
Felix Gessert, Norbert Ritter
felix.gessert@gmail.com

 Since 2 years: PhD student (advisor: Norbert Ritter)

 Since 1 year: CEO of Baqend

Research Project for PhD

Cloud Database Startup

• Cloud Databases
• The Latency Problem

of the web

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

Introduction: Which classes of
cloud databases are there?

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed
RDBMS

BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed
RDBMS

Cloud-Deployment
of DBMSs

BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Cloud-Deployment
of DBMSs

BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Analytics-as-
a-Service

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Backend-as-a-
Service

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Analytics-as-
a-Service

ClientDatabase Application

Web
Server

Web
Server

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

With every 100ms of additional page
load time, revenue decreases by 1%.

Study by Amazon

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

With every 100ms of additional page
load time, revenue decreases by 1%.

Study by Amazon

When increasing load time of search
results by 500ms, traffic decreases by
20%.

Study by Google

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

With every 100ms of additional page
load time, revenue decreases by 1%.

Study by Amazon

When increasing load time of search
results by 500ms, traffic decreases by
20%.

Study by Google

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency
Cloud

REST
Server

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

REST
Server

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

REST
Server

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

REST
Server

Unified REST API

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

REST
Server

Unified REST API

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

Extensible High-Level Database
and Backend Abstractions:
• User-Management
• Access Control
• Schema
• Transactions

REST
Server

Unified REST API

Rich ClientOrestesDB-Cluster

REST
Server

Transpa-
rent
Caching Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

Extensible High-Level Database
and Backend Abstractions:
• User-Management
• Access Control
• Schema
• Transactions

REST
Server

Unified REST API

• REST/HTTP API
• HTTP Caching
• The Cache Sketch

• Principle
• Construction
• Use

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

 Platform-specific interfaces map to unified REST API



User Browser SDK Orestes

 Platform-specific interfaces map to unified REST API



Register

User Browser SDK Orestes

 Platform-specific interfaces map to unified REST API



Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK Orestes

 Platform-specific interfaces map to unified REST API



Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK

POST db/_native.User/
JSON Object

Orestes

 Platform-specific interfaces map to unified REST API



Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK

POST db/_native.User/
JSON Object

Orestes

 Platform-specific interfaces map to unified REST API



Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK

POST db/_native.User/
JSON Object

Orestes

 Platform-specific interfaces map to unified REST API

 REST API leverages existing HTTP infrastructure
Load-Balancer (stateless communication REST constraint)

Web-Caches (caching REST constraint)

Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK

POST db/_native.User/
JSON Object

Orestes

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

HTTP Caching Model:

 Expiration-based with
defined TTL

 Revalidations check
freshness at the server

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

HTTP Caching Model:

 Expiration-based with
defined TTL

 Revalidations check
freshness at the server

Research Question:
Can database services leverage the web
caching infrastructure for low latency with rich
consistency guarantees?

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Needs Revalidation?

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client Cache Sketch

10101010 Bloom filter

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client Cache Sketch

10101010 Bloom filter

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n-

M
in

im
iz

at
io

n

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

find(key) JavaScript

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

GET /db/posts/{id} HTTP

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

GET /db/posts/{id} HTTP

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Cache-Hit: Return Object
Cache-Miss or Revalidation:
Forward Request

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Return record from
DB with caching TTL

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Scalability and Cache-Hits

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Scalability and Cache-Hits

Latency Benefit

100%

50%

0%

P(Cache-Hit)

0 ms 1 ms 10 ms 20 ms 50-500 ms 50-500 ms

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Scalability and Cache-Hits

100%

50%

0%

P(Cache-Hit)

0 ms 1 ms 10 ms 20 ms 50-500 ms 50-500 ms

Low Latency
Less Load on

Database
Service

Protection
Against Flash

Crowds

Better
Availability

Clients Profit
from Each

Other

 Let ct be the client Cache Sketch generated at time t, containing
the key keyx of every record x that was written before it expired
in all caches, i.e. every x for which holds:

∃ 𝑟(𝑥, 𝑡𝑟 , 𝑇𝑇𝐿), 𝑤 𝑥, 𝑡𝑤 ∶ 𝑡𝑟 + 𝑇𝑇𝐿 > 𝑡 > 𝑡𝑤 > 𝑡𝑟

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key)

Client Cache Sketch

 Let ct be the client Cache Sketch generated at time t, containing
the key keyx of every record x that was written before it expired
in all caches, i.e. every x for which holds:

∃ 𝑟(𝑥, 𝑡𝑟 , 𝑇𝑇𝐿), 𝑤 𝑥, 𝑡𝑤 ∶ 𝑡𝑟 + 𝑇𝑇𝐿 > 𝑡 > 𝑡𝑤 > 𝑡𝑟

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key)

Client Cache Sketch

Bits = 1

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

hashB(oid)hashA(oid)

13

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020 131 1 110
Flat(Counting Bloomfilter)

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020 131 1 110

hashB(oid)hashA(oid)

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020 131 1 110

hashB(oid)hashA(oid)

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

hashB(oid)hashA(oid)

1 1 110

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

hashB(oid)hashA(oid)

1 1 110

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 14 KByte

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

hashB(oid)hashA(oid)

1 1 110

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

-time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ct -time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ct -time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache
Sketch

-time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache
Sketch

fresh records

Cache Hits

-time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache
Sketch

fresh records

Revalidate record & Refresh Cache Sketch

Cache Hits

Fresh record & new Cache Sketch

-time t

-time t + Δ

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Writes

(Hidden)

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Commit: read- & write-set versions

Committed OR aborted + stale objects
3

Writes

(Hidden)

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Commit: read- & write-set versions

Committed OR aborted + stale objects
3

Writes

(Hidden)

validation 4 prevent conflicting

validations

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Commit: read- & write-set versions

Committed OR aborted + stale objects
3

Writes

(Hidden)

validation 4

5Writes (Public)

Read all

prevent conflicting

validations

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

 Goal: Efficient Generation of Cache Sketch and
Invalidation Minimization

 Counting Bloom Filter and key → expiration mapping

https://github.com/Baqend/Orestes-Bloomfilter

Add keyx if

x unexpired
Cache Sketch

for Table A

… B

… C

Get Cache Sketch:

Union
(Bitwise AND)

 Goal: Efficient Generation of Cache Sketch and
Invalidation Minimization

 Counting Bloom Filter and key → expiration mapping

https://github.com/Baqend/Orestes-Bloomfilter

Add keyx if

x unexpired
Cache Sketch

for Table A

… B

… C

Get Cache Sketch:

Union
(Bitwise AND)

 Problem: if TTL ≪ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

 Problem: if TTL ≪ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

 Problem: if TTL ≪ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

 Goal: Analysis of arbitrary caching architectures using
the standard YCSB benchmark
◦ Metrics: Latency, TP, Cache Hits, Stale Reads, Invalidations

◦ Training of TTL Estimator: Hill Climber finds optimal params

Pluggable simulated caches,

choosable topology

YCSB
workload

YMCA
Client

Stale Read
Detector

Cache Miss
Detector

Expiration-
based
Cache

Invalidation-
based
Cache

Database
Server

Pluggable latency distributions

purge

CRUD

CRUDCRUDCRUD

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached
initialization (YMCA):

Average Latency for YCSB
Workloads A and B (real):

• Idea
• Process
• Evaluation

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

Requirements1

Database

Class

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Class

Field

 Fully transparent choice
of DB, based on
requirements (SLAs)

 3-step-process:

1. Requirements

2. Resolution

3. Mediation

Requirements1

Database

Class

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Class

Field

 Fully transparent choice
of DB, based on
requirements (SLAs)

 3-step-process:

1. Requirements

2. Resolution

3. Mediation

Materialization Model
 Sticky Partitioning

schema-node db mapping
 Primary Database

materializes data with
staleness bound

2. Choose

Requirements1

Database

Class

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Class

Field

 Fully transparent choice
of DB, based on
requirements (SLAs)

 3-step-process:

1. Requirements

2. Resolution

3. Mediation

Materialization Model
 Sticky Partitioning

schema-node db mapping
 Primary Database

materializes data with
staleness bound

2. Choose

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

3. Add

Requirements1

Database

Class

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Class

Field

 Fully transparent choice
of DB, based on
requirements (SLAs)

 3-step-process:

1. Requirements

2. Resolution

3. Mediation

Materialization Model
 Sticky Partitioning

schema-node db mapping
 Primary Database

materializes data with
staleness bound

2. Choose

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

3. Add

 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all

binary requirements

◦ Pick the one that has the best score
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all

binary requirements

◦ Pick the one that has the best score
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all

binary requirements

◦ Pick the one that has the best score
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all

binary requirements

◦ Pick the one that has the best score
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element db
 transform db-independent to db-

specific operations

 The PPM routes data and
operations to the chosen DBs

 In the primary database
model, it triggers periodic
materializations

 Metrics (latency, availability,
etc.) are reported to the
resolver

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic

materialization
Report
metrics

1. CRUD, queries,
transactions, etc.

db1 db2 db3

Periodic materializations to
primary copy

2. route

Scenario: news articles with impression counts
Objective: low-latency top-k querys, high-throughput
counts

Article

ID
Title
…

Imp.

Imp.
ID

MongoDB Redis Sorted Set

Found Resolution

Scenario: news articles with impression counts
Objective: low-latency top-k querys, high-throughput
counts

Article

ID
Title
…

Imp.

Imp.
ID

MongoDB Redis Sorted Set

Found Resolution

• Summary
• Research areas
• Baqend

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

 Cache Sketch: dual approach to web caching for
database services
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

 Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems

Cached
Initialization

Δ-Bounded
Staleness

Conflict-
Avoidant

Transactions

Invalidation
Minimization

Requirements Resolution Mediation

 Cache Sketch:
◦ Online learning of best TTL estimation

◦ Quantify COT properties

◦ Query result caching

◦ Extend YMCA to replication and sharding
architectures

 Polyglot Persistence:
◦ Common requirements/SLA „library“

◦ Implementation of Resolution

◦ Live Migration

◦ Scalable metrics aggregation
Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

validation

Begin Transaction

Bloom Filter

Reads

Writes

Commit: read- & write-set versions

Committed OR aborted + stale objects

1

2

3

4

5

Writes

(Hidden)

Writes (Public)

Client

prevent conflicting

validations

Read all

scale to high commit throughputs

and ensure availability

Nonfunctional RequirementsFunctional Requirements

Scan-Querys

Conditional Updates

Transactions

Filter-Querys

Joins

Analytics

Elasticity

Consistency

Read-Latency

Write-Latency

Write-Throughput

Scalability of Data Volume

Scalatbility of Request Load

Read-Availability

Write-Availability

Data model

Backend Systems

Constraints

Automized

Choice

Model Class

MongoDB Redis Db4o Cassandra HBase

Mediator

REST-Server

REST-Server

Event Server

[SELECT [* | _id]]
FROM <bucket>
[WHERE <condition> [AND <condition> ...]]
[ORDER BY, LIMIT, OFFSET]

1

2

Client

Write

Matching Objects (Streamed)

Match registered queries

Forward object
3

Register

Client

Expiration-
based Caches

Invalidation-
based Caches

Server Cache Sketch

St
al

en
es

s-
M

in
im

iz
at

io
n

M
o

de
In

va
lid

at
io

n
-M

in
im

iz
at

io
n

M
o

de

10201040

10101010

Write Counting
Bloom Filter

Expiration
Priority Queue

Request
Path

Server/DB

Invalidations,
Objects Report Expirations

and Writes

Needs Invalidation?

Client Cache Sketch

at
connect

Periodic
every t

seconds

at
transaction

begin

Cache
Hits

10101010 Bloom filter
Needs Revalidation?

Browser Cache,
Forward Proxy,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

1

2 3

4

Optimistic
Client Caching

2
Staleness
Bounding

1

3
Conflict
Avoidance

4
Invalidation
Minimization

Write record x
ORESTES

Write record x
ORESTES

Stream Processing
System

x

Write record x
ORESTES

Stream Processing
System

x

Treat every matching
query q as changed

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record and
Query Keys

Write record x
ORESTES

Stream Processing
System

x

Treat every matching
query q as changed

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record and
Query Keys

Write record x
ORESTES

Stream Processing
System

x

Treat every matching
query q as changed

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record and
Query Keys

Notification to
Subscribers

(WebSockets, SSE, Mobile Push)

Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann,
Malte Lauenroth, Michael Schaarschmidt

19. August 2014

Internet

Seoxy
Desktop

Mobile

Tablet

 Orestes as a startup, funded since March 2014

Thank you

Contact:

gessert@informatik.uni-hamburg.de

http://orestes.info

http://baqend.com

