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Unified REST API

orestes : Orestes Methods

crud : Create Read Update Delete (CRUD) Object Methods

Platform-specific ir g e
fdb/{buckery/{oid}
b/ {buckety/{old}
User Browse| BB rorbuckeson
schema : Object oriented methods
n fdb/all_schemas
/db/all_schemas
/db/all_schemas
fdb/all_schemas

Regis ter var usr=r fdb/{buckety/schema
usr.regis s

*

Implementation Notes

ShowsHide  List Operations Expand Operations = Raw

Create object
Gat object

Replace object

Deletes the object )tes

ShowHide  List Operations  Expand Operations  Raw

Get all wvailable class schemas

Create new class schemas and patch existing class schemas .
Replace all curranthy created sohemas with the new ones
Remowve all currently created schemas
Get the class schema

Update the class schema

Maodify the schema definition of the class by adding all missing fields

Response Class
Moadel Mod

object
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Platform-specific interfaces map to unified REST API

User Browser SDK Orestes
‘,— - O - db
a .
Register var usr=new User(name, pw); POST db/_native.User/
usr.register(); JSON Object

REST API leverages existing HTTP infrastructure
Load-Balancer (stateless communication REST constraint)
Web-Caches (caching REST constraint)
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Solution: A-Bounded Staleness
Clients refresh the Cache Sketch so its age never exceeds A
— Consistency guarantee: A-atomicity
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Solution: Conflict-Avoidant Optimistic Transactions

Cache Sketch fetched with transaction begin
Cached reads — Shorter transaction duration — less aborts
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\ 4
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The Server Cache Sketch

Goal: Efficient Generation of Cache Sketch and
Invalidation Minimization
Counting Bloom Filter and key — expiration mapping

Add key, if
X unexpired

> . Cache Sketch
é redis for Table A

& redis .. B
& redis .. C

Get Cache Sketch:

Union
(Bitwise AND)

https://github.com/Bagend/Orestes-Bloomfilter



The Server Cache Sketch

Goal: Efficient Generation of Cache Sketch and

Invalidation Minimization

Counting Bloom Filter and key — expiration mapping

Add key, if
X unexpired

for Table A

& redis .. B
& redis .. C

Get Cache Sketch:

Union
(Bitwise AND)

>é redis Cache Sketch

operations/s
250000+
200000+
150000+

100000

50000

‘ ‘ - conn.
16 32 64
—— add (BF)

_____ add ---=«--- population --<-- contains (BF)

1 2 4 8

—e— contains -—-e-- remove

https://github.com/Bagend/Orestes-Bloomfilter



TTL Estimation

Problem: if TTL < time to next write, then it is
contained in Cache Sketch unnecessarily long

TTL Estimator: finds , best” TTL

Client
W.rltes l lReads
~ Poisson
Caches
Writes ) '
_wr l Misses TTL Estimator
Poisson
Objective:
Server -maximize Cache Hits
IS : TTL -minimize Purges
% An: Miss Rate -minimize Stale Reads
O\ A,: Write Rate -bound Cache Sketch

per record —» false positive rate

m 7w
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TTL Estimation

Problem: if TTL < time to next write, then it is
contained in Cache Sketch unnecessarily long

TTL Estimator: finds , best” TTL

Client

E[Tu]=19000, E[Ty]=30000

Write CDF
Writes I
Reads I
~ Poisson l l 08— //
Caches 06l //
Writes Mi TTL Estimator :
. ISSes L
~ Poisson 0.4;
Objective:
Server -maximize Cache Hits 0ol
s _ TTL -Minimize Purges Tt
% Am: Miss Rate -minimize Stale Reads I
O\, Ay: Write Rate -bound Cache Sketch 0.0 - O " TTL [s]
per record —» false positive rate 0 _‘g 2 '@ 3 80
m \w D S Con £
= a -



YCSB Monte Carlo Caching Simulator (YMCA)

Goal: Analysis of arbitrary caching architectures using
the standard YCSB benchmark

Metrics: Latency, TP. Cache Hits, Stale Reads, Invalidations
Training of TTL Estimator: Hill Climber finds optimal params

Cache Miss Pluggable latency distributions —\
Detector

Expiration- Invalidation- <2

purge

YCSB \glwc'i‘ based <€—¥» based Dg';a;:):?e
workload CRUD ien CRUD Cache CRUD Cache

P

Stale Read CRUD

Pluggable simulated caches,

Detector
choosable topology



Results: Simulation & real-world

Northern California

Setup: Client CDN

Page load times with cached
initialization (YMCA):

load time
2500}
2000}
1500}
1000}
500}

0/0 0/20 20/0 20/20 40/40 66/20 80/80

hit ratios

Ireland

Orestes MongoDB

I
[
/

Average Latency for YCSB
Workloads A and B (real):

ms
[ e e e e P
150}
100} 4y g R .
T threads
000

—e— Orestes (B) --=-- MongoDB (B)
---#-- QOrestes (A) ---=--- MongoDB (A)
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The Polyglot Persistence Mediator

Fully transparent choice
of DB, based on
requirements (SLAS)

3-step-process:
1. Requirements
2. Resolution

3. Mediation

/ Tenant

1. Define
schema

'Database]

/ k\

Class

I N
Field Field Field [Field

[ | annotated

»  |nherits continuous

annotations

(1) Requirements
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Materialization Model
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The Polyglot Persistence Mediator

Fully transparent choice
of DB, based on
requirements (SLAS)

3-step-process:
1. Requirements
2. Resolution

3. Mediation

/

Tenant \

1. Define
schema

l 2. Choose 3. Add

Materialization Model
e Sticky Partitioning
schema-node - db mapping

'Database] .

Primary Database

/

Class

Field

1
------ >

¥ materializes data with
* staleness bound

¢
/]

Field Field

annotated

Annotations
Continuous non-functional
e.g. write latency < 15ms
e Binary functional
e.g. Atomic updates
e Binary non-functional
e.g. Read-your-writes

Inherits continuous
annotations

/

(1) Requirements



The Polyglot Persistence Mediator

Fully transparent choice
of DB, based on
requirements (SLAS)

3-step-process:
1. Requirements
2. Resolution

3. Mediation

—

SC

Databa:

/

Class

|,
Field Fiel

Annotation Type Annotated at
Read Availability Continuous
Write Availability Continuous
Read Latency Continuous
Write Latency Continuous
Write Throughput Continuous

Data Vol. Scalability
Write Scalability
Read Scalabilty
Elasticity

Durability
Replicated
Linearizability
Read-your-Writes
Causal Consistency
Writes follow reads
Monotonic Read
Monotonic Write
Scans

Sorting

Range Queries
Point Lookups
ACID Transactions
Conditional Updates
Joins

Analytics Integration
Fulltext Search
Atomic Updates

Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional

Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field

Field

Field

Field

Class/DB

Field

Class/DB
Field/Class/DB
Field
Field/Class




PPM Step 2: Resolution

/ Provider \
The Provider resolves the
requirements
RANK algorithm recursively Capabilities for

available DBs

analyzes schema annotations l o
1. Find optimal

For each schema element: RANK(schema_root. DB)

Find each DB that satisfies all through recursive descent
binary requirements using annotated schema and metrics

Pick the one that has the best score
according to utility function of
historic or predicted metrics

(2) Resolution
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PPM Step 2: Resolution

4 Provider N
The Provider resolves the
requirements
N Either:
RANK algorithm recursively Capabilities for Refuse or

available DBs «——— provision new DB

analyzes schema annotations l o -
1. Find optimal 2a. If unsatisfiable

For each schema element: RANK(schema_root. DB)

Find each DB that satisfies all through recursive descent
binary requirements using annotated schema and metrics

Pick the one that has the best score
according to utility function of
historic or predicted metrics

(2) Resolution




PPM Step 2: Resolution

The Provider resolves the
requirements

RANK algorithm recursively
analyzes schema annotations

For each schema element:
Find each DB that satisfies all
binary requirements

Pick the one that has the best score
according to utility function of
historic or predicted metrics

/ Provider \

. Either:
Capabilities for Refuse or

available DBs  ¢——— Pprovision new DB
ll. Find optimal 2a. If unsatisfiable
RANK(schema_root, DBs)

through recursive descent
using annotated schema and metrics

2b. Generates
routing model
Routing Model
Route schema_element - db

e transform db-independent to db-
specific operations

(2) Resolution




PPM Step 3: Mediation

The PPM routes data and
operations to the chosen DBs

In the primary database
model, it triggers periodic
materializations

Metrics (latency, availability,
etc.) are reported to the
resolver

-

.

metrics

Application )

[ -

1. CRUD, queries,
transactions, etc.
Polyglot Persistence Mediator
e Uses Routing Model
e Triggers periodic
materialization

TN

Periodic materializations to
primary copy /

(3) Mediation



Evaluation

Scenario: news articles with impression counts
Obijective: low-latency top-k querys, high-throughput
counts

Article Imp.
ID < Imp.
Title ID
MongoDB Redis Sorted Set

Found Resolution



Evaluation

Scenario: news articles with impression counts
Objective: low-latency top-k querys, high-throughput
counts

Article Imp. £ 1200

< ]
”? ) Imp. 5 g0 /
Title ID 3 /
& 600 7
:% 400 J //
MongoDB Redis Sorted Set 200 P
0 - T
_ 7500 10000 12500 15000
Found Resolution Desired throughput in OPS

Orestes with PPM = QOrestes without PPM Varnish
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Summary

Cache Sketch: dual approach to web caching for
database services
Consistent (A-atomic) expiration-based caching
Invalidation-based caching with minimal purges

Conflict- .
Cached A-Bounded ) Invalidation
e Avoidant e
Initialization Staleness i Minimization
Transactions

Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems

L] L) ﬁ
- T
*

Requirements Resolution Mediation




Future & Current Work

Cache Sketch:

Online learning of best TTL estimation
Quantify COT properties
Query result caching

Extend YMCA to replication and sharding
architectures

Polyglot Persistence:
Common requirements/SLA ,library”
Implementation of Resolution
Live Migration
Scalable metrics aggregation




Future Work: Query Caching

1

Dynamic Web App

&= |, Write record x
E-E-E ORESTES
|




Future Work: Query Caching

Stream Processing
System

] X

Dynamic Web App

&= |, Write record x
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Future Work: Query Caching

(] &

Dynamic Web App

I
In

Notification to
Subscribers

(WebSockets, SSE, Mobile Push)

Write record x

b 10101010
/7 \ 10201040
Non-expired Counting
Record and Bloom Filter
Query Keys
Server Cache Sketch

Treat every matching
query g as changed

Stream Processing
System

ORESTES
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Thank you

Contact:

gessert@informatik.uni-hamburg.de

http://orestes.info

http://bagend.com




