Strength and Durability for LiFe®

Environmental Product Declaration

This document is an industry average Type III Environmental Product Declaration (EPD) of 10 sizes of Ductile iron pipes used in pressurized water and sewer and gravity sewer applications. Seven manufacturing facilities, owned by three U.S. Ductile iron pipe producers, are included in the study, representing 100% of U.S. production.

> Last Revised: November 2022

General Information

Size (in)	Applications	Description	Standards
6	Pressurized Water	PC 350 Cement Mortar Lined	AWWA C150, AWWA C151
8	Pressurized Water	PC 350 Cement Mortar Lined	AWWA C150, AWWA C151
12	Pressurized Water	PC 350 Cement Mortar Lined	AWWA C150, AWWA C151
16	Pressurized Water	PC 250 Cement Mortar Lined	AWWA C150, AWWA C151
24	Pressurized Water	PC 200 Cement Mortar Lined	AWWA C150, AWWA C151
30	Pressurized Water	PC 150 Cement Mortar Lined	AWWA C150, AWWA C151
36	Pressurized Water	PC 150 Cement Mortar Lined	AWWA C150, AWWA C151
8	Gravity Sewer	PC 350 Cement Mortar Lined	AWWA C150, AWWA C151, ASTM A746
12	Gravity Sewer	PC 350 Cement Mortar Lined	AWWA C150, AWWA C151, ASTM A746
24	Pressurized Sewer	PC 200 Cement Mortar Lined	AWWA C150, AWWA C151

Environmental Product Declaration

Declaration prepared in accordance with ISO 14025, EN-15804, and ASTM International EPD Program Operator rules.

Core Product Category Rule

Norwegian EPD Foundation (2017). NPCR Part A: Construction Products & Services.

Product Category Rule

The Norwegian EPD Foundation. (2018). NPCR 019 v.2.0: Piping systems for use for sewage and storm water (under gravity).

Independent verification of the declaration and data, according to ISO 14025: ____Internal _X_ External

Third-party verifier

Thomas P. Gloria, LCACP Industrial Ecology Consultants

)for) for

Program Operator ASTM International http://www.astm.org

EDP Owner

Ductile Iron Pipe Research Association P.O. Box 190306 Birmingham, AL 35219 205.402.8700 Tel

LCA and EPD Developer

Anne Landfield Greig, LCACP Four Elements Consulting, LLC Seattle, WA 98112 206-935-4600 Anne@FourElementsLLC.com https://www.fourelementsllc.com

Date of Issue

February 18, 2022 (valid until February 17, 2027) Declaration Number: EPD-291

Participating Manufacturers and Locations

Seven manufacturing facilities, owned by three U.S. ductile iron producers, are included in the study. Plants are located throughout the U.S.

American Cast Iron Pipe Co.

1501 31st Ave North Birmingham, AL 35207

AMERICAN DUCTILE IRON PIPE

McWane Ductile

183 Sitgreaves Street Phillipsburg, NJ 08865

2266 South Sixth Street Coshocto, OH 43812

2550 South Industrial Parkway Provo, Utah 84606

U.S. Pipe

10 Adams Street Lynchburg, VA 24506

1295 Whipple Road Union City, CA 94587

2023 Saint Louis Avenue Bessemer, AL 35020

This EPD is based on a cradleto-grave life cycle assessment (LCA) of 10 applications of Ductile Pipes used in pressurized water and sewer and gravity sewer applications.

Functional Unit

100 feet of installed pipe over a 100-year lifetime, the assumed reference service life of the product.

Material Content

Each 18' length of pipe contains the following components:

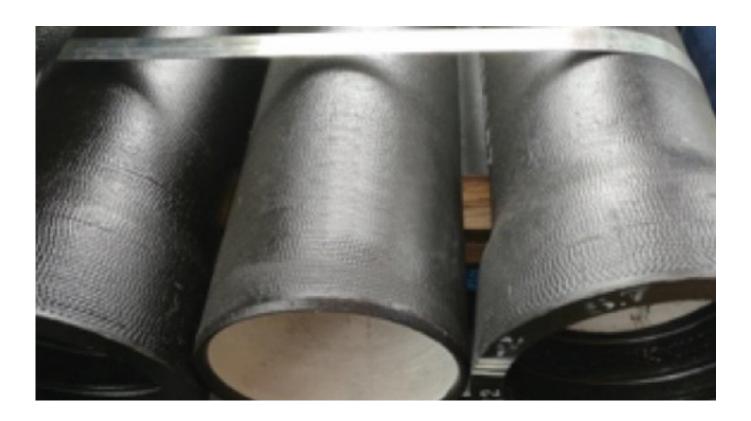
Pipe Size (in)	Ductile Iron (lb)	Cement Lining (lb)	Rubber Gasket (lb)
6	299	2.7	2.3
8	397	3.6	4.4
12	655	5.3	5.5
16	941	10.5	11.5
24	1,549	15.6	21.7
30	2,002	25.8	32.8
36	2,677	30.9	38.9

LCA Study

Product function

The function of the pipe is to transport (via gravity or pressure) a certain volume of liquid or sewage from a source location to a destination location over a period of 100 years.

Product system


The piping system includes the pipe and gasket. During installation, the gasket is seated into the bell-end of the pipe and the joint is assembled by pushing the plain end into the bell end which compresses the gasket and forms a watertight seal.

Functional unit

The declared unit used in this study is 100 feet (30.48 meters) of installed pipe over a 100-year lifetime, the reference service life.

Calculation rule for averaging data

Average environmental impacts were calculated based on the 2019 weighted average production (in feet) for each product.

System boundary

The study considers the life cycle activities from cradle-to-grave. All life cycle stages (production, installation, use and end-of-life, as displayed in Figure 1) are included.

The following processes are excluded from the study:

- Production, manufacture, and construction of manufacturing capital goods and infrastructure;
- Production and manufacture of production equipment, delivery vehicles, and laboratory equipment;

- Personnel-related activities (travel, furniture, office supplies);
- Energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

Pro	ductio	n Stag	e	Instal Sta				Use S	Stage			End-of-Life Stage			ge
Extraction and upstream production	Transport to factory	Manufacturing	Transport to site	Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/Demolition	Transport waste processing or disposal	Waste processing	Disposal of waste
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4

Figure 1. Life-cycle stages and modules included in study

LCA Study

Installation/laying stage

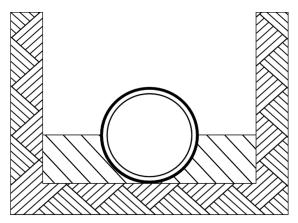
Transportation distance of pipes from production to installation site is based on the weighted average distance each pipe size was transported in 2019 by each plant.

Installation is done in accordance with the AWWA C600 standard. There is no standard depth of bury for water and wastewater pipelines because soil and environmental conditions are site specific. Typically, pressurized water and wastewater lines are buried at the minimum allowable depth while gravity sewers have to maintain a certain grade which can result in a deeper installation depth. For water mains and force mains a depth of bury of four feet was chosen while a depth of bury of 10 feet was chosen for gravity sewers. These are typical depths of bury used across the country but not meant to be representative of all installations. It is not common for pipes to break or be rejected so no waste pipe is included.

TABLE 1 Weighted average transportation distance

Size (in)	Application	Distance Truck (mi)	Distance Train (mi)
6	Pressurized Water	291	400
8	Pressurized Water	302	350
12	Pressurized Water	327	408
16	Pressurized Water	306	454
24	Pressurized Water	360	506
30	Pressurized Water	340	775
36	Pressurized Water	359	549
8	Gravity Sewer	302	350
12	Gravity Sewer	327	408
24	Pressurized Water	360	506

	TABLE 2 Installation scenario variables for each pipe													
Ductile Iron Pipe Size (in)	Application	Depth of Bury	Trench Type	Trench Volume (m3)	Local Mass Used (tn.sh)	Time to Install 100' (hr)'	Required Equipment ²	Fuel Burn per Hour (gal)	Avg. Fuel Burn per Hour (gal)	Total Fuel Consumption (gal)				
6	Water Main	4'	Type 1	33.4	73.5	2	Cat 308	0.8-1.5	1.15	2.3				
8	Water Main	4'	Type 1	37.0	81.7	2	Cat 308	0.8-1.5	1.15	2.3				
12	Water Main	4'	Type 1	44.8	98.7	2	Cat 314	0.9-1.8	1.35	2.7				
16	Water Main	4'	Type 2	53.2	117	2	Cat 320	1.3-2.5	1.9	3.8				
24	Water Main	4'	Type 2	72.3	159	2	Cat 330	1.4-2.9	2.15	4.3				
30	Water Main	4'	Type 2	88.1	194	2	Cat 330	1.4-2.9	2.15	4.3				
36	Water Main	4'	Type 2	105.7	233	2	Cat 345	3.8-7.7	5.75	11.5				
8	Gravity Sewer	10′	Type 1	83.9	185	6	Cat 345	7.7-11.4	9.55	57.3				
12	Gravity Sewer	10′	Type 1	97.4	215	6	Cat 345	7.7-11.4	9.55	57.3				
24	Pressure Sewer	4'	Type 2	72.3	159	2	Cat 330	1.4-2.9	2.15	4.3				


¹ Time estimates provided by: Garney Construction, 200 Crutchfield Avenue, Nashville, TN 37210

² Equipment requirements provided by: Garney Construction, 200 Crutchfield Avenue, Nashville, TN 37210

³ (Caterpillar, 2015)

Figure 2. Type 1 trench, flat-bottom⁴, loose backfill

Figure 3. Type 2 trench, flat-bottom, backfill lightly consolidated to centerline of pipe

Use stage

To calculate the amount of energy required of pumps the friction head loss through 100 feet of pipe was calculated using the Hazen-Williams equation⁵. Calculation details are displayed in Table 3.

TABLE 3 Use stage information											
Water	Water										
Pipe Size	6.00	8.00	12.00	16.00	24.00	30.00	36.00	24.00			
Internal Diameter (inches)	6.28	8.43	12.52	16.61	24.95	31.09	37.29	24.95			
C Factor	140	140	140	140	140	140	140	140			
Pump efficiency	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.50			
Velocity (fps)	1.87	1.72	1.69	1.70	1.64	1.65	1.70	2.00			
Flow (gpm)	180	300	650	1,150	2,500	3,900	5,800	3,047			
Friction Head loss (ft./100 ft.)	0.25	0.17	O.11	0.08	0.05	0.04	0.03	0.07			
Annual Pumping Energy (kWh/100 ft.)	85.70	87.65	115.81	148.75	187.76	229.27	292.36	109.84			

It is assumed that replacements or repairs of pipes are not required during the course of 100 years. The American Water Works Association estimates the life of Ductile iron pipe to range from 105-120 years depending on installation location (AWWA).

End of life stage

It is assumed that at end-of-life, pipes are left in ground (a common industry practice).

⁴ "Flat-bottom" is defined as undisturbed earth.

Environmental Impacts

Industry average cradle-to-grave impact results per 100 feet (30.48 meters) of installed pipe over a 100-year lifetime are outlined in Tables 4-13.

Imp	oact results f	or 6" press	TABLE 4 urized ceme	ent mortar li	ned water	pipe	
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	981.3	55.5	22.6	5,137.5	0	6,197.0
Acidification potential	kg SO ₂ -eq.	4.33	0.79	0.25	22.58	0	27.96
Eutrophication potential	kg N-eq.	2.53	0.048	0.020	1.73	0	4.33
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	53.9	22.1	7.8	256.5	0	340.3
Ozone depletion potential	kg CFC11-eq.	2.44 E-04	2.29 E-09	4.78 E-08	1.35 E-04	0	3.79 E-04
Total primary energy const	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	17,406.0	775.3	344.1	96,816.1	0	115,341.4
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	0
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	612.2	0	0.8	5,584.4	0	6,197.3
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	0
Abiotic depletion potential for fossil resources	MJ	16,190.5	775.3	339.1	68,185.8	0	85,490.7
Material resources consum	ption						
Secondary materials	kg	764.5	0	0	0	0	764.5
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	259.6	0	0	0	0	259.6
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m³	6.31	0	3.01 E-03	6.81	0	13.12
Waste disposed	P						
Non-hazardous waste disposed	kg	139.9	0	0	0	0	139.9
Hazardous waste disposed	kg	1.66	0	0	0	0	1.66
Radioactive waste *	kg	0.08	0	0	0.27	0	0.35
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	12.39	0	0	0	0	12.39
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

Imp	oact results f	for 8" press	TABLE 5 urized ceme	ent mortar li	ned water	pipe	
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	1,334.1	74.5	22.6	5,254.4	0	6,685.7
Acidification potential	kg SO ₂ -eq.	5.82	1.06	0.25	23.09	0	30.22
Eutrophication potential	kg N-eq.	3.42	0.064	0.020	1.77	0	5.27
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	72.8	29.1	7.8	262.3	0	372.0
Ozone depletion potential	kg CFC11-eq.	3.35 E-04	3.08 E-09	4.78 E-08	1.38 E-04	0	4.73 E-04
Total primary energy consu	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	23,647.3	1,044.8	344.1	99,019.0	0	124,055.2
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	0
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	819.1	0	0.8	5,711.4	0	6,531.3
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	0
Abiotic depletion potential for fossil resources	MJ	21,983.9	1,044.8	339.1	69,737.3	0	93,105.1
Material resources consum	ption						
Secondary materials	kg	1,031.5	0	0	0	0	1,031.5
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	401.6	0	0	0	0	401.6
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m³	8.67	0	3.01 E-03	6.96	0	15.64
Waste disposed						, i	
Non-hazardous waste disposed	kg	187.3	0	0	0	0	187.3
Hazardous waste disposed	kg	2.45	0	0	0	0	2.45
Radioactive waste *	kg	0.11	0	0	0.28	0	0.39
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	17.03	0	0	0	0	17.03
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

Imp	act results f	or 12" press	TABLE 6 urized cem	ent mortar l	ined water	pipe	
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	2,186.2	135.1	26.6	6,942.6	0	9,290.4
Acidification potential	kg SO ₂ -eq.	9.53	1.92	0.29	30.51	0	42.26
Eutrophication potential	kg N-eq.	5.52	0.116	0.024	2.33	0	8.00
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	118.4	53.2	9.2	346.6	0	527.4
Ozone depletion potential	kg CFC11-eq.	5.52 E-04	5.59 E-09	5.61 E-08	1.82 E-04	0	7.35 E-04
Total primary energy consu	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	38,550.4	1,892.7	403.9	130,831.6	0	171,678.6
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	0
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	1,314.7	0	0.9	7,546.4	0	8,862.0
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	o
Abiotic depletion potential for fossil resources	MJ	35,856.5	1,892.7	398.1	92,142.3	0	130,289.6
Material resources consum	ption						
Secondary materials	kg	1,704.0	0	0	0	0	1,704.0
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	639.3	0	0	0	0	639.3
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m ³	14.40	0	3.54 E-03	9.20	0	23.61
Waste disposed							
Non-hazardous waste disposed	kg	277.8	0	0	0	0	277.8
Hazardous waste disposed	kg	4.07	0	0	0	0	4.07
Radioactive waste *	kg	0.17	0	0	0.37	0	0.54
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	31.77	0	0	0	0	31.77
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

Imp	act results f	or 16" press	TABLE 7 surized cem	ent mortar l	ined water	pipe	
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	3,107.3	202.5	37.4	8,917.3	0	12,264.4
Acidification potential	kg SO ₂ -eq.	13.56	2.91	0.41	39.19	0	56.07
Eutrophication potential	kg N-eq.	8.00	0.176	0.034	3.00	0	11.20
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	168.2	81.2	13.0	445.1	0	707.5
Ozone depletion potential	kg CFC11-eq.	7.94 E-04	8.35 E-09	7.89 E-08	2.34 E-04	0	1.03 E-03
Total primary energy const	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	55,115.9	2,827.6	568.4	168,044.2	0	226,556.2
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	0
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	1,995.7	0	1.3	9,692.8	0	11,689.8
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	0
Abiotic depletion potential for fossil resources	MJ	51,202.6	2,827.6	560.2	118,350.5	0	172,940.9
Material resources consum	ption						
Secondary materials	kg	2,407.5	0	0	0	0	2,407.5
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	900.0	0	0	0	0	900.0
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m ³	19.81	0	4.98 E-03	11.82	0	31.63
Waste disposed	,						
Non-hazardous waste disposed	kg	485.8	0	0	0	0	485.8
Hazardous waste disposed	kg	5.79	0	0	0	0	5.79
Radioactive waste *	kg	0.22	0	0	0.47	0	0.69
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	32.88	0	0	0	0	32.88
Materials for energy recovery	kg	0	0	0	0	0	ο
Exported energy	MJ	0	0	0	0	0	0

Imp	act results f	or 24″ press	TABLE 8 surized cem	ent mortar l	ined water	pipe	
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	5,152.8	384.2	42.3	11,255.8	0	16,835.1
Acidification potential	kg SO ₂ -eq.	22.55	5.50	0.46	49.47	0	77.99
Eutrophication potential	kg N-eq.	13.07	0.332	0.038	3.78	0	17.22
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	280.3	153.0	14.7	561.9	0	1,009.8
Ozone depletion potential	kg CFC11-eq.	1.28 E-03	1.59 E-08	8.93 E-08	2.96 E-04	0	1.58 E-03
Total primary energy consu	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	91,310.1	5,370.5	643.2	212,114.2	0	309,438.0
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	ο
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	3,189.7	0	1.5	12,234.8	0	15,425.9
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	0
Abiotic depletion potential for fossil resources	MJ	84,960.7	5,370.5	633.9	149,388.2	0	240,353.3
Material resources consum	ption						
Secondary materials	kg	4,057.4	0	0	0	0	4,057.4
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	1,054.9	0	0	0	0	1,054.9
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m ³	31.04	0	5.63 E-03	14.92	0	45.97
Waste disposed		·					
Non-hazardous waste disposed	kg	917.5	0	0	0	0	917.5
Hazardous waste disposed	kg	10.66	0	0	0	0	10.66
Radioactive waste *	kg	0.37	0	0	0.59	0	0.97
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	73.19	0	0	0	0	73.19
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

Imp	act results f	or 30″ press	TABLE 9 surized cem	ent mortar I	lined water	pipe	
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	6,172.4	569.6	42.3	13,744.3	0	20,528.5
Acidification potential	kg SO ₂ -eq.	27.78	8.42	0.46	60.41	0	97.08
Eutrophication potential	kg N-eq.	15.94	0.509	0.038	4.62	0	21.10
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	340.5	240.8	14.7	686.1	0	1,282.0
Ozone depletion potential	kg CFC11-eq.	1.52 E-03	2.33 E-08	8.93 E-08	3.61 E-04	0	1.88 E-03
Total primary energy consu	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	111,503.7	7,879.4	643.2	259,008.4	0	379,034.7
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	ο
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	4,058.1	0	1.5	14,939.6	0	18,999.2
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	0
Abiotic depletion potential for fossil resources	MJ	103,704.5	7,879.4	633.9	182,414.9	0	294,632.7
Material resources consum	ption		1				
Secondary materials	kg	4,689.0	0	0	0	0	4,689.0
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	269.1	0	0	0	0	269.1
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m ³	37.30	0	5.63 E-03	18.21	0	55.52
Waste disposed							
Non-hazardous waste disposed	kg	1,013.4	0	0	0	0	1,013.4
Hazardous waste disposed	kg	1.66	0	0	0	0	1.66
Radioactive waste *	kg	0.29	0	0	0.72	0	1.02
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	75.04	0	0	0	0	75.04
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

TABLE 10 Impact results for 36" pressurized cement mortar lined water pipe							
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	8,911.6	699.5	113.1	17,526.4	0	27,250.6
Acidification potential	kg SO ₂ -eq.	40.29	10.07	1.23	77.03	0	128.63
Eutrophication potential	kg N-eq.	23.01	0.609	0.102	5.89	0	29.61
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	492.3	281.5	39.2	874.9	0	1,687.8
Ozone depletion potential	kg CFC11-eq.	2.30 E-03	2.88 E-08	2.39 E-07	4.60 E-04	0	2.76 E-03
Total primary energy consu	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	157,962.9	9,761.1	1,720.3	330,281.7	0	499,726.1
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	0
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	5,729.0	0	3.9	19,050.7	0	24,783.6
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	0
Abiotic depletion potential for fossil resources	MJ	146,709.0	9,761.1	1,695.4	232,611.4	0	390,777.0
Material resources consum	ption						
Secondary materials	kg	7,061.9	0	0	0	0	7,061.9
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	1,746.8	0	0	0	0	1,746.8
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m³	54.05	0	1.51 E-02	23.22	0	77.29
Waste disposed		1	1				
Non-hazardous waste disposed	kg	1,356.3	0	0	0	0	1,356.3
Hazardous waste disposed	kg	12.57	0	0	0	0	12.57
Radioactive waste *	kg	0.54	0	0	0.92	0	1.46
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	69.10	0	0	0	0	69.10
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

TABLE 11 Impact results for 8" gravity cement mortar lined sewer pipe							
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	1,334.1	74.5	563.7	0.0	0	1,972.3
Acidification potential	kg SO ₂ -eq.	5.82	1.06	6.15	0.00	0	13.03
Eutrophication potential	kg N-eq.	3.42	0.064	0.508	0.00	0	3.99
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	72.8	29.1	195.3	0.0	0	297.2
Ozone depletion potential	kg CFC11-eq.	3.35 E-04	3.08 E-09	1.19 E-06	0.00 E+00	0	3.36 E-04
Total primary energy const	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	23,647.3	1,044.8	8,571.5	0.0	0	33,263.6
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	0
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	819.1	0	19.4	0.0	0	838.4
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	0
Abiotic depletion potential for fossil resources	MJ	21,983.9	1,044.8	8,447.6	0.0	0	31,476.3
Material resources consum	ption						
Secondary materials	kg	1,031.5	0	0	0	0	1,031.5
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	401.6	0	0	0	0	401.6
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m ³	8.67	0	7.51 E-02	0.00	0	8.75
Waste disposed							
Non-hazardous waste disposed	kg	187.3	0	0	0	0	187.3
Hazardous waste disposed	kg	2.45	0	0	0	0	2.45
Radioactive waste *	kg	0.11	0	0	0.00	0	0.11
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	17.03	0	0	0	0	17.03
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

TABLE 12 Impact results for 12" gravity cement mortar lined sewer pipe							
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	2,186.2	135.1	563.7	0.0	0	2,885.0
Acidification potential	kg SO ₂ -eq.	9.53	1.92	6.15	0.00	0	17.60
Eutrophication potential	kg N-eq.	5.52	0.116	0.508	0.00	0	6.15
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	118.4	53.2	195.3	0.0	0	366.9
Ozone depletion potential	kg CFC11-eq.	5.52 E-04	5.59 E-09	1.19 E-06	0.00 E+00	0	5.53 E-04
Total primary energy consu	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	38,550.4	1,892.7	8,571.5	0.0	0	49,014.6
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	ο
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	1,314.7	0	19.4	0.0	0	1,334.0
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	ο
Abiotic depletion potential for fossil resources	MJ	35,856.5	1,892.7	8,447.6	0.0	0	46,196.8
Material resources consum	ption						
Secondary materials	kg	1,704.0	0	0	0	0	1,704.0
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	639.3	0	0	0	0	639.3
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m ³	14.40	0	7.51 E-02	0.00	0	14.48
Waste disposed							
Non-hazardous waste disposed	kg	277.8	0	0	0	0	277.8
Hazardous waste disposed	kg	4.07	0	0	0	0	4.07
Radioactive waste *	kg	0.17	0	0	0.00	0	0.18
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	31.77	0	0	0	0	31.77
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

TABLE 13 Impact results for 24" pressurized cement mortar lined sewer pipe							
Results Categories		Product Stage	Transport	Installation	Use	End-of-Life	Total
Impact Assessment	Units	A1-A3	A4	A5	B1-B6	C1-C4	A-C
Global warming potential	kg CO ₂ -eq.	5,152.8	384.2	42.3	6,582.3	0	12,161.6
Acidification potential	kg SO ₂ -eq.	22.55	5.50	0.46	28.93	0	57.45
Eutrophication potential	kg N-eq.	13.07	0.332	0.038	2.21	0	15.65
Photochemical smog formation potential (Smog creation potential)	kg O ₃ -eq.	280.3	153.0	14.7	328.6	0	776.5
Ozone depletion potential	kg CFC11-eq.	1.28 E-03	1.59 E-08	8.93 E-08	1.73 E-04	0	1.45 E-03
Total primary energy const	umption						
Non-renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	91,310.1	5,370.5	643.2	124,042.1	0	221,365.9
Non-renewable primary resources w/ energy content used as material	MJ (NCV)	0	0	0	0	0	0
Renewable primary resources used as an energy carrier (fuel)	MJ (NCV)	3,189.7	0	1.5	7,154.8	0	10,345.9
Renewable primary resources with energy content used as material	MJ (NCV)	0	0	0	0	0	0
Abiotic depletion potential for fossil resources	MJ	84,960.7	5,370.5	633.9	87,360.6	0	178,325.7
Material resources consum	ption						
Secondary materials	kg	4,057.4	0	0	0	0	4,057.4
Renewable secondary fuels	MJ	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	1,054.9	0	0	0	0	1,054.9
Recovered energy	MJ	0	0	0	0	0	0
Net fresh water (inputs minus outputs)	m ³	31.04	0	5.63 E-03	8.72	0	39.77
Waste disposed	·	·					
Non-hazardous waste disposed	kg	917.5	0	0	0	0	917.5
Hazardous waste disposed	kg	10.66	0	0	0	0	10.66
Radioactive waste *	kg	0.37	0	0	0.35	0	0.72
Other outputs							
Components for reuse	kg	0	0	0	0	0	0
Secondary material for recycling	kg	73.19	0	0	0	0	73.19
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy	MJ	0	0	0	0	0	0

TABLE 14
GWP of A3 Electricity for Each Pipe Size

Global Warming Potential					
Pipe Size	Quantity (kg CO2-eq.)				
6	98.2				
8	138.6				
12	232.1				
16	375.8				
24	639.6				
30	882.3				
36	1173.4				

Additional Environmental Information

All materials making up the piping system (ductile iron, cement, coatings, and gaskets) are resistant to chemicals generally found in water and sewer systems, preventing any leaching or releases to ground and surface water during the use of the piping system. Each material complies with NSF/ ANSI 61 standard (NSF International). There are no known hazardous or dangerous substances used in the production of these pipe products, nor are there known toxicity effects that occur in the use of the products.

Biogenic carbon. While there are minor amounts of biogenic material associated with the packaging of the pipes, the emissions associated with its disposition into a landfill after the construction phase are negligible and therefore have not been included in these results.

Emissions due to land use change. Land use change is not significant for any of the systems in this study, so its metric has not been included in this EPD.

Carbonation takes place during mortar production; this process has been accounted for in upstream process modeling.

The DIPRA Environmental Policy Compliance, Protection, Improvement

Our Commitment

The member companies of the Ductile Iron Pipe Research Association will uphold the following principles in all of their business activities through management commitment, employee involvement and allocation of adequate personnel and other resources:

- **Compliance:** We will manage our business activities to meet all governmental laws and regulations as well as internally established environmental, health, and safety requirements. Our goal is 100% compliance, 100% of the time.
- **Protection:** We will conduct our activities in a responsible manner to protect our employees, the public, and the environment by focusing on injury and illness prevention, pollution prevention and minimizing impacts and risks to the environment from our operations.
- **Improvement:** We will continually improve our environmental, health, and safety performance with a primary focus on setting and achieving goals and objectives.

References

AWWA. (n.d.). *American Water Works Association.* Retrieved from https://www.awwa.org/store/productdetail.aspx?productid=25724

AWWA. (n.d.). American Water Works Association. Retrieved from http://www.awwa.org/Portals/0/files/legreg/documents/BuriedNoLonger.pdf

Caterpillar. (2015). *Caterpillar Performance Handbook*. Retrieved from http://www.warrencat.com/images/pdf/Performance_Handbook_45.pdf

DIPRA. (2016). *Hydraulic Analysis of Ductile Iron Pipe.* Retrieved from https://www.dipra.org/ductile-iron-pipe-resources/technical-publications/ hydraulics?download=18:hydraulic-analysis-of-ductile-iron-pipe

EN 15804:2012+A1:2013 (E), Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

ISO 14044:2006. Environmental management – Life cycle assessment – Requirements and guidelines; ISO 14040:2006, the International Standard of the International Standardization Organization, Environmental management. Life cycle assessment. Principles and framework.

ISO 14025:2006. Environmental Labels and Declarations – Types III Environmental Declarations – Principles and Procedures.

ISO 21930:2007 Sustainability in Building Construction—Environmental Declaration of Building Products.

NSF International. (n.d.). NSF/SNSI 61. Retrieved from www.nsf.org/services/by-industry/water-wastewater/municipal.../nsf-ansi-standard-61

The Norwegian EPD Foundation. (2017). NPCR Part A: Construction Products and Services.

The Norwegian EPD Foundation. (2018). NPCR 019 v.2.0: Piping systems for use for sewage and storm water (under gravity).

Abbreviations

CFC11-eq	trichlorofluoromethane equivalents	lb	pounds
CO ₂ -eq	carbon dioxide equivalents	m ³	cubic meters
ft	feet	mi	miles
fps	feet per second	MJ	megajoules
gal	gallons	MJ (NCV)	megajoules in net calorific value
gpm	gallons per minute	N-eq	nitrogen equivalents
hr	hour	O ₃ -eq	ozone equivalents
in	inches	SO ₂ -eq.	sulfur dioxide equivalents
kg	kilograms	tn.sh	short tons
kWh	kilowatt hours		

For more information contact DIPRA or any of its member companies.

Ductile Iron Pipe Research Association

An association of quality producers dedicated to the highest pipe standards through a program of continuing research and service to water and wastewater professionals.

P.O. Box 190306 Birmingham, AL 35219 205.402.8700 Tel www.dipra.org

Member Companies

AMERICAN Ductile Iron Pipe P.O. Box 2727 Birmingham, Alabama 35202-2727 www.american-usa.com

Canada Pipe Company, Ltd. 55 Frid St. Unit #1 Hamilton, Ontario L8P 4M3 Canada www.canadapipe.com

McWane Ductile P.O. Box 6001 Coshocton, Ohio 43812-6001 www.mcwaneductile.com

U.S. Pipe Two Chase Corporate Drive Suite 200 Birmingham, Alabama 35244 www.uspipe.com

Social Media

Get in the flow with Ductile iron pipe by connecting with us on **Facebook**, **Twitter**, and **LinkedIn**.

Visit our website, **www.dipra.org** and click on the YouTube icon for informational videos on Ductile iron pipe's ease of use, economic benefits, strength and durability, advantages over PVC, and more.

Copyright © 2022 by Ductile Iron Pipe Research Association

Strength and Durability for LiFe*