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ABSTRACT 

Purpose: Artificial Intelligence (AI) has evolved into a foundational component of modern oncology, reshaping 

prevention, diagnosis, and treatment paradigms [1-3]. This comprehensive review evaluates current validated 

applications, translational advances, regulatory evolution, ethical considerations, and future development of 

multimodal AI systems [4-7]. 

Methods: A systematic search of PubMed, Embase, Scopus, Web of Science, ASCO, and ESMO materials was 

performed (2010–2025) [8,9]. Studies with clinical validation cohorts, FDA/EMA regulatory documentation, 

and prospective AI-based oncology trials were prioritized [10]. 

Results: AI is now firmly established in early detection (liquid biopsy, multi-omics), diagnostic imaging, 

pathology, radiotherapy automation, immunotherapy response prediction, digital twins, and clinical decision 

support [1,3,6,11-15]. More than 120 FDA-cleared AI tools are applicable to oncology workflows as of 2025 

[16,17]. Multimodal deep-learning systems integrating imaging, genomics, pathology, and clinical text 

consistently outperform unimodal architectures in external validation [7,13,18]. Despite this progress, 

challenges remain in algorithmic bias, generalizability, model drift, data governance, and interpretability [19-

23]. 

Conclusion: AI will define the trajectory of personalized cancer care [2,6,7]. Harmonized regulatory 

frameworks, prospective trials, equity-centered deployment, and integration of large-scale multimodal datasets 

will be prerequisites for safe and effective implementation [16,17,21-23]. 

 

INTRODUCTION 

Artificial intelligence enables high-dimensional pattern recognition across radiology, pathology, genomics, and 

clinical data that surpasses human visual and cognitive capacity [1,2,6]. Convolutional Neural Networks 

(CNNs), transformers, and other deep-learning architectures have demonstrated expert-level performance in 

image interpretation and risk prediction tasks [1,3,5,6]. In oncology, these technologies support lung cancer 

screening, breast cancer detection, brain tumor characterization, and response assessment across multiple tumor 

types [1,3-5,11]. Simultaneously, AI has been integrated into genomics pipelines, liquid biopsy platforms, and 

electronic health records, creating an ecosystem in which data-driven decision support is progressively 

embedded in routine cancer care [2,7,12,18]. 
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METHODS 

This narrative review follows PRISMA principles for literature identification and selection [8]. A structured 

search (2010–2025) was performed in PubMed, Embase, Scopus, Web of Science, and the Cochrane Library, 

using terms related to “artificial intelligence,” “machine learning,” “deep learning,” “radiomics,” “pathology,” 

“genomics,” “liquid biopsy,” and “oncology” [8,9,14]. Regulatory documents were retrieved from the US Food 

and Drug Administration (FDA) and the European Medicines Agency (EMA), focusing on AI-enabled medical 

devices relevant to cancer care [16,17,21,22]. Abstracts from the ASCO Annual Meeting and ESMO Congress 

(2018–2024) were screened for prospective trials of AI systems in oncology [9,13]. We prioritized studies with 

external validation, prospective designs, and clinically meaningful endpoints such as diagnostic accuracy, 

treatment modification, or outcome improvement [10,11,15,18]. 

 

AI IN PREVENTION AND EARLY DETECTION 

AI-driven multi-omics models integrate germline and somatic genomics, transcriptomics, proteomics, 

epigenetics, and microbiome data to stratify cancer risk and predict incident malignancies [2,6,7,18]. Risk 

prediction models for hereditary breast and ovarian cancer, colorectal cancer, and Li-Fraumeni syndrome now 

combine clinical features with polygenic risk scores and deep-learning architectures [2,6]. In parallel, AI 

enhances interpretation of screening modalities such as low-dose CT for lung cancer, mammography, and 

colonography, reducing false positives and improving sensitivity [1,3-5,11]. Liquid biopsy platforms are 

particularly dependent on AI for signal extraction. Deep-learning models analyze circulating tumor DNA 

(ctDNA) fragmentation, methylation signatures, and copy-number patterns to detect cancer at very low variant 

allele fractions [7,12,18]. Multicancer Early Detection (MCED) tests use supervised learning to classify cancer 

signal origin and are currently undergoing large prospective evaluations [12,18,29,30]. These approaches have 

demonstrated promising performance for detection of pancreatic, ovarian, and gastrointestinal malignancies, 

where conventional screening methods are limited [12,18,29]. 

 

AI IN DIAGNOSTIC IMAGING AND RADIOMICS 

Radiomics converts conventional imaging into high-dimensional quantitative descriptors of tumor shape, 

texture, intensity, and spatial relationships [6,10,11]. CNN-based systems have achieved dermatologist- and 

radiologist-level performance in skin lesion classification, lung nodule malignancy prediction, and breast lesion 

characterization [1,3-5]. In lung cancer screening, AI systems trained on low-dose CT data improve nodule 

detection and risk estimation, with AUROC values often exceeding 0.94 in external cohorts (Figure 1) [4,11,15]. 

Beyond detection, radiomics signatures correlate with molecular subtypes, tumor hypoxia, immune infiltration, 

and treatment response [6,10,18]. Integration of radiomics into clinical workflows supports noninvasive 

prediction of EGFR, ALK, IDH, and other driver alterations across lung, brain, and liver tumors (Figure 2) 

[6,10,18,24]. Recent transformer-based vision models have improved generalizability across institutions by 

better modeling global image context and domain shifts (Table 1) [7,18,24]. 

 

AI IN DIGITAL PATHOLOGY AND PATHOMICS 

Digital pathology has emerged as one of the most rapidly advancing domains of AI in oncology [6,24]. Whole-

slide imaging generates gigapixel images that require computational support for efficient review. Deep-learning 
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models now classify tumor type, grade, and margin status, and identify micrometastases at a level comparable or 

superior to expert pathologists [6,18,24]. Importantly, AI can infer molecular alterations directly from 

Hematoxylin and Eosin (H&E) slides, including Microsatellite Instability (MSI), IDH1/2 mutations, BRAF 

status, and PD-L1 expression patterns [7,18,24]. Pathomics approaches also quantify tumor–stroma interactions 

and spatial immune organization, which have prognostic and predictive value for immunotherapy [6,7,18,25]. 

 

 

Figure 1: ROC curve for an AI-based cancer detection model, illustrating high diagnostic performance in 

external validation cohorts [1,4,5,11]. 

 

 

Figure 2: Number of validated AI tools across major oncology subspecialties as of 2025, based on regulatory 

filings and published validation studies [6,7,16-18]. 
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Table 1: Expanded Clinical Applications of AI in Oncology 

Domain AI Method Validated Clinical Use 

Radiology 
CNNs, 

Transformers 

Lesion detection, malignancy prediction, segmentation, response 

assessment [1,3-5,11]. 

Pathology WSI Transformers 
Tumor classification, grading, mutation prediction, spatial biology 

[6,7,18,24,25]. 

Genomics ML models Variant calling, risk stratification, therapy selection [2,6,7,18]. 

Liquid Biopsy Fragmentomics AI 
MCED, MRD monitoring, tumor-of-origin classification 

[7,12,18,29,30]. 

Medical 
Oncology 

CDSS, LLMs 
Protocol optimization, toxicity prediction, prognostication 
[2,7,13,18,25]. 

Radiotherapy 
Reinforcement 

learning 
Dose optimization, auto-segmentation, adaptive RT [10,11,15,26]. 

Surgery Computer vision Navigation, structure recognition, complication prediction [19,20,27]. 

 

AI IN SYSTEMIC TREATMENT SELECTION AND DRUG DEVELOPMENT 

AI supports systemic therapy decisions by integrating clinical variables, tumor genomics, radiologic evolution, 

and laboratory trajectories [2,7,13]. Machine learning models have been developed to predict response to PD-

1/PD-L1 and CTLA-4 inhibitors based on tumor mutational burden, neoantigen load, T-cell receptor repertoire, 

and imaging or pathomics signatures [6,7,18,25]. These tools aim to distinguish patients likely to derive durable 

benefit from those at high risk of early progression [6,13,18]. In drug discovery, deep generative models and 

reinforcement learning algorithms explore vast chemical spaces to identify small molecules with favorable 

binding properties, selectivity, and predicted safety profiles [14,19]. Several TKIs targeting EGFR, ALK, RET, 

and KRAS G12C were optimized using machine-learning–guided design and docking simulations, substantially 

shortening the preclinical discovery timeline [14,19,20]. 

 

AI IN RADIOTHERAPY 

AI has transformed radiotherapy planning from a manual, time-intensive process to a partially automated 

pipeline. Auto-segmentation tools based on CNNs delineate tumors and organs at risk with high concordance to 

expert contours, reducing interobserver variability and saving planning time [10,11,15,26]. Radiomics and dose–

response models predict normal tissue toxicity (e.g., pneumonitis, esophagitis, xerostomia) and tumor control 

probability, enabling biologically informed dose painting and adaptive strategies [10,18,26]. Reinforcement 

learning approaches are being evaluated for beam angle selection and multiobjective optimization, with the goal 

of improving organ-at-risk sparing while maintaining target coverage [18,26]. 

 

AI IN SURGICAL ONCOLOGY 

In surgical oncology, AI-driven computer vision provides intraoperative guidance by identifying anatomic 

structures, critical vessels, and safe dissection planes in real time [19,20,27]. Robotic systems augmented by AI 

algorithms can highlight danger zones, estimate blood loss, and predict complication risk during complex 

hepatobiliary, thoracic, and colorectal resections [19,20,27]. Although fully autonomous surgery remains distant, 

these tools function as cognitive extenders for surgeons, improving situational awareness while preserving 

human oversight and responsibility [19,20,27]. 
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ETHICAL, REGULATORY, AND IMPLEMENTATION CHALLENGES 

Despite impressive performance in controlled settings, AI systems can fail when confronted with data that differ 

from their training distribution [19,21,22]. Domain shift due to changes in scanners, protocols, or patient 

populations may degrade performance and exacerbate disparities if not carefully monitored [19,21-23]. Bias is a 

major concern: underrepresentation of minority groups in training datasets can lead to systematically worse 

model performance for these populations [19-23]. Regulatory agencies have responded by proposing 

frameworks for continuous performance monitoring, transparency in dataset composition, and clear 

documentation of intended use [16,17,21,22]. The FDA has introduced guidance on “software as a medical 

device” (SaMD) and a framework for adaptive AI algorithms that can be updated post-approval under 

predefined change protocols [16,21]. EMA and other regulators have emphasized cybersecurity, human 

oversight, and alignment with emerging AI legislation [17,22]. 

FUTURE DIRECTIONS: MULTIMODAL AI, DIGITAL TWINS, AND GENERATIVE 

ONCOLOGY 

The field is now moving beyond unimodal models to multimodal foundation models that simultaneously ingest 

imaging, genomic profiles, pathology slides, structured laboratory data, and unstructured clinical text 

[7,13,18,24,25]. These architectures hold promise for more accurate prognosis, treatment selection, and toxicity 

prediction. Large Language Models (LLMs) specialized in oncology are being integrated with decision support 

systems, enabling natural language interaction with complex datasets [13,18,25]. Digital twins computational 

replicas of individual patients are emerging as a conceptual framework for simulating disease progression and 

treatment interventions [18,24,29]. Although still largely experimental, early work in hematologic malignancies 

and solid tumors suggests that digital twin models could inform dosing, treatment sequencing, and trial design 

[18,24,29,30]. Generative models may assist in scenario testing, synthetic control arm creation, and design of 

adaptive trials [14,18,29]. 

 

DISCUSSION 

Across the cancer continuum, AI has moved from proof-of-concept to clinically impactful tools supported by 

prospective and externally validated evidence [1-7,10-15]. However, integration into routine practice requires 

addressing technical, ethical, legal, and organizational barriers. Clinicians must understand not only model 

outputs but also the limitations, uncertainty, and failure modes of AI systems [19-23]. Multidisciplinary 

collaboration between oncologists, data scientists, regulators, industry, and patient advocates will be essential to 

ensure that AI amplifies rather than replaces human expertise [2,6,7,19,21]. 

 

CONCLUSION 

AI has become a central pillar of precision oncology, enabling more accurate diagnosis, refined risk 

stratification, and increasingly personalized treatment selection [1-7,10-13,18]. The next decade will be defined 

by the maturation of multimodal foundation models, digital twins, and generative approaches; by harmonized 

regulatory frameworks; and by systematic efforts to monitor equity and real-world performance [16,17,21-

23,29,30]. If implemented responsibly, AI can help deliver more precise, efficient, and humane cancer care 

worldwide. 
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