
 REPRESENTATIVE  PEDESTRIAN  COLLISION  INJURY  RISK  DISTRIBUTIONS  FOR  A 
 DENSE-URBAN US ODD USING NATURALISTIC DASH CAMERA DATA 

 Eamon T. Campolettano 
 John M. Scanlon 
 Trent Victor 
 Waymo, LLC 
 United States 

 Paper Number 23-0075 

 ABSTRACT 

 Automated  Driving  Systems  (ADS;  SAE  levels  3  through  5  technologies)  are  currently  being  deployed  in  several 
 dense-urban  operational  design  domains  (ODDs)  within  the  United  States  (US).  Within  these  dense-urban  areas, 
 vulnerable  road  users  (VRU)  generally  comprise  the  vast  majority  of  injury  and  fatal  collisions.  One  challenge  with 
 the  study  of  VRU  collisions  is  a  lack  of  crash  data  sources  with  pre-impact  kinematics.  Understanding  the 
 pre-impact  kinematics  is  a  key  factor  in  assessing  the  potential  injury  risk  for  pedestrian-vehicle  impacts.  The 
 purpose  of  this  study  was  to  determine  injury  distributions  for  pedestrians  within  a  dense-urban  ODD  (Los  Angeles, 
 California)  using  data  from  vehicles  instrumented  with  forward-facing  cameras  and  vehicle  sensors.  This  study 
 leveraged  data  from  a  fleet  of  vehicles  equipped  with  aftermarket,  in-cabin  dash  cameras  operating  in  Los  Angeles, 
 California.  From  approximately  66  million  miles  of  driving  data,  42  collisions  were  identified.  Each  vehicle  was 
 equipped  with  a  forward-facing  camera,  an  accelerometer  sampling  at  20  Hz,  and  GPS.  A  global  optimization 
 routine  was  used  on  the  accelerometer,  GPS,  and  video  data  to  correct  for  sensor  orientation  and  asynchronicity  in 
 data  sampling.  For  each  event,  two  key  video  frames  were  identified:  the  frame  associated  with  impact  and  a  frame 
 associated  with  key  vehicle  kinematics  (e.g.,  vehicle  start/stop,  hard  braking  [>  0.2  g]).  These  key  frames  were  then 
 mapped to the processed vehicle speed kinematics to determine vehicle speed at impact. 

 For  the  events  included  in  this  dataset,  impact  speeds  ranged  from  approximately  1.6  kph  (1  mph)  to  65  kph  (40 
 mph).  In  most  events,  the  front  of  the  vehicle  struck  the  pedestrian.  Existing  pedestrian  injury  risk  curves  were  then 
 used  to  calculate  the  level  of  risk  associated  with  the  reconstructed  impacts,  and  the  probability  of  AIS3+  injury  risk 
 was  observed  to  vary  from  minimal  risk  (<2%)  to  approximately  55%.  These  data  highlight  the  wide  range  of  impact 
 speeds and injury risk that may occur during vehicle-pedestrian collisions. 

 Assessing  injury  severity  for  collisions  involving  VRUs  is  highly  impactful  for  the  continued  development  of  traffic 
 safety,  including  ADAS,  ADS,  and  roadway  design.  Using  naturalistic  VRU  collision  data  collected  from  dashboard 
 cameras,  a  methodology  for  assessing  event  severity  by  pairing  accelerometer  and  GPS  data  with  video  to  compute 
 impact  speed  was  presented.  This  is  the  first  known  analysis  of  pedestrian  severity  distributions  using  a  naturalistic 
 US  database.  The  methods  presented  in  this  study  may  be  applied  to  larger  datasets  or  other  sensing  systems  to 
 enable further ODD-specific modeling. 

 INTRODUCTION 

 Pedestrians  represent  a  vulnerable  group  of  road  users  who  do  not  have  the  same  crash  protections  as  vehicle 
 occupants  during  a  collision  event.  According  to  the  most  recent  data  available  from  NHTSA,  over  6,000 
 pedestrians  were  fatally  injured  in  2019,  compared  to  over  75,000  who  sustained  injuries  in  traffic-related  crashes 
 [1].  Furthermore,  pedestrians  represent  17%  of  all  police-reported  traffic  collision-related  fatalities,  but  only  3%  of 
 all  such  injuries  [1].  In  general,  fatal  pedestrian  collisions  were  most  likely  to  occur  in  urban  areas  (82%),  at 
 non-intersections (73%), and 90% of all fatal collisions occurred due to contact with the front of the vehicle [1]. 

 The  majority  of  pedestrian  impact  events  in  human  collision  data  occur  with  the  front  structures  of  some  forward 
 moving  vehicle  [1-4].  Accordingly,  injury  risk  models  are  often  built  using  this  frontal  striking  data.  During  these 
 events,  some  pedestrian  actor  is  within  the  trajectory  of  some  vehicle  actor  when  the  engagement  occurs.  Injuries 
 generally  occur  following  some  engagement  of  the  front  bumper  structure.  This  is  followed  by  potential  movement 
 of  the  pedestrian  onto  the  hood,  windshield,  A-pillar,  and  other  structures.  Lastly,  there  can  be  potential  ground 
 contact.  Injuries  can  occur  during  any  phase  of  this  engagement.  Because  of  these  injury-causing  mechanisms,  the 
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 previously  developed  models  overwhelmingly  utilize  vehicle  impact  speed  as  a  key  independent  variable  dictating 
 injury risk [5-10]. 

 Analysis  from  an  in-depth,  German  collision  database  called  German  In-Depth  Accident  Study  (GIDAS)  has  shown 
 that  approximately  88%  of  collisions  involving  pedestrians  resulted  in  a  maximum  injury  severity  of  MAIS2  or 
 lower  [11].  Regardless  of  severity,  the  lower  extremity  is  the  most  often-injured  body  region  (injured  in  67%  of 
 cases),  followed  by  the  head  (~50%  of  the  time),  and  upper  extremity  (38%  of  the  time).  The  lower  extremity  is 
 most  often  injured  by  contact  with  the  front  end  of  the  striking  vehicle,  while  the  most  common  injury  source  for  the 
 head is engagement with the windshield, followed by the ground [12-14]. 

 From  1994  to  1998,  the  National  Traffic  Highway  Safety  Administration  (NHTSA)  oversaw  the  Pedestrian  Crash 
 Data  Study  (PCDS).  PCDS  compiled  data  from  crashes  involving  pedestrians  in  6  geographic  areas  and  resulted  in 
 in-depth  analysis  on  549  total  collision  events  [15].  To  date,  PCDS  represents  the  most  comprehensive  large-scale 
 pedestrian  crash  database  in  the  United  States  with  objective  injury  outcome  data;  however,  the  data  is  not  recent, 
 not  of  a  representative  sample,  and  only  considers  frontal  impacts  and  not  all  pedestrian-vehicle  events.  When 
 relating  injury  risk  to  vehicle  impact  speed,  Tefft  noted  that  the  age  of  PCDS  may  affect  the  relationship  due  to 
 “changes in medical care, vehicle design, or the composition of the vehicle fleet [10].” 

 Previously,  researchers  have  utilized  taxicabs  instrumented  with  forward-facing  cameras  and  vehicle  sensors  in 
 South  Korea  to  investigate  injury  severity  for  collisions  involving  pedestrians.  Notably,  injury  severity  was  only 
 presented  on  an  ordinal  scale  based  on  data  from  police  reports  rather  than  utilizing  an  existing  probabilistic  injury 
 risk model. As in previous research, crash speed was highly related to injury severity [16]. 

 ADS  fleets  are  currently  being  deployed  in  several  dense-urban  US  operational  design  domains  (ODDs).  For 
 example,  Waymo  has  commercial  ride-hailing  operations  in  downtown  Phoenix  and  the  Phoenix  East  Valley  [17], 
 and  has  been  testing  without  an  autonomous  specialist  behind  the  wheel  in  San  Francisco  since  early  2022  [18]. 
 Within  these  dense-urban  areas,  vulnerable  road  users  (VRU),  such  as  pedestrians,  generally  comprise  the  vast 
 majority  of  injury  and  fatal  collisions  [1,  3-4].  One  challenge  with  the  study  of  VRU  collisions  is  a  lack  of  crash  data 
 sources  with  objective  pre-impact  kinematics.  Understanding  the  pre-impact  kinematics  is  a  key  factor  in  assessing 
 the  potential  injury  risk  for  pedestrian-vehicle  impacts.  The  purpose  of  the  present  study  was  to  determine  injury  risk 
 distributions  for  pedestrians  within  a  dense-urban  ODD  (Los  Angeles,  California)  using  data  from  vehicles 
 instrumented  with  forward-facing  cameras  and  vehicle  sensors  in  conjunction  with  established  pedestrian  injury  risk 
 models. 

 METHODOLOGY 

 Data Source 
 This  study  leveraged  data  from  a  fleet  of  vehicles  equipped  with  aftermarket  in-cabin  dash  cameras  operating  in  Los 
 Angeles,  California.  For  this  study,  only  collision  events  and  driving  miles  on  S1400  roads  were  included.  S1400 
 roads  are  defined  as  “local  neighborhood  road,  rural  road,  city  street  [19].”  From  approximately  66  million  miles  of 
 driving data, 42 collisions involving pedestrians were identified and considered in this study. 

 Each vehicle was equipped with a forward-facing camera, an accelerometer sampling at 20 Hz, and GPS. 

 Video Review 
 Video  of  each  collision  was  reviewed  and  agreed  upon  by  two  of  the  authors  to  determine  several,  mostly  qualitative 
 factors  associated  with  the  collision  event.  Specifically,  the  nature  of  the  vehicle  engagement  with  the  pedestrian 
 (frontal  strike,  sideswipe,  side  collision,  rear  strike),  the  location  on  the  vehicle  of  the  initial  contact  (e.g.,  front  left, 
 right  front,  rear),  the  relative  direction  of  engagement  between  the  pedestrian  and  vehicle  (i.e.,  perpendicular  vs. 
 parallel),  whether  the  pedestrian  engaged  with  side  structures  of  the  vehicle,  how  many  pedestrians  were  involved  in 
 the  collision  event,  and  whether  the  pedestrian  was  knocked  down  were  all  evaluated.  These  data  were  utilized  as 
 part of the ensuing analysis leveraging the on-board sensor data. 

 Vehicle Impact Speed Determination 
 To  make  an  injury  risk  assessment,  vehicle  impact  speed  measurements  were  required  (a  key  input  to  the  injury  risk 
 function  evaluation).  A  vehicle  speed  measurement  was  provided  via  the  GPS  sensor.  However,  the  GPS  speed  had 
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 inconsistent  sampling  and  limited  resolution.  Accordingly,  the  GPS  speed  was  coupled  with  accelerometer  data. 
 Accelerometer  data  was  available  for  all  cases  with  either  a  low  pass  filter  at  0.5  Hz  or  5  Hz  applied  to  the  data.  The 
 traces  filtered  at  5  Hz  were  used  for  this  analysis  considering  collision  events  because  the  jerk  associated  with 
 vehicle  hard  braking  was  captured  with  this  signal  and  not  smoothed  as  part  of  the  filtering  process  like  it  was  for 
 the  0.5  Hz  data.  A  series  of  steps  were  required  to  (a)  correct  for  inconsistent  sensor  orientation  within  the  vehicle 
 and  (b)  align  the  speed  and  accelerometer  data  due  to  asynchronous  data  collection.  These  steps  to  generate  a  single, 
 corrected vehicle speed are covered in the subsequent subsections. 

 Sensor  Orientation  Correction  The  installed  dash  cams  used  in  this  study  were  found  to  have  considerable 
 variability  in  their  orientation  within  the  vehicle.  Specifically,  although  the  dash  camera  unit  was  oriented  largely  in 
 the  forward  direction,  there  was  some  notable  pitch  as  evidenced  by  non-zero  acceleration  z-direction  (upwards  and 
 downwards;  after  correcting  for  acceleration  due  to  gravity)  while  the  equipped  vehicle  was  stopped.  To  correct  for 
 this  pitch,  a  correction  routine  was  applied.  This  routine  assumed  that  the  true  signal  for  longitudinal  vehicle 
 acceleration  (  )  was  measured  in  part  by  the  longitudinal  and  vertical  accelerometer  data  as  shown  in  𝑎𝑐𝑐 

 𝑥 ,    𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 
 Equation  1,  where  θ  corresponds  to  the  angular  pitch  offset  of  the  sensor  with  respect  to  the  z-direction  being  up  and 
 down. 

 Equation (1)  𝑎𝑐𝑐 
 𝑥 ,    𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 

=  𝑎𝑐𝑐 
 𝑥 
 𝑐𝑜𝑠 (θ) +  𝑎𝑐𝑐 

 𝑧 
 𝑠𝑖𝑛 (θ)

 Further,  any  periods  of  time  during  which  the  vehicle  was  not  accelerating  (i.e.,  constant  travel  speed  or  a  stopped 
 vehicle)  the  x-component  as  measured  by  the  accelerometer  should  be  approximately  equal  to  0  as  well.  By 
 integrating  over  these  time  periods  (where  both  the  change  in  velocity  in  the  x  and  z  directions  should  be  zero; 
 equation 2), an estimate of the sensor pitch (  )  can be determined (Equation 3). θ

 Equation  (2)  0 = ∫  𝑎𝑐𝑐 
 𝑥 
 𝑐𝑜𝑠 (θ) 𝑑𝑡 + ∫  𝑎𝑐𝑐 

 𝑧 
 𝑠𝑖𝑛 (θ) 𝑑𝑡 

 Equation (3)  𝑡𝑎𝑛 (θ) =−
 𝑑  𝑣 

 𝑥 

 𝑑  𝑣 
 𝑧 

 With  the  sensor  pitch  defined,  the  longitudinal  vehicle  acceleration  could  be  calculated  using  the  x  and  z 
 accelerometer signals. 

 Speed  and  Acceleration  Optimization  Given  the  lower  sampling  rate  for  the  speed  data  from  the  GPS,  the 
 accelerometer  data  were  leveraged,  through  integration,  to  generate  a  higher  sampling  rate  speed  vector.  The 
 accelerometer  and  GPS  data  were  collected  asynchronously  from  one  another,  which  prevented  straightforward 
 integration.  A  global  optimization  routine  was  used  to  perform  a  temporal  correction  on  these  data  to  align  the  GPS 
 speed  and  accelerometer  data  for  each  case.  An  iterative  routine  was  carried  out  that  applied  a  temporal  shift  to  the 
 accelerometer  data  prior  to  integrating  to  generate  velocity  values.  These  velocity  values  were  then  compared  to 
 those  provided  by  the  GPS  data,  and  the  difference  between  the  integrated  accelerometer  speed  and  the  GPS  speed 
 represented  integration  drift,  or  the  error  in  the  velocity  signal.  The  time  shift  that  minimized  the  velocity  error  was 
 selected as the optimal outcome and was saved for continued data analysis. 

 The  accelerometer  data  were  used  to  calculate  what  the  expected  velocity  would  be  based  on  the  mean  acceleration 
 between  two  time  points  and  the  preceding  known  velocity.  At  the  unique  velocities  extracted  from  the  GPS  data, 
 the  error  between  the  measured  and  expected  velocities  was  calculated.  Lastly,  as  shown  in  Equation  4,  the  corrected 
 vehicle  speed  (  )  was  calculated  at  successive  time  points  using  the  expected  speed  for  that  time  point  (  𝑣 

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 ,    𝑖 
 )  in  conjunction  with  a  time-scaled  version  of  the  calculated  velocity  error  (  ).  To  account  for  noise  𝑣 

 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ,    𝑖 
 𝐸𝑟𝑟𝑜𝑟 

 𝑗 
 associated with small velocity values, all velocity values below 0.5 mph were set to 0 mph. 

 Equation (4)  𝑣 
 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 ,    𝑖 

=  𝑣 
 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ,    𝑖 

+  𝐸𝑟𝑟𝑜𝑟 
 𝑗 

*
 𝑡 

 𝑖 
− 𝑡 

 𝑗 − 1 

 𝑡 
 𝑗 
− 𝑡 

 𝑗 − 1 
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 where  i  is  as  defined  above  and  represents  indexing  over  the  entire  length  of  the  velocity  trace  and  j  represents 
 indexing  over  the  vector  of  unique  velocity  values.  Thus,  at  all  times  when  ,  no  time-scaling  was  necessary  𝑡 

 𝑖 
=  𝑡 

 𝑗 
 and  the  corrected  velocity  reduces  to  the  sum  of  the  expected  velocity  and  the  error  term.  This  method  also  ensures 
 that  the  corrected  speed  was  equal  to  the  GPS  speed  at  each  of  the  unique  velocity  value  timepoints  previously 
 identified.  This  optimization  process  was  repeated  for  each  time  shift  evaluated  (increments  of  0.05  s),  and  the 
 temporal  shift  which  resulted  in  the  minimum  mean  absolute  velocity  error  was  selected  as  the  optimized  version  to 
 carry forward in analysis. An example of the results of the optimization process is shown in Figure 1. 

 Figure  1.  Exemplar  sensor  optimization  trace.  Gray  line  represents  original  longitudinal  vehicle  acceleration, 
 dark  blue  line  represents  time-shifted  longitudinal  vehicle  acceleration,  black  line  represents  GPS  speed,  and 
 green line represents the corrected vehicle velocity trace. 

 Impact  Speed  Determination  The  final  step  in  determining  vehicle  impact  speed  was  to  align  the  video  with  the 
 imputed  vehicle  speed.  Key,  easily  identifiable  kinematic  time  points  from  the  video  were  associated  to  kinematic 
 signatures  from  the  vehicle  speed  time  series.  Depending  on  the  specific  collision,  different  alignment  routines  were 
 applied.  In  all  collisions,  two  video  frames  were  identified:  the  frame  associated  with  vehicle  impact  and  a  frame 
 associated  with  key  vehicle  kinematics  (e.g.,  vehicle  start/stop,  hard  braking  [>  0.2  g];  see  Table  1).  These  key 
 frames  were  then  mapped  to  the  processed  vehicle  speed  kinematics  outlined  above  to  determine  vehicle  speed  at 
 impact.  Given  the  video  frame  rate  (4  Hz),  the  exact  time  of  impact  was  generally  not  captured.  Accordingly,  the 
 nearest  frame  preceding  collision  was  used.  The  speed  at  the  time  point  closest  to  this  time  was  taken  to  be  the 
 vehicle  impact  speed.  All  collision  videos  were  sampled  at  4  frames  per  second  and  were  20  or  30  seconds  in  length. 
 Individual frames were extracted from downloaded collision videos using ffmpeg (ffmpeg.org). 
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 Table 1. 
 Vehicle kinematics used for key frame for determination of vehicle speed at impact and description of how 

 specific frame was defined 

 Vehicle Kinematics  Description 

 Vehicle stop  Vehicle stop was determined based on video-observed braking to a stop. With the 
 available vehicle speed data collected by the accelerometers, the time point at which 
 the vehicle’s speed first achieved a value of 0 mph was found. The nth stop was 
 used, with the time associated with the beginning of each stop found using the 
 accelerometer data. 

 Minimum/maximum speed  When a kinematic visual cue was not available, the vehicle’s minimum or 
 maximum speed was used as a reference point. This method required an iterative 
 process involving simultaneous review of the accelerometer data and collision 
 video. The time point in the accelerometer data associated with either the highest or 
 lowest vehicle speed was found. 

 Start from first stop  The vehicle was at rest prior to accelerating and then involved in a collision. The 
 frame associated with vehicle motion following this stop was used in conjunction 
 with the impact frame. The accelerometer data was first used to find the time at 
 which the vehicle first comes to rest. Then, the first time point following that at 
 which the vehicle was moving is determined to be the time associated with the start 
 from first stop. 

 Hard braking (> 0.2 g)  There was a defined spike in the vehicle’s accelerometer pulse associated with 
 deceleration that occurred either prior to or after the collision. The time point in the 
 accelerometer data associated with vehicle braking exceeding 0.2 g was found. 

 Vehicle in reverse  Visual confirmation of impact was not possible given that the available video 
 footage was for the forward-facing camera only. For this situation, the frame at 
 which the vehicle began to reverse and the frame in which the vehicle came to rest 
 were identified. In these instances, the maximum speed observed in the 
 accelerometer data during this time window (i.e., the time of reversal) was taken to 
 be the estimate for vehicle impact speed. 

 Last frame  The collision occurred near the end of the video and no specific vehicle kinematics 
 could be ascertained (e.g., vehicle did not come to rest before end of video). The 
 number of video frames between collision and the end of the video were used to 
 determine the time of impact, and thus the vehicle’s speed at impact. 

 While  most  collision  events  were  frontal  impacts,  some  involved  engagement  with  side  vehicle  structures  instead  of 
 the  front  bumper  structure.  To  account  for  decreased  engagement  between  the  pedestrian  and  vehicle  during  these 
 side  impacts,  a  correction  factor  -  representing  a  decrease  in  the  impulse  experienced  by  the  pedestrian  -  was  applied 
 to  the  determined  impact  speed  for  these  collisions  based  on  previous  work.  This  correction  factor  was  based  on 
 Neale  et  al.’s  photogrammetric  analysis  of  video  recordings  of  pedestrian  sideswipe  and  minor  overlap  impact 
 events  [20].  In  their  work,  vehicle  speed  at  impact  was  computed  for  each  event  and  compared  to  the  predicted 
 vehicle  impact  speed  based  on  measured  pedestrian  projection  distance.  Level  of  engagement  with  the  vehicle  was 
 found  to  vary  depending  on  the  nature  of  the  collision  and  was  lower  than  would  be  expected  in  a  frontal  collision 
 [21].  Correction  factors  to  the  vehicle  impact  speed  for  these  projection  models  were  presented  to  account  for  the 
 decreased  impulse  experienced  by  the  pedestrian  during  the  collision  event.  For  this  study,  a  scaling  factor  of  1.5 
 was  applied  for  collisions  involving  side  contact  to  account  for  this  decrease  in  engagement  (i.e.,  a  side  collision  at 
 15 mph would be modeled as if it were a 10 mph frontal collision). 
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 Injury Severity Assessment 
 This  study  relied  on  previously  published  injury  risk  curves  by  Lubbe  et  al.  to  translate  the  computed  impact  speed 
 to  a  probability  of  injury  based  on  severity  of  injury  as  defined  by  the  2015  revision  of  the  Abbreviated  Injury  Scale 
 (AIS)  [22].  The  AIS  is  an  internationally  recognized  scale  that  scores  injuries,  considering  “energy  dissipation, 
 tissue  damage,  treatment,  impairment,  and  quality  of  life  [22].”  Lubbe  et  al.  developed  an  injury  risk  function 
 relating  vehicle  closing  speed  and  pedestrian  age  to  AIS2+,  AIS3+,  and  fatal  injury  outcomes  for  frontal  collisions 
 involving  pedestrians  based  on  data  from  the  German  In-Depth  Accident  Study  (GIDAS)  [23].  The  dataset  used  to 
 develop  the  injury  risk  functions  only  consisted  of  collisions  involving  passenger  vehicles;  accordingly,  vehicle 
 mass/weight  for  the  vehicles  included  in  the  SmartDrive  dataset  as  part  of  this  study  was  not  considered.  Lubbe  et 
 al.’s  study  considered  pedestrians  aged  15  and  older.  An  average  risk  curve  was  fit  using  logistic  regression  based  on 
 the  weighted  distribution  of  pedestrians  age  15+  in  the  Crash  Report  Sampling  System  (CRSS)  to  simplify 
 evaluation  of  injury  risk  to  only  be  dependent  on  speed.  It  should  be  noted  that  pedestrian  speed  was  not  considered 
 as  part  of  this  analysis  as  it  was  assumed  that  the  pedestrian’s  motion  would  not  be  expected  to  contribute 
 substantially  to  the  injury  risk.  Accordingly,  vehicle  speed  at  impact  (  )  was  used  for  injury  risk  assessment  instead  𝑣 
 of closing speed. These relationships are summarized in Equations 5, 6, and 7. 

 Equation  (5)  𝑝 ( 𝐴𝐼𝑆  2 +) =  1/    ( 1 +  𝑒  1 . 824 − 0 . 060 * 𝑣 )

 Equation  (6)  𝑝 ( 𝐴𝐼𝑆  3 +) =  1/    ( 1 +  𝑒  4 . 257 − 0 . 073 * 𝑣 )

 Equation  (7)  𝑝 ( 𝐹𝑎𝑡𝑎𝑙 )            =  1/    ( 1 +  𝑒  7 . 000 − 0 . 087 * 𝑣 )

 RESULTS 

 In  general,  most  collisions  in  this  dataset  (34  out  of  42)  involved  frontal  vehicle  structures  (Figure  2).  This  is 
 consistent  with  previous  research  of  field  crash  data,  which  has  shown  that  the  frontal  collision  mode  is  the  most 
 common and most injurious [23]. The overall crash rate for this dataset was 0.63 collisions per million miles. 

 Figure 2. Distribution of collision counts by impact location on vehicle 

 Vehicle  impact  speeds  into  the  pedestrians  varied  from  1.5  mph  to  38  mph.  More  than  half  of  all  events  had  an 
 impact  speed  less  than  10  mph  and  nearly  all  (38  out  of  42)  events  had  an  impact  speed  less  than  20  mph  (Figures  3 
 and  4).The  pedestrian  collision  events  were  associated  with  a  wide  range  of  MAIS2+  injury  risk  probabilities,  from 
 as  low  as  12%  up  to  85%.  The  majority  of  events  were  associated  with  an  MAIS3+  injury  risk  probability  below 
 10%,  with  only  5  events  exceeding  10%  and  2  exceeding  50%  MAIS3+  injury  risk  (Figure  3).  Almost  all  events 
 were  associated  with  a  very  low  probability  of  fatal  injury  (Figure  4).  Summed  MAIS2+,  MAIS3+,  and  fatal  injury 
 risk  for  this  dataset  totaled  approximately  14,  3,  and  0.5,  respectively.  In  other  words,  given  objective  injury 
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 outcome  data  for  the  pedestrians  involved  in  these  collisions,  it  would  be  expected  that  approximately  14  would 
 sustain  MAIS2+  injuries,  approximately  3  would  sustain  MAIS3+  injuries,  and  approximately  0.5  would  sustain 
 fatal  injuries.  These  expected  injury  outcomes  may  also  be  calculated  as  a  measure  of  mileage  in  order  to  more 
 accurately  compare  across  datasets.  For  this  dataset,  we  would  expect  to  see  a  moderate  or  greater  injury  (MAIS2+) 
 every  4.6  million  miles,  a  serious  or  greater  injury  (MAIS3+)  every  20  million  miles,  and  a  fatal  injury  (MAIS5+) 
 every 128 million miles. 

 Figure  3.  Distribution  of  events  and  MAIS3+  injury  risk  as  a  function  of  impact  speed.  Nearly  all  events  were 
 associated with an impact speed of less than 20 mph. 

 Figure  4.  Distribution  of  events  and  fatal  injury  risk  as  a  function  of  impact  speed.  Nearly  all  events  were 
 associated with a fatal injury risk probability near zero. 

 Impact  speed  was  also  observed  to  vary  by  vehicle  turning  behavior.  Many  of  the  collision  events  in  this 
 representative  dataset  occurred  at  an  intersection,  and  of  those  events,  left  and  right  turning  was  frequently  observed. 
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 A  wide  range  of  vehicle  impact  speeds  was  observed  for  situations  in  which  the  vehicle  was  traveling  straight  prior 
 to  the  collision  (Figure  5).  In  general,  the  act  of  turning  prior  to  the  collision  led  to  lower  traveling  speeds,  and 
 accordingly,  generally  lower  impact  speeds.  Additionally,  narrower  speed  windows  were  observed  when  the  vehicle 
 was  turning.  Specifically,  impact  speeds  associated  with  the  vehicle  making  a  right  turn  were  all  below  10  mph, 
 while  impact  speeds  associated  with  the  vehicle  making  a  left  turn  ranged  from  below  10  mph  to  over  20  mph 
 (Figure 5). 

 Figure 5. Distribution of events as a function of impact speed by vehicle travel behavior at the time of collision. 

 Pedestrian  knock-down  risk  was  also  explored.  Using  the  available  collision  video,  only  collisions  with  known 
 impact  speeds  and  knock  pedestrian  knock-down  status  were  included  as  part  of  this  analysis  (i.e.,  cases  where  the 
 video  cut  off  or  the  pedestrian  was  out  of  frame  after  the  collision  event  were  excluded).  Leveraging  the  assigned 
 knock-over  status  based  on  review  of  the  collision  videos,  a  logistic  regression  model  was  developed  to  estimate  risk 
 of  pedestrian  knock-over  as  a  function  of  collision  speed.  A  10%  risk  of  knockdown  was  observed  to  occur  at  2.8 
 mph  (Figure  6).  It  should  also  be  noted  that  in  collisions  with  impact  speeds  above  10  mph,  all  pedestrians  were 
 knocked over. 

 Figure  6.  Pedestrian  knock-over  risk  as  a  function  of  impact  speed.  Events  were  evaluated  binarily,  as  knock-over 
 (1, 100%) or no knock-over (0, 0%). 
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 DISCUSSION 

 Using  the  dash  cam  video  and  sensor  data,  impact  speed  was  successfully  extracted  for  all  42  pedestrian  impact 
 events  considered  in  this  study.  Nearly  all  the  events  involved  collision  with  the  front  portion  of  the  vehicle,  which 
 enabled  the  impact  to  be  readily  identified  and  associated  to  the  imputed  vehicle  speed.  The  outcome  of  this  analysis 
 is a representative dataset of collisions with corresponding injury from surface streets in Los Angeles, California. 

 In  general,  the  number  of  injured  persons  in  collisions  may  be  lowered  through  reduction  in  the  number  of 
 collisions,  reduction  in  the  severity  of  the  collisions,  and/or  reduction  in  the  injury  risk  associated  with  a  given 
 collision  severity  [24].  The  present  study  offers  insight  into  the  severity  of  existing  collisions  and  the  predicted 
 injury  risk  associated  with  them.  One  challenge  in  evaluating  ADS  technology  is  that  retrospective  safety  benefits 
 using  in-field  driving  are  typically  established  using  historical  crash  outcomes,  where  a  decrease  in  injury  outcomes 
 is  used  as  evidence  of  safety  impact  [25-29].  Injuries,  however,  are  relatively  rare,  which  makes  any  statistical 
 assertions  using  high  severity  outcomes  alone  require  an  extreme  number  of  miles  (e.g.,  billions  of  miles  to  prove  a 
 reduction in fatal injury outcomes) [30-31]. 

 Injury  outcomes  are  rare,  but  the  conditions  for  creating  those  outcomes  are  considerably  more  frequent.  Scanlon  et 
 al.  (2021  and  2022)  showed  it  was  not  uncommon  for  serious  or  greater  (MAIS3+)  injury  risk  to  be  below  25%  in 
 reconstructed  cases  where  a  fatality  was  observed  [32-33].  This  is  illustrative  of  the  probabilistic  nature  of  injuries, 
 where  the  conditions  for  injuries  to  occur  are  more  common  than  the  occurrence  of  the  injury  itself.  Looking  at  the 
 current  study,  although  it  comprises  only  66  million  miles  worth  of  driving,  several  events  had  serious  or  greater 
 (MAIS3+)  injury  risk  over  10%.  As  an  alternative  to  measuring  serious  injury,  or  worse,  outcomes,  measuring  the 
 frequency  of  the  high  severity  potential  conditions  can  be  used  as  an  early  signal  when  evaluating  safety  benefits. 
 For  example,  ISO  26262  uses  the  “S”  severity  grading  scale  using  10%  risk  of  various  AIS  level  probabilities 
 (MAIS  1+,  3+,  5+)  to  bucket  events  according  to  injury  risk  in  functional  safety  applications  [34].  Relying  on  this 
 probabilistic  injury  risk,  rather  than  the  occurrence  of  the  injury,  should  theoretically  provide  earlier  evidence  of 
 what  safety  impact  is  being  achieved.  These  individual  event  injury  risk  predictions  may  be  additionally  leveraged 
 by  summing  across  all  events  to  determine  some  measure  of  the  overall  expected  injury  outcome  rate.  Using  this 
 approach,  the  cumulative  injury  risk  is  being  assessed,  where  one  event  with  50%  probability  of  injury  is  treated 
 equally  as  five  events  with  a  10%  probability  of  injury.  This  has  previously  been  done  in  the  field  of  automotive 
 safety  and  sports  head  impact  research  [35-41]  Scanlon  2017,  Scanlon  2016].  As  stated  above,  for  the  pedestrians 
 involved  in  the  collisions  in  this  dataset,  it  would  be  expected  that  approximately  3  would  sustain  serious  or  greater 
 injury  (MAIS3+)  injuries  or  that  a  similar  injury  would  be  expected  to  occur  every  20  million  miles  of  driving. 
 These  mileage-adjusted  injury  rates  would  be  the  metrics  of  interest  when  comparing  human  driving  data  with 
 simulated  or  real  collision  data  for  autonomous  vehicles  in  order  to  determine  relative  driving  performance  or  in 
 comparing across different ODDs. 

 Overall,  the  impact  speeds  were  observed  to  follow  a  multimodal  distribution  (Figure  3).  Controlling  for  turning 
 behavior  substantially  limited  outcome  severity  magnitude  and  variability,  which  clearly  indicates  the  influence  of 
 turning  on  collision  impact  speed  and,  accordingly,  injury  risk.  In  most  cases  where  vehicles  were  making  right  turns 
 from  a  stop  and  did  not  accelerate  to  speed  prior  to  engaging  with  a  pedestrian;  conversely,  vehicles  making  left 
 turns  often  engaged  with  the  pedestrian  when  they  were  nearly  complete  with  the  left  turn,  after  having  traveled  a 
 greater  distance  and  thus  having  a  greater  opportunity  to  achieve  higher  vehicle  speed  at  impact.  These  observations 
 are  consistent  with  vehicle-to-vehicle  intersection  collisions  in  the  United  States,  where  impact  speeds  are  dependent 
 on  turning  behavior  and  stopping  behavior  [35,  39,  42-43].  Turning  while  traveling  through  intersections  (without 
 coming  to  a  complete  or  rolling  stop)  notably  features  a  general  slowing  prior  to  the  turn  with  a  generally  constant 
 speed during travel through the intersection. 

 For  this  dataset,  there  was  a  larger  proportion  of  events  associated  with  impact  speeds  between  5  and  10  mph  than 
 between  0  and  5  mph.  This  sort  of  distribution  is  also  observed  in  intersection  cross-traffic,  where  a  severity  risk 
 “cliff”  exists  at  the  borderline  of  a  small  overlap  strike  and  a  near-miss  (an  analogous  example  of  this  risk  cliff 
 would  be  stepping  in  front  of  a  moving  train).  It  is  also  believed  that  low  severity  impacts  are  more  easily  avoidable 
 by  pedestrians.  Although  not  explicitly  examined  in  the  current  study,  postural  changes  and  evasive  action  were 
 found  to  limit  engagement  between  the  pedestrian  and  vehicle  at  lower  speeds.  Several  cases  in  this  dataset  included 
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 instances  of  pedestrian  adjustment  to  avoid  or  mitigate  energy  transfer  during  the  collision,  which  was  commonly 
 observed  as  a  rapid  juke  away  from  the  approaching  vehicle  sometimes  with  outstretched  arms  that  engaged  the 
 forward  structures  of  the  vehicle.  This  sort  of  complexity  when  developing  injury  risk  curves  is  not  commonly 
 captured  in  the  absence  of  first  hand  video  footage.  Additionally,  these  events  are  subject  to  underreporting  given 
 that  the  maneuvering  can  serve  to  prevent  and  mitigate  a  potential  injury.  Previous  research  reviewing  video  of 
 pedestrian-to-vehicle  collision  events  has  shown  that  nearly  two-thirds  of  pedestrians  take  avoidance  action  prior  to 
 the  collision  event  [44].  This  observed  pedestrian  avoidance  action  clearly  plays  a  role  in  the  level  of  engagement 
 and  potential  injury  risk  for  pedestrian  collisions.  Incorporation  of  this  feature  into  the  severity  evaluation  of 
 observed collisions should be explored. 

 Review  of  the  collision  videos  highlighted  the  effect  of  factors  such  as  pedestrian  age  and  pre-impact  posture  as  also 
 likely  playing  a  role  in  pedestrian  knock-down.  At  these  lower  speeds  in  which  the  pedestrians  were  knocked  down, 
 injury  would  primarily  be  expected  to  occur  due  to  falling  from  standing  height  to  the  ground  rather  than  from 
 engaging  with  vehicle  structures.  An  in-depth  review  of  100  pedestrian-to-vehicle  collision  in  Paris,  France  showed 
 that  contact  with  the  ground  was  the  source  of  injury  for  over  a  quarter  of  all  impacts  with  impact  speeds  less  than 
 31 mph (50 kph) and more than half of all impacts with speeds below 18.6 mph (30 kph) [4]. 

 Limitations 
 There  are  several  limitations  of  this  work  that  should  be  noted.  Firstly,  there  were  differences  in  sampling  frequency 
 for  the  GPS,  accelerometers,  and  camera  such  that  the  original  data  were  not  synchronized.  Corrections  and 
 temporal  shifts  were  applied  to  the  data  to  minimize  error  in  computed  impact  speeds  as  part  of  the  collision 
 reconstruction.  Secondly,  pedestrian  speed  was  not  considered  as  part  of  this  analysis;  however,  nearly  all  impacts 
 involved  a  perpendicular  collision  between  a  vehicle  and  a  pedestrian,  and  the  pedestrian’s  motion  would  not  be 
 expected to contribute substantially to the injury risk. 

 There  are  also  some  notable  limitations  with  the  utilized  injury  risk  model  that  may  influence  the  accuracy  of  any 
 individual  risk  estimation.  First,  only  frontal  collisions  are  considered.  Use  of  this  function  for  side  impacts  and  rear 
 collisions  may  result  in  some  unquantified  deviation  from  actual  risk.  Second,  this  data  was  developed  using 
 German  crash  data  from  1999  to  2020.  Differences  in  the  composition  of  this  fleet  with  respect  to  the  current  United 
 States  fleet  may  lead  to  some  unquantified  accuracy  deviations.  Third,  for  a  case  to  be  included  in  the  dataset,  the 
 pedestrian  must  be  suspected  of  having  experienced  some  injury.  It  is  common  for  police-reported  pedestrian  data  to 
 almost  always  have  an  associated  pedestrian  injury,  so  this  data  requirement  is  unsurprising.  Still,  collisions  without 
 an injury are not considered, resulting in data censoring and low-end risk offsets. 

 CONCLUSIONS 

 Assessing  injury  severity  for  collisions  involving  VRUs  is  highly  impactful  for  the  continued  development  of  traffic 
 safety,  including  ADAS,  ADS,  and  roadway  design.  Using  naturalistic  VRU  collision  data  collected  from  dashboard 
 cameras,  a  methodology  for  assessing  event  severity  by  pairing  accelerometer  and  GPS  data  with  video  to  compute 
 impact  speed  was  presented.  This  is  the  first  known  analysis  of  pedestrian  severity  distributions  using  a  naturalistic 
 US  database.  The  methods  presented  in  this  study  may  be  applied  to  larger  datasets  or  other  sensing  systems  to 
 enable further ODD-specific modeling of the current crash population. 
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