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 Platform-specific interfaces map to unified REST API

 REST API leverages existing HTTP infrastructure
Load-Balancer (stateless communication REST constraint) 

Web-Caches (caching REST constraint)
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 Goal: Analysis of arbitrary caching architectures using
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 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all 

binary requirements

◦ Pick the one that has the best score 
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for 
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element   db
 transform db-independent to db-

specific operations



 The PPM routes data and
operations to the chosen DBs

 In the primary database
model, it triggers periodic
materializations

 Metrics (latency, availability, 
etc.) are reported to the
resolver

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic 

materialization
Report
metrics

1. CRUD, queries, 
transactions, etc.

db1 db2 db3

Periodic materializations to 
primary copy

2. route
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 Cache Sketch: dual approach to web caching for
database services
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

 Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems

Cached
Initialization

Δ-Bounded
Staleness

Conflict-
Avoidant

Transactions

Invalidation 
Minimization

Requirements Resolution Mediation



 Cache Sketch:
◦ Online learning of best TTL estimation

◦ Quantify COT properties

◦ Query result caching

◦ Extend YMCA to replication and sharding
architectures

 Polyglot Persistence:
◦ Common requirements/SLA „library“

◦ Implementation of Resolution

◦ Live Migration

◦ Scalable metrics aggregation
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Server Cache Sketch

10201040

10101010

Counting 
Bloom Filter

Non-expired
Record and
Query Keys

Notification to
Subscribers

(WebSockets, SSE, Mobile Push)
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 Orestes as a startup, funded since March 2014
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