ORESTES: Scalability and
Low Latency for
Polyglot Database Services

Felix Gessert, Norbert Ritter
felix.gessert@gmail.com

About me

Since 2 years: PhD student (advisor: Norbert Ritter)
Since 1 year: CEO of Bagend

@ Research Project for PhD

. Yorestes

= BaQend

Y Buildfaster Apps faster.

Cloud Database Startup

Outline

0B

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

* Cloud Databases
* The Latency Problem
of the web

Introduction: Which c
cloud databases are t

asses of '

nere’?

Cloud Databases

Parse loudant Google F1
SQL Azure

|__Orestes J§ Compose | DynamoDB

Amazon RDS Database-as-a-Service

Q Platform-as-a-Service

Hheroku

@ Eg Infrastructure-as-a-Service

amazon
webservices®

Cloud Databases

| Orestes | Compose

loudant

Database-as-a-Service
/

Managed ‘
J Q - Platform-as-a-Service

RDBMS .
4] heroku

@ Eg Infrastructure-as-a-Service

amazon
webservices®

Cloud Databases

| Orestes | Compose

loudant | Google F1

Database-as-a-Service
/

Managed h
J Q - Platform-as-a-Service

RDBMS .
4] heroku

@ Eg Infrastructure-as-a-Service

amazon
webservices®

K Cloud -Deployment
of DBMSs

Cloud Databases

Managed NoSQL
Databases

__Orestes | Compose | DynamoDB_

Google F1
Database-as-a-Service
/

Managed h
g Q . Platform-as-a-Service

RDBMS -
E heroku

@ Eg Infrastructure-as-a-Service

amazon
webservices®

K Cloud -Deployment
of DBMSs

Cloud Databases

Managed NoSQL Cloud-only
Databases DBaaS-Systems

A

| Orestes | Compose | DynamoDB |
Cloudant | Google F1

SQL Azure

Amazon RDS Database-as-a-Service
4

Managed h
g Q . Platform-as-a-Service

RDBMS .
4] heroku

@ Eg Infrastructure-as-a-Service

amazon
webservices®

K Cloud -Deployment
of DBMSs

Cloud Databases

Managed NoSQL Cloud-only b
Databases DBaaS -Systems Analytics-as-
a-Service

A i

| Orestes | Compose | DynamoDB |
Cloudant | Google F1

SQL Azure
4 Amazon RDS Database-as-a-Service
| Heroku Pos.

Managed h
g Q . Platform-as-a-Service

RDBMS .
4] heroku

@ Eg Infrastructure-as-a-Service

amazon
webservices®

K Cloud -Deployment
of DBMSs

Cloud Databases

Managed NoSQL Cloud-only Analytics-as
~as-a- Datab DBaaS -Systems e
Backend-as-a aravases Baas-5ystem a-Service

Service N l/ %

‘
g Google F1
SQL Azure

Amazon RDS Database-as-a-Service
4

Managed h
g Q Platform-as-a-Service

RDBMS
heroku

@ Eg Infrastructure-as-a-Service

amazon
webservices®

K Cloud -Deployment
of DBMSs

Motivation

u=B

Motivation

Web
Server

Dynamic Weab App

' ‘*’3

Internet

Server

Database Application Client

Motivation 3-Tier

Architecture

Server

Dynamic Weab App
— —> - [
Internet

-

Server

Database Application Client

Motivation 3-Tier

Architecture

Server

Dynamic Weab App
— —> - [
Internet

-

Server

Database Application Client

M Oti\latio n 3-Tier Single Page

Architecture Application

Server

—

.

Internet

Server

Data (e.g. JSON)
Database Application Client

M Oti\latio n 3-Tier Single Page

Architecture Application

Server

Dynamic Weah Ajp

— —>

Internet

Server

Data (e.g. JSON)
Database Application Client

Redundance
o Applications reimplement
backend functionality

M Oti\latio n 3-Tier Single Page

Architecture Application

- N Server

Dynamic Wab .ﬁLpp

— —> ==

Internet

Server

Data (e.g. JSON)
Database Application Client

Redundance
o Applications reimplement
backend functionality

Database Dependence
e Strong coupling between
application and database system

M Oti\latio n 3-Tier Single Page

Architecture Application

- N Server

Dynamic Wab .ﬁLpp

— —> ==

Internet

Server

Data (e.g. JSON)

Database Application Client
Redundance <, Performance & Scalability
o Applications reimplement =) Error-prone application-specific
backend functionality scaling policies

Database Dependence
e Strong coupling between
application and database system

Motivation

3-Tier
Architecture

- N Server

Server

Internet

Single Page
Application

Dynamic Wab .ﬁLpp

==

Data (e.g. JSON)

Database

€
=

Application

Redundance
Applications reimplement
backend functionality

i)
=

Database Dependence
Strong coupling between
application and database system

Client

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

M Oti\latio n 3-Tier Single Page

Architecture Application

Web
Server

% Web " = Internet

Server

Data (e.g. JSON)
Database Application Client

With every 100ms of additional page
load time, revenue decreases by 1%.

Study by Amazon

M Oti\latio n 3-Tier Single Page

Architecture Application

Web
Server

% Web " = Internet

Server

Data (e.g. JSON)
Database Application Client

When increasing load time of search

results by 500ms, traffic decreases by
20%.

Study by Google

M Otivat i on 3-Tier Single Page

Architecture Application

// 35007 Page Load Time as bandwidth increases

Page Load Time (ms)

TMbps ~ 2Mbps 3Mbps 4Mbps 5Mbps 6Mbps 7Mbps 8Mbps 9Mbps 10 Mbps

Page Load Time as latency decreases

Page Load Time (ms)

200 ms 180 ms 160 ms 140 ms 120 ms 100 ms 80 ms 60 ms 40 ms 20 ms

o S,
Study by Google

Vision: ORESTES

REST
Server

REST

Server

DB-Cluster Orestes

—_—— e = = = = = = = = = = = =

s

Low Latency

Rich Client

Vision: ORESTES

REST
Server

REST | Internet
Server -
=

e o o o o o = = = = ==

Rich Client

s

Low Latency

Automated Choice
of Database System
(Polyglot
Persistence)

Vision: ORESTES

REST
Server

REST | Internet
Server -
=

e o o o o o = = = = ==

Rich Client

s

Low Latency

Automated Choice
of Database System
(Polyglot
Persistence)

Vision: ORESTES

Unified REST AP!

REST P it H\ep
Server
REST | Internet
Server
=
? Rich Client

Low Latency

Automated Choice
of Database System
(Polyglot
Persistence)

Vision: ORESTES

Unified REST AP!

REST P it H\ep
Server
REST | Internet
Server
=
? Rich Client

Low Latency

Automated Choice
of Database System
(Polyglot
Persistence)

Vision: ORESTES

| REST :L |

E \‘) Server i i 1_’ e o
— REST - Internet - —Q_, _

: — Server : 3

. DB-Cluster Orestes E : Rich Client
R _(El_o_tfq ______ - Low Latency

Automated Choice Extensible High-Level Database
of Database System and Backend Abstractions:

(Polyglot * User-Management
Persistence) e Access Control
e Schema

* Transactions

Vision: ORESTES

REST
Server

REST Internet

D T Web App
i
—

e o o o o o = = = = ==

| Server ,
--;:'J; =
DB-Cluster Orestes Transpa- : Rich Client
\\‘\ Cloud - S rent : Low Latency
"""" \ Caching

Automated Choice Extensible High-Level Database
of Database System and Backend Abstractions:

(Polyglot * User-Management
Persistence) e Access Control
e Schema

* Transactions

Outline

* REST/HTTP API

Motivation e HTTP Caching
 The Cache Sketch
. Cache Sketch * Principle
= Approach » Construction
* Use

Polyglot Persistence
Mediator

Wrap-up and future
work

0B

Unified REST API

Platform-specific interfaces map to unified REST API

User Browser SDK Orestes

66 . -

Unified REST API

Platform-specific interfaces map to unified REST API

User Browser SDK Orestes

66 . -

Register

Unified REST API

Platform-specific interfaces map to unified REST API

User Browser SDK Orestes

68 . -

Register var usr=new User(name, pw);
usr.register();

Unified REST API

Platform-specific interfaces map to unified REST API

User Browser SDK Orestes

6a . .

Register var usr=new User(name, pw); POST db/_native.User/
usr.register(); JSON Object

Unified REST API

Platform-specific interfaces map to unified REST API

User Browser SDK Orestes

6a . .

Register var usr=new User(name, pw); POST db/_native.User/
usr.register(); JSON Object

Unified REST API

orestes : Orestes Methods

crud : Create Read Update Delete (CRUD) Object Methods

Platform-specific ir g e
fdb/{buckery/{oid}
b/ {buckety/{old}
User Browse| BB rorbuckeson
schema : Object oriented methods
n fdb/all_schemas
/db/all_schemas
/db/all_schemas
fdb/all_schemas

Regis ter var usr=r fdb/{buckety/schema
usr.regis s

*

Implementation Notes

ShowsHide List Operations Expand Operations = Raw

Create object
Gat object

Replace object

Deletes the object)tes

ShowHide List Operations Expand Operations Raw

Get all wvailable class schemas

Create new class schemas and patch existing class schemas .
Replace all curranthy created sohemas with the new ones
Remowve all currently created schemas
Get the class schema

Update the class schema

Maodify the schema definition of the class by adding all missing fields

Response Class
Moadel Mod

object

Unified REST API

Platform-specific interfaces map to unified REST API

User Browser SDK Orestes
‘,— - O - db
a .
Register var usr=new User(name, pw); POST db/_native.User/
usr.register(); JSON Object

REST API leverages existing HTTP infrastructure
Load-Balancer (stateless communication REST constraint)
Web-Caches (caching REST constraint)

Expiration-based Caching

n Client

Request
Path

A

Expiration-
based Caches

Cache
Hits

Invalidation-
based Caches

Server/DB

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

HTTP Caching Model:

Expiration-based with
defined TTL

Revalidations check
freshness at the server

Expiration-based Caching

n Clisgt HTTP Caching Model:
‘ T N Expiration-based with
Forward Proxie.;, deflned TTL
. ISP Caches
o Revalidations check
| | T freshness at the server

Research Question:

Can database services leverage the web &
caching infrastructure for low latency with rich

consistency guarantees?

The Cache Sketch approach
n Client

Browser Caches,
Forward Proxies,
ISP Caches
Expiration-
based Caches
Request Cache '

Path Hits Content Delivery
Networks,
Reverse Proxies

Invalidation-

based Caches

Server/DB

(ff

The Cache Sketch approach

(____________
= Client Needs Revalidation?
Browser Caches,
Forward Proxies,
ISP Caches
Expiration-
based Caches
Request Cache '
Path Hits Content Delivery

Networks,
Reverse Proxies

Invalidation-

based Caches

Server/DB

(ff

The Cache Sketch approach

(____________
ot Client Needs Revalidation?
Browser Caches,
Forward Proxies,
ISP Caches
Expiration-
based Caches
Request Cache
Path Hits Content Delivery
Networks,
Reverse Proxies
Invalidation-

based Caches

Invalidations,
Records

(ff

Server/DB <«—---- @r-----
Needs Invalidation?

The Cache Sketch approach

(____________
ot Client Needs Revalidation?
Browser Caches,
Forward Proxies,
ISP Caches
Expiration-
based Caches
Request Cache
Path Hits Content Delivery
Networks,
Reverse Proxies
Invalidation-

based Caches

Invalidations,
Records

(ff

Server/DB <«—---- @r-----
Needs Invalidation?

10101010 Bloom filter

Client Cache Sketch

The Cache Sketch approach

(____________
ot Client Needs Revalidation?
Browser Caches,
Forward Proxies,
ISP Caches
Expiration-
based Caches
Request Cache
Path Hits Content Delivery
Networks,
Reverse Proxies
Invalidation-

based Caches

Invalidations,
Records

(ff

Server/DB <«—---- @r-----
Needs Invalidation?

10101010 Bloom filter

Client Cache Sketch

The Cache Sketch approach

. Cli C---=======- 10101010 Bloom filter
ot lent Needs Revalidation?
Client Cache Sketch
Browser Caches,
Forward Proxies,
i ISP Caches
Expiration-
based Caches
Request Cache
Path Hits Content Delivery
Networks,
Reverse Proxies
Invalidation-
based Caches
bt 10101010
/ N\ 10201040
Invalidations,
Records Report Expirations ~ Non-expired Counting
and Writes Record Keys Bloom Filter
~ Server/DB <—---- @ ---- >
- erver «“-----(3)y-----
e Server Cache Sketch

Needs Invalidation?

The Cache Sketch approach

. Cli C----=---==--- 10101010 Bloom filter
ot lent Needs Revalidation?
Client Cache Sketch
Browser Caches, A A A
Forward Proxies,
o ISP Caches Periodic at
Xpiration= at every A | transaction
based Caches connect seconds begin
Request Cache
Path Hits Content Delivery @) <2> C?D
Networks,
Reverse Proxies
Invalidation-
based Caches
b 10101010
/N 10201040
Invalidations,
Records Report Expirations ~ Non-expired Counting
and Writes Record Keys Bloom Filter
~ Server/DB <----- @ ---- >
. erver «“-----(4)y-----
. Server Cache Sketch

Needs Invalidation?

The Cache Sketch approach

. Cli C----=---==--- 10101010 Bloom filter
ot lent Needs Revalidation?
Client Cache Sketch
Browser Caches, A A A
Forward Proxies,
o ISP Caches Periodic at
Xpiration= at every A | transaction
based Caches connect seconds begin
Request Cache
Path Hits Content Delivery @) <2> C?D
Networks,
Reverse Proxies
Invalidation-
based Caches
b 10101010
/N 10201040
Invalidations,
Records Report Expirations ~ Non-expired Counting
and Writes Record Keys Bloom Filter
~ Server/DB <----- @ ---- >
. erver «“-----(4)y-----
. Server Cache Sketch

Needs Invalidation?

Staleness-Minimization

Invalidation-Minimization

The Caching Hierarchy

> . Miss " ey e
Client- 4 Miss T Miss R
MisS e
Dynamic Web App (Browser-) Proxy ISp 4 Miss
== Caches
Caches Proxy
- . e Orestes
, Caches
Hit | |

A

The Caching Hierarchy

LLLLLL

Dynamic Web App

Hit

Client- -
(Browser-) Proxy
Cache Caches

CDN
Caches

|

Reverse-
Proxy

Caches
|

Orestes

A

The Caching Hierarchy

Dynamic Web App

Heading

Orestes

GET /db/posts/{id}
> e VR S— P
" Client- 4 Miss T Vg™, e
(Browser-) Proxy ISP ¢ Miss
Cache Caches Caches CDN Reverse-
Caches Proxy
. ‘ Caches
< Hit | |

The Caching Hierarchy

Dynamic Web App

Heading

Orestes

GET /db/posts/{id}
> e VR S— P
" Client- 4 Miss T Vg™, e
(Browser-) Proxy ISP ¢ Miss
Cache Caches Caches CDN Reverse-
Caches Proxy
. ‘ Caches
< Hit | |

The Caching Hierarchy

Cache-Hit: Return Object
Cache-Miss or Revalidation:
Forward Request

> . Miss ", ey e
Client- =3 Miss T Miss e
Dynamic Web App (Browser-) Proxy ISp ‘
—— Cache Caches Caches
Caches
_Hit | |

The Caching Hierarchy

Return record from
DB with caching TTL

y
<
=
0

Client- T Miss e e MiSS ™ oeemzrrceee
‘ Miss " eeemmzeeeen
Dynamic Web App (Browser-) Proxy ISp 4 Miss
e e o o e Fodhe Caches CDN Reverse-
= Caches
Caches Proxy
- oo . Orestes
, Caches
_ Hit | |

The Caching Hierarchy

Dynamic Web App

Scalability and Cache-Hits

> . Miss ™ ey T i
Client- 4 Miss " Miss " e Ve
1SS T eemeomezeee
(Browser-) Proxy ISp 4 Miss
Cache Caches CDN Reverse-
Caches
Caches Proxy
Orestes
, Caches
Hit | |

A

The Caching Hierarchy

Scalability and Cache-Hits

y
<
=
0

Client- MISS ™ o Wi ———
iss P
~ Dynamic Web App (Browser-) Proxy ISP Miss
Caches
Caches Proxy
- oo . Orestes
, Caches
_ Hit | |
1 - -
100% 0 ms 1 ms Oms _2_O_m§ - 50-500 ms 50-500 ms
P(Cache-Hit) 50%
0%

Latency Benefit

The Caching Hierarchy

Scalability and Cache-Hits

Low Latency

Less Load on
Database
Service

Protection
Against Flash
Crowds

Better
Availability

> . Miss ey e
Client- 4 Miss T Miss R
4 Miss ™ e
Dynamic Web App (Browser-) Proxy ISp 4" Miss
e s —— Cache CaCheS CDN Reve rse-
Caches
Caches Proxy
S — - Orestes
: , Caches
: Hit | |
1 - -
100% 0 fns 11ns oms. 20ms 50-500ms 50-500 ms
P(Cache-Hit) 50% P i
0%

Clients Profit

from Each
Other

The Client Cache Sketch

Let c, be the client Cache Sketch generated at time t, containing
the key key, of every record x that was written before it expired
in all caches, i.e. every x for which holds:

Ar(x,t., TTL),w(x,t,): t, + TTL >t > t, > t,

Client Cache Sketch

h 7 X
find(key)— key — .. 1({of({of1f{1]0]|1]|1
k hash functions —/ m Bloom filter bits

The Client Cache Sketch

Let c, be the client Cache Sketch generated at time t, containing
the key key, of every record x that was written before it expired
in all caches, i.e. every x for which holds:

Ar(x,t., TTL),w(x,t,): t, + TTL >t > t, > t,

< Hit = key
Client Cache Sketch GET request i
hy /\ > Cache i
find(key)— key — ... 1/0|l0|1]|1]|0|1|1|— Bits=1
hy _/ / yes | - - —
k hash functions—/ m Bloom filter bits Revalidation

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

A
hashA(oid) ,' \\ hashB(oid)
\
ll \
] \
| 4 <
013111411

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

Flat(Counting Bloomfilter)

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

1\
hashA(oid) 7 \\ hashB(oid)

]
I' \
]

/i

1

1111 01311141

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

/1 \
hashA(oid) /1 \\ hashB(oid) —

]
I' \
]

/i

1

1111 01311141

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

I\

hashA(oid) ,' \\ hashB(oid)
\
ll \
] \
¥ <
oj11111¢(1 oO(2111(4}|0

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

.4 False-Positive (_kny* Hash- -
Rate: jeil=g @ Functions: K = [ln(Z) ' (E)]

1 with 20.000 distinct updates and 5% error rate: 14 KByte

hashA(oid) ,' \\ hashB(oid)
\

ll A

I ‘\
| 4 <
2111410

Problem I: Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency

Cache

I\

hashA(oid) ,' \\ hashB(oid)
\
ll \
] \
¥ <
oj11111¢(1 oO(2111(4}|0

Problem IlI: Slow CRUD performance

Solution: A-Bounded Staleness
Clients refresh the Cache Sketch so its age never exceeds A
— Consistency guarantee: A-atomicity

Sl Expiration- Invalidation- s
' based lCaches based 'Caches '
| | | |
| | | |
| | | N,
! ! ! -time t
! ! ! Ltimet + A		
¢ ¢ ¢ ¢

Problem IlI: Slow CRUD performance

Solution: A-Bounded Staleness
Clients refresh the Cache Sketch so its age never exceeds A
— Consistency guarantee: A-atomicity

Expiration- Invalidation-

C“?nt based lCaches based 'Caches Ser'ver
| | | |
: he Sketch c . : :
Cache t ! T
e , , -time t
! ! ! Ltimet + A		
¢ ¢ ¢ ¢

Problem IlI: Slow CRUD performance

Solution: A-Bounded Staleness
Clients refresh the Cache Sketch so its age never exceeds A
— Consistency guarantee: A-atomicity

Expiration- Invalidation-

C“?nt based lCaches based 'Caches Ser'ver
| | | |
: he Sketch c . : :
Cache t ! T
e , , -time t
! ! ! Ltimet + A		
¢ ¢ ¢ ¢

Problem IlI: Slow CRUD performance

Solution: A-Bounded Staleness
Clients refresh the Cache Sketch so its age never exceeds A
— Consistency guarantee: A-atomicity

Sl Expiration- Invalidation- s
' based lCaches based 'Caches '
I		
Query Cache P Cache Sketch c,! ! -time t

Sketch /N: : : :
| | | |
&IJ I I I

! ! ! Ltimet + A
¢ ¢ ¢ ¢

Problem IlI: Slow CRUD performance

Solution: A-Bounded Staleness
Clients refresh the Cache Sketch so its age never exceeds A
— Consistency guarantee: A-atomicity

Expiration- Invalidation-

Cleis based Caches based Caches Seigl
I		
Query Cache P Cache Sketch c,! ! -time t		
Sketch /:N : : :		
":J fresh records : :		
[Pt		
le-Cache Hits ! :		
! ! ! Ltimet + A		
¢ ¢ ¢ ¢

Problem IlI: Slow CRUD performance

Solution: A-Bounded Staleness
Clients refresh the Cache Sketch so its age never exceeds A
— Consistency guarantee: A-atomicity

Sl Expiration- Invalidation- e
based Caches based Caches
Query Cache P Cache Sketch c,! ! -time t		
Sketch /:N : : :		
":J fresh records : :		
I Pt		
le-Cache Hits ! :		
		(.
' ! Ltime t + A		
: Revalidate recqr‘d & Refresh Cachg Sketch >:
L Fresh record & new Cache Sketch :
v v v v

Problem IlI: High Abort Rates in OCC

Solution: Conflict-Avoidant Optimistic Transactions
Cache Sketch fetched with transaction begin

Cached reads — Shorter transaction duration — less aborts

REST-Server N
Cache |
= =
. Cache | |
Client REST-Server 8,
Cache : DB ;l

REST-Server

Coordinator J

Problem IlI: High Abort Rates in OCC

Solution: Conflict-Avoidant Optimistic Transactions
Cache Sketch fetched with transaction begin

Cached reads — Shorter transaction duration — less aborts

~— Begin Transaction

“Bloom Filter @ REST-Server -
Cache | = |
= 5
_ Cache I |
Client REST-Server I= =1
Cache : DB_ Jl

REST-Server

Coordinator J

Problem IlI: High Abort Rates in OCC

Solution: Conflict-Avoidant Optimistic Transactions
Cache Sketch fetched with transaction begin

Cached reads — Shorter transaction duration — less aborts

~— Begin Transaction

i :
Bloom Filter

Ci tReads Cache
len

@ REST-Server

Writes

Cache W
Writes | :3} al

(2)» REST-Server (Hidden) = :gj:

Cache : DB Jl

REST-Server

Coordinator J

Problem IlI: High Abort Rates in OCC

Solution: Conflict-Avoidant Optimistic Transactions
Cache Sketch fetched with transaction begin
Cached reads — Shorter transaction duration — less aborts

~— Begin Transaction

(1

“Bloom Filter = Oj REST-Server o
e —
Writes | - — |
, Reads Cache : -4
Client [e (2)» REST-Server (Hidden) = I=1
Cache : DB }
Commit; read- & write-set versions @ REST-Server T

\ JCommitted OR aborted + stale objects

Coordinator J

Problem IlI: High Abort Rates in OCC

Solution: Conflict-Avoidant Optimistic Transactions
Cache Sketch fetched with transaction begin
Cached reads — Shorter transaction duration — less aborts

~— Begin Transaction

(1

“Bloom Filter = Oj REST-Server o
e —
Writes | - — |
, Reads Cache : -4
Client [e (2)» REST-Server (Hidden) = I=1
Cache : DB }
Commit; read- & write-set versions @ REST-Server T

\ JCommitted OR aborted + stale objects

A
validation @ prevent conflicting
v validations

Coordinator J

Problem IlI: High Abort Rates in OCC

Solution: Conflict-Avoidant Optimistic Transactions

Cache Sketch fetched with transaction begin
Cached reads — Shorter transaction duration — less aborts

~— Begin Transaction

i
Bloom Filter
Cache
Reads Cache
. l—
Client Writes
Cache

(2)» REST-Server (Hidden) - = |

Commit; read- & write-set versions @ REST-Server 4Read all |T

_JCommitted OR aborted + stale objects

@ REST-Server o

N
I ~ N |
Writes | -:,j g;:;_h

. DB |

—_——— —

A Writes (Public) @
validation @ prevent conflicting
\ 4

validations

Coordinator J

The Server Cache Sketch

Goal: Efficient Generation of Cache Sketch and
Invalidation Minimization
Counting Bloom Filter and key — expiration mapping

Add key, if
X unexpired

> . Cache Sketch
é redis for Table A

& redis .. B
& redis .. C

Get Cache Sketch:

Union
(Bitwise AND)

https://github.com/Bagend/Orestes-Bloomfilter

The Server Cache Sketch

Goal: Efficient Generation of Cache Sketch and

Invalidation Minimization

Counting Bloom Filter and key — expiration mapping

Add key, if
X unexpired

for Table A

& redis .. B
& redis .. C

Get Cache Sketch:

Union
(Bitwise AND)

>é redis Cache Sketch

operations/s
250000+
200000+
150000+

100000

50000

‘ ‘ - conn.
16 32 64
—— add (BF)

_____ add ---=«--- population --<-- contains (BF)

1 2 4 8

—e— contains -—-e-- remove

https://github.com/Bagend/Orestes-Bloomfilter

TTL Estimation

Problem: if TTL < time to next write, then it is
contained in Cache Sketch unnecessarily long

TTL Estimator: finds , best” TTL

Client
W.rltes l lReads
~ Poisson
Caches
Writes) '
_wr l Misses TTL Estimator
Poisson
Objective:
Server -maximize Cache Hits
IS : TTL -minimize Purges
% An: Miss Rate -minimize Stale Reads
O\ A,: Write Rate -bound Cache Sketch

per record —» false positive rate

m 7w

TTL Estimation

Problem: if TTL < time to next write, then it is
contained in Cache Sketch unnecessarily long

TTL Estimator: finds , best” TTL

Client
W.rltes l lReads
~ Poisson
Caches
Writes) '
_wr l Misses TTL Estimator
Poisson
Objective:
Server -maximize Cache Hits
IS : TTL -minimize Purges
% An: Miss Rate -minimize Stale Reads
O\ A,: Write Rate -bound Cache Sketch

per record —» false positive rate

m 7w

TTL Estimation

Problem: if TTL < time to next write, then it is
contained in Cache Sketch unnecessarily long

TTL Estimator: finds , best” TTL

Client

E[Tu]=19000, E[Ty]=30000

Write CDF
Writes I
Reads I
~ Poisson l l 08— //
Caches 06l //
Writes Mi TTL Estimator :
. ISSes L
~ Poisson 0.4;
Objective:
Server -maximize Cache Hits 0ol
s _ TTL -Minimize Purges Tt
% Am: Miss Rate -minimize Stale Reads I
O\, Ay: Write Rate -bound Cache Sketch 0.0 - O " TTL [s]
per record —» false positive rate 0 _‘g 2 '@ 3 80
m \w D S Con £
= a -

YCSB Monte Carlo Caching Simulator (YMCA)

Goal: Analysis of arbitrary caching architectures using
the standard YCSB benchmark

Metrics: Latency, TP. Cache Hits, Stale Reads, Invalidations
Training of TTL Estimator: Hill Climber finds optimal params

Cache Miss Pluggable latency distributions —\
Detector

Expiration- Invalidation- <2

purge

YCSB \glwc'i‘ based <€—¥» based Dg';a;:):?e
workload CRUD ien CRUD Cache CRUD Cache

P

Stale Read CRUD

Pluggable simulated caches,

Detector
choosable topology

Results: Simulation & real-world

Northern California

Setup: Client CDN

Page load times with cached
initialization (YMCA):

load time
2500}
2000}
1500}
1000}
500}

0/0 0/20 20/0 20/20 40/40 66/20 80/80

hit ratios

Ireland

Orestes MongoDB

I
[
/

Average Latency for YCSB
Workloads A and B (real):

ms
[e e e e P
150}
100} 4y g R .
T threads
000

—e— Orestes (B) --=-- MongoDB (B)
---#-- QOrestes (A) ---=--- MongoDB (A)

Outline

L X+YS A

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

ldea
Process
Evaluation

The Polyglot Persistence Mediator

Fully transparent choice
of DB, based on
requirements (SLAS)

3-step-process:
1. Requirements
2. Resolution

3. Mediation

/ Tenant

1. Define
schema

'Database]

/ k\

Class

I N
Field Field Field [Field

[| annotated

» |nherits continuous

annotations

(1) Requirements

The Polyglot Persistence Mediator

Fully transparent choice
of DB, based on
requirements (SLAS)

3-step-process:
1. Requirements
2. Resolution

3. Mediation

/ Tenant

1. Define
schema

l 2. Choose

Materialization Model
e Sticky Partitioning
schema-node - db mapping

| Data base | e Primary Database
/ w materializes data with

. staleness bound
Class Class

N

Field Field Field [Field
[| annotated

» Inherits continuous
annotations

(1) Requirements

The Polyglot Persistence Mediator

Fully transparent choice
of DB, based on
requirements (SLAS)

3-step-process:
1. Requirements
2. Resolution

3. Mediation

/

Tenant \

1. Define
schema

l 2. Choose 3. Add

Materialization Model
e Sticky Partitioning
schema-node - db mapping

'Database] .

Primary Database

/

Class

Field

1
------ >

¥ materializes data with
* staleness bound

¢
/]

Field Field

annotated

Annotations
Continuous non-functional
e.g. write latency < 15ms
e Binary functional
e.g. Atomic updates
e Binary non-functional
e.g. Read-your-writes

Inherits continuous
annotations

/

(1) Requirements

The Polyglot Persistence Mediator

Fully transparent choice
of DB, based on
requirements (SLAS)

3-step-process:
1. Requirements
2. Resolution

3. Mediation

—

SC

Databa:

/

Class

|,
Field Fiel

Annotation Type Annotated at
Read Availability Continuous
Write Availability Continuous
Read Latency Continuous
Write Latency Continuous
Write Throughput Continuous

Data Vol. Scalability
Write Scalability
Read Scalabilty
Elasticity

Durability
Replicated
Linearizability
Read-your-Writes
Causal Consistency
Writes follow reads
Monotonic Read
Monotonic Write
Scans

Sorting

Range Queries
Point Lookups
ACID Transactions
Conditional Updates
Joins

Analytics Integration
Fulltext Search
Atomic Updates

Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional

Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field

Field

Field

Field

Class/DB

Field

Class/DB
Field/Class/DB
Field
Field/Class

PPM Step 2: Resolution

/ Provider \
The Provider resolves the
requirements
RANK algorithm recursively Capabilities for

available DBs

analyzes schema annotations l o
1. Find optimal

For each schema element: RANK(schema_root. DB)

Find each DB that satisfies all through recursive descent
binary requirements using annotated schema and metrics

Pick the one that has the best score
according to utility function of
historic or predicted metrics

(2) Resolution

PPM Step 2: Resolution

/ Provider \
The Provider resolves the
requirements
RANK algorithm recursively Capabilities for

available DBs

analyzes schema annotations l o
1. Find optimal

For each schema element: RANK(schema_root. DB)

Find each DB that satisfies all through recursive descent
binary requirements using annotated schema and metrics

Pick the one that has the best score
according to utility function of
historic or predicted metrics

(2) Resolution

PPM Step 2: Resolution

4 Provider N
The Provider resolves the
requirements
N Either:
RANK algorithm recursively Capabilities for Refuse or

available DBs «——— provision new DB

analyzes schema annotations l o -
1. Find optimal 2a. If unsatisfiable

For each schema element: RANK(schema_root. DB)

Find each DB that satisfies all through recursive descent
binary requirements using annotated schema and metrics

Pick the one that has the best score
according to utility function of
historic or predicted metrics

(2) Resolution

PPM Step 2: Resolution

The Provider resolves the
requirements

RANK algorithm recursively
analyzes schema annotations

For each schema element:
Find each DB that satisfies all
binary requirements

Pick the one that has the best score
according to utility function of
historic or predicted metrics

/ Provider \

. Either:
Capabilities for Refuse or

available DBs ¢——— Pprovision new DB
ll. Find optimal 2a. If unsatisfiable
RANK(schema_root, DBs)

through recursive descent
using annotated schema and metrics

2b. Generates
routing model
Routing Model
Route schema_element - db

e transform db-independent to db-
specific operations

(2) Resolution

PPM Step 3: Mediation

The PPM routes data and
operations to the chosen DBs

In the primary database
model, it triggers periodic
materializations

Metrics (latency, availability,
etc.) are reported to the
resolver

-

.

metrics

Application)

[-

1. CRUD, queries,
transactions, etc.
Polyglot Persistence Mediator
e Uses Routing Model
e Triggers periodic
materialization

TN

Periodic materializations to
primary copy /

(3) Mediation

Evaluation

Scenario: news articles with impression counts
Obijective: low-latency top-k querys, high-throughput
counts

Article Imp.
ID < Imp.
Title ID
MongoDB Redis Sorted Set

Found Resolution

Evaluation

Scenario: news articles with impression counts
Objective: low-latency top-k querys, high-throughput
counts

Article Imp. £ 1200

<]
”?) Imp. 5 g0 /
Title ID 3 /
& 600 7
:% 400 J //
MongoDB Redis Sorted Set 200 P
0 - T
_ 7500 10000 12500 15000
Found Resolution Desired throughput in OPS

Orestes with PPM = QOrestes without PPM Varnish

Outline

0B

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

* Summary

Research areas
Bagend

\KFLJU
\AU “7
j/JL

Summary

Cache Sketch: dual approach to web caching for
database services
Consistent (A-atomic) expiration-based caching
Invalidation-based caching with minimal purges

Conflict- .
Cached A-Bounded) Invalidation
e Avoidant e
Initialization Staleness i Minimization
Transactions

Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems

L] L) ﬁ
- T
*

Requirements Resolution Mediation

Future & Current Work

Cache Sketch:

Online learning of best TTL estimation
Quantify COT properties
Query result caching

Extend YMCA to replication and sharding
architectures

Polyglot Persistence:
Common requirements/SLA ,library”
Implementation of Resolution
Live Migration
Scalable metrics aggregation

Future Work: Query Caching

1

Dynamic Web App

&= |, Write record x
E-E-E ORESTES
|

Future Work: Query Caching

Stream Processing
System

] X

Dynamic Web App

&= |, Write record x
E-E-E ORESTES

Future Work: Query Caching

b 10101010
/7 \ 10201040
Non-expired Counting
Record and Bloom Filter
Query Keys
Server Cache Sketch

Treat every matching
query g as changed

Stream Processing
System

F— —1) X

Dynamic Web App

SR L \Write record x

ORESTES

Ik
I
In

Future Work: Query Caching

b 10101010
/7 \ 10201040
Non-expired Counting
Record and Bloom Filter
Query Keys
Server Cache Sketch

Treat every matching
query g as changed

Stream Processing
System

F— —1) X

Dynamic Web App

SR L \Write record x

ORESTES

Ik
I
In

Future Work: Query Caching

(] &

Dynamic Web App

I
In

Notification to
Subscribers

(WebSockets, SSE, Mobile Push)

Write record x

b 10101010
/7 \ 10201040
Non-expired Counting
Record and Bloom Filter
Query Keys
Server Cache Sketch

Treat every matching
query g as changed

Stream Processing
System

ORESTES

BaQend
i

Build faster Apps faster.

Bagend

—_—————— e — e e e — — — — — — — — — — —

goDB

/
_ _
_ _
| _
| Il - |
_ m _

_
| C _Hﬁ : |
e _

_
_ _
_ " !
_ O _
.‘ql.r W _
I
| s [N * g
| & &%
_ 8 4 | !

_
A = | |

_
' § [N: |
Q) Sk |
[-
¢ m:

_
| Il - |
// ||||||||||||||||||||||||| /
- - - - - - - """ 7-"7—7-"7—7-—= AN

Internet

~—_—— - —_—— =

Mobile

Orestes as a startup, funded since March 2014

ynamic Web App
Tablet

—_——_——— e —_—— =

Thank you

Contact:

gessert@informatik.uni-hamburg.de

http://orestes.info

http://bagend.com

