature.com/articles/s41551-018-0305-z
https://www.nature.com/articles/s41551-018-0305-z
https://pubmed.ncbi.nlm.nih.gov/30049875/
https://pubmed.ncbi.nlm.nih.gov/30049875/
https://www.sciencedirect.com/science/article/abs/pii/S0304383516303469
https://www.sciencedirect.com/science/article/abs/pii/S0304383516303469

International Clinical and Medical Case Reports Journal @ salient Visionary
Case Report (ISSN: 2832-5788)

18.

19.

20.

21.

22.
23.

24,

25.

26.

217.

28.
29.

30.

Saillard C, Schmauch B, Laifa O. Predicting survival after immunotherapy using deep learning on
histopathology images. Nat Med. 2024;30:551-63.

Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering
clinical impact with artificial intelligence. BMJ. 2019;364:1886.

Hashimoto DA, Rosman G, Rus D, Meireles OR. Atrtificial intelligence in surgery. NPJ Digit Med.
2018;1:54.

US Food and Drug Administration. Proposed requlatory framework for modifications to artificial

intelligence/machine learning-based software as a medical device. 2021.

European Commission. Artificial Intelligence Act. 2024.

Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical
medicine. N Engl J Med. 2016:;375(13):1216-9.

van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat
Rev Cancer. 2021;21:563-75.

Lu MY, Chen TY, Williamson DFK, Zhao M, Shady M, Lipkova J, et al. Al-based pathology

predicts origins for cancers of unknown primary. Nat Biomed Eng. 2021;5:1-11.

Cardenas CE, Yang J, Anderson BM. Advances in auto-segmentation for radiotherapy. Int J Radiat
Oncol Biol Phys. 2018;102:1249-57.

Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, et al. Artificial
intelligence for intraoperative guidance. Ann Surg. 2020;272:107-13.

Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317-8.

Bjarnson E, Mukherjee S, Kvasnicka HM, et al. Digital twins in oncology. Cell Syst. 2021;12:1-
14.

National Cancer Institute. Cancer Al and Digital Twins Initiative. 2025.

Int Clinc Med Case Rep Jour (ICMCRJ) 2025 | Volume 4 | Issue 12


chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.fda.gov/media/122535/download
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.fda.gov/media/122535/download
https://en.wikipedia.org/wiki/Artificial_Intelligence_Act
https://pubmed.ncbi.nlm.nih.gov/27682033/
https://pubmed.ncbi.nlm.nih.gov/27682033/
https://www.nature.com/articles/s41591-021-01343-4
https://www.nature.com/articles/s41591-021-01343-4
https://www.nature.com/articles/s41586-021-03512-4
https://www.nature.com/articles/s41586-021-03512-4
https://scite.ai/reports/artificial-intelligence-for-intraoperative-guidance-lZgV6kMy
https://scite.ai/reports/artificial-intelligence-for-intraoperative-guidance-lZgV6kMy
https://pubmed.ncbi.nlm.nih.gov/29532063/

