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 Platform-specific interfaces map to unified REST API
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 Goal: Analysis of arbitrary caching architectures using
the standard YCSB benchmark
◦ Metrics: Latency, TP, Cache Hits, Stale Reads, Invalidations

◦ Training of TTL Estimator: Hill Climber finds optimal params
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 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all 

binary requirements

◦ Pick the one that has the best score 
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for 
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element   db
 transform db-independent to db-

specific operations



 The PPM routes data and
operations to the chosen DBs

 In the primary database
model, it triggers periodic
materializations

 Metrics (latency, availability, 
etc.) are reported to the
resolver

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic 

materialization
Report
metrics

1. CRUD, queries, 
transactions, etc.

db1 db2 db3

Periodic materializations to 
primary copy

2. route
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 Cache Sketch: dual approach to web caching for
database services
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

 Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems

Cached
Initialization

Δ-Bounded
Staleness

Conflict-
Avoidant

Transactions

Invalidation 
Minimization

Requirements Resolution Mediation



 Cache Sketch:
◦ Online learning of best TTL estimation

◦ Quantify COT properties

◦ Query result caching

◦ Extend YMCA to replication and sharding
architectures

 Polyglot Persistence:
◦ Common requirements/SLA „library“

◦ Implementation of Resolution

◦ Live Migration

◦ Scalable metrics aggregation
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 Orestes as a startup, funded since March 2014



Thank you

Contact:

gessert@informatik.uni-hamburg.de

http://orestes.info

http://baqend.com


