
Felix Gessert, Norbert Ritter
felix.gessert@gmail.com

 Since 2 years: PhD student (advisor: Norbert Ritter)

 Since 1 year: CEO of Baqend

Research Project for PhD

Cloud Database Startup

• Cloud Databases
• The Latency Problem

of the web

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

Introduction: Which classes of
cloud databases are there?

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed
RDBMS

BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed
RDBMS

Cloud-Deployment
of DBMSs

BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Cloud-Deployment
of DBMSs

BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Analytics-as-
a-Service

Infrastructure-as-a-Service

Platform-as-a-Service

…Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Backend-as-a-
Service

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Analytics-as-
a-Service

ClientDatabase Application

Web
Server

Web
Server

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

With every 100ms of additional page
load time, revenue decreases by 1%.

Study by Amazon

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

With every 100ms of additional page
load time, revenue decreases by 1%.

Study by Amazon

When increasing load time of search
results by 500ms, traffic decreases by
20%.

Study by Google

ClientDatabase Application

Web
Server

Web
Server

3-Tier
Architecture

Single Page
Application

Data (e.g. JSON)

Redundance
Applications reimplement
backend functionality

Database Dependence
Strong coupling between
application and database system

Performance & Scalability
Error-prone application-specific
scaling policies

Difficult Development
Both client and server have to
be implemented

With every 100ms of additional page
load time, revenue decreases by 1%.

Study by Amazon

When increasing load time of search
results by 500ms, traffic decreases by
20%.

Study by Google

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency
Cloud

REST
Server

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

REST
Server

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

REST
Server

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

REST
Server

Unified REST API

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

REST
Server

Unified REST API

Rich ClientOrestesDB-Cluster

REST
Server

Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

Extensible High-Level Database
and Backend Abstractions:
• User-Management
• Access Control
• Schema
• Transactions

REST
Server

Unified REST API

Rich ClientOrestesDB-Cluster

REST
Server

Transpa-
rent
Caching Low Latency

Automated Choice
of Database System

(Polyglot
Persistence)

Cloud

Extensible High-Level Database
and Backend Abstractions:
• User-Management
• Access Control
• Schema
• Transactions

REST
Server

Unified REST API

• REST/HTTP API
• HTTP Caching
• The Cache Sketch

• Principle
• Construction
• Use

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

 Platform-specific interfaces map to unified REST API

User Browser SDK Orestes

 Platform-specific interfaces map to unified REST API

Register

User Browser SDK Orestes

 Platform-specific interfaces map to unified REST API

Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK Orestes

 Platform-specific interfaces map to unified REST API

Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK

POST db/_native.User/
JSON Object

Orestes

 Platform-specific interfaces map to unified REST API

Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK

POST db/_native.User/
JSON Object

Orestes

 Platform-specific interfaces map to unified REST API

Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK

POST db/_native.User/
JSON Object

Orestes

 Platform-specific interfaces map to unified REST API

 REST API leverages existing HTTP infrastructure
Load-Balancer (stateless communication REST constraint)

Web-Caches (caching REST constraint)

Register

User Browser

var usr=new User(name, pw);
usr.register();

SDK

POST db/_native.User/
JSON Object

Orestes

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

HTTP Caching Model:

 Expiration-based with
defined TTL

 Revalidations check
freshness at the server

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

HTTP Caching Model:

 Expiration-based with
defined TTL

 Revalidations check
freshness at the server

Research Question:
Can database services leverage the web
caching infrastructure for low latency with rich
consistency guarantees?

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Needs Revalidation?

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client Cache Sketch

10101010 Bloom filter

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client Cache Sketch

10101010 Bloom filter

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n-

M
in

im
iz

at
io

n

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

find(key) JavaScript

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

GET /db/posts/{id} HTTP

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

GET /db/posts/{id} HTTP

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Cache-Hit: Return Object
Cache-Miss or Revalidation:
Forward Request

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Return record from
DB with caching TTL

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Scalability and Cache-Hits

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Scalability and Cache-Hits

Latency Benefit

100%

50%

0%

P(Cache-Hit)

0 ms 1 ms 10 ms 20 ms 50-500 ms 50-500 ms

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy
Caches

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Scalability and Cache-Hits

100%

50%

0%

P(Cache-Hit)

0 ms 1 ms 10 ms 20 ms 50-500 ms 50-500 ms

Low Latency
Less Load on

Database
Service

Protection
Against Flash

Crowds

Better
Availability

Clients Profit
from Each

Other

 Let ct be the client Cache Sketch generated at time t, containing
the key keyx of every record x that was written before it expired
in all caches, i.e. every x for which holds:

∃ 𝑟(𝑥, 𝑡𝑟 , 𝑇𝑇𝐿), 𝑤 𝑥, 𝑡𝑤 ∶ 𝑡𝑟 + 𝑇𝑇𝐿 > 𝑡 > 𝑡𝑤 > 𝑡𝑟

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key)

Client Cache Sketch

 Let ct be the client Cache Sketch generated at time t, containing
the key keyx of every record x that was written before it expired
in all caches, i.e. every x for which holds:

∃ 𝑟(𝑥, 𝑡𝑟 , 𝑇𝑇𝐿), 𝑤 𝑥, 𝑡𝑤 ∶ 𝑡𝑟 + 𝑇𝑇𝐿 > 𝑡 > 𝑡𝑤 > 𝑡𝑟

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key)

Client Cache Sketch

Bits = 1

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

hashB(oid)hashA(oid)

13

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020 131 1 110
Flat(Counting Bloomfilter)

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020 131 1 110

hashB(oid)hashA(oid)

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020 131 1 110

hashB(oid)hashA(oid)

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

hashB(oid)hashA(oid)

1 1 110

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

hashB(oid)hashA(oid)

1 1 110

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 14 KByte

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

App

App Cache

1 4 020

hashB(oid)hashA(oid)

1 1 110

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

-time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ct -time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ct -time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache
Sketch

-time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache
Sketch

fresh records

Cache Hits

-time t

-time t + Δ

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache
Sketch

fresh records

Revalidate record & Refresh Cache Sketch

Cache Hits

Fresh record & new Cache Sketch

-time t

-time t + Δ

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Writes

(Hidden)

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Commit: read- & write-set versions

Committed OR aborted + stale objects
3

Writes

(Hidden)

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Commit: read- & write-set versions

Committed OR aborted + stale objects
3

Writes

(Hidden)

validation 4 prevent conflicting

validations

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Commit: read- & write-set versions

Committed OR aborted + stale objects
3

Writes

(Hidden)

validation 4

5Writes (Public)

Read all

prevent conflicting

validations

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

 Goal: Efficient Generation of Cache Sketch and
Invalidation Minimization

 Counting Bloom Filter and key → expiration mapping

https://github.com/Baqend/Orestes-Bloomfilter

Add keyx if

x unexpired
Cache Sketch

for Table A

… B

… C

Get Cache Sketch:

Union
(Bitwise AND)

 Goal: Efficient Generation of Cache Sketch and
Invalidation Minimization

 Counting Bloom Filter and key → expiration mapping

https://github.com/Baqend/Orestes-Bloomfilter

Add keyx if

x unexpired
Cache Sketch

for Table A

… B

… C

Get Cache Sketch:

Union
(Bitwise AND)

 Problem: if TTL ≪ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

 Problem: if TTL ≪ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

 Problem: if TTL ≪ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

 Goal: Analysis of arbitrary caching architectures using
the standard YCSB benchmark
◦ Metrics: Latency, TP, Cache Hits, Stale Reads, Invalidations

◦ Training of TTL Estimator: Hill Climber finds optimal params

Pluggable simulated caches,

choosable topology

YCSB
workload

YMCA
Client

Stale Read
Detector

Cache Miss
Detector

Expiration-
based
Cache

Invalidation-
based
Cache

Database
Server

Pluggable latency distributions

purge

CRUD

CRUDCRUDCRUD

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached
initialization (YMCA):

Average Latency for YCSB
Workloads A and B (real):

• Idea
• Process
• Evaluation

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

Requirements1

Database

Class

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Class

Field

 Fully transparent choice
of DB, based on
requirements (SLAs)

 3-step-process:

1. Requirements

2. Resolution

3. Mediation

Requirements1

Database

Class

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Class

Field

 Fully transparent choice
of DB, based on
requirements (SLAs)

 3-step-process:

1. Requirements

2. Resolution

3. Mediation

Materialization Model
 Sticky Partitioning

schema-node db mapping
 Primary Database

materializes data with
staleness bound

2. Choose

Requirements1

Database

Class

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Class

Field

 Fully transparent choice
of DB, based on
requirements (SLAs)

 3-step-process:

1. Requirements

2. Resolution

3. Mediation

Materialization Model
 Sticky Partitioning

schema-node db mapping
 Primary Database

materializes data with
staleness bound

2. Choose

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

3. Add

Requirements1

Database

Class

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Class

Field

 Fully transparent choice
of DB, based on
requirements (SLAs)

 3-step-process:

1. Requirements

2. Resolution

3. Mediation

Materialization Model
 Sticky Partitioning

schema-node db mapping
 Primary Database

materializes data with
staleness bound

2. Choose

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

3. Add

 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all

binary requirements

◦ Pick the one that has the best score
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all

binary requirements

◦ Pick the one that has the best score
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all

binary requirements

◦ Pick the one that has the best score
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

 The Provider resolves the
requirements

 RANK algorithm recursively
analyzes schema annotations

 For each schema element:
◦ Find each DB that satisfies all

binary requirements

◦ Pick the one that has the best score
according to utility function of
historic or predicted metrics

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element db
 transform db-independent to db-

specific operations

 The PPM routes data and
operations to the chosen DBs

 In the primary database
model, it triggers periodic
materializations

 Metrics (latency, availability,
etc.) are reported to the
resolver

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic

materialization
Report
metrics

1. CRUD, queries,
transactions, etc.

db1 db2 db3

Periodic materializations to
primary copy

2. route

Scenario: news articles with impression counts
Objective: low-latency top-k querys, high-throughput
counts

Article

ID
Title
…

Imp.

Imp.
ID

MongoDB Redis Sorted Set

Found Resolution

Scenario: news articles with impression counts
Objective: low-latency top-k querys, high-throughput
counts

Article

ID
Title
…

Imp.

Imp.
ID

MongoDB Redis Sorted Set

Found Resolution

• Summary
• Research areas
• Baqend

Motivation

Cache Sketch
Approach

Polyglot Persistence
Mediator

Wrap-up and future
work

 Cache Sketch: dual approach to web caching for
database services
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

 Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems

Cached
Initialization

Δ-Bounded
Staleness

Conflict-
Avoidant

Transactions

Invalidation
Minimization

Requirements Resolution Mediation

 Cache Sketch:
◦ Online learning of best TTL estimation

◦ Quantify COT properties

◦ Query result caching

◦ Extend YMCA to replication and sharding
architectures

 Polyglot Persistence:
◦ Common requirements/SLA „library“

◦ Implementation of Resolution

◦ Live Migration

◦ Scalable metrics aggregation
Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

validation

Begin Transaction

Bloom Filter

Reads

Writes

Commit: read- & write-set versions

Committed OR aborted + stale objects

1

2

3

4

5

Writes

(Hidden)

Writes (Public)

Client

prevent conflicting

validations

Read all

scale to high commit throughputs

and ensure availability

Nonfunctional RequirementsFunctional Requirements

Scan-Querys

Conditional Updates

Transactions

Filter-Querys

Joins

Analytics

Elasticity

Consistency

Read-Latency

Write-Latency

Write-Throughput

Scalability of Data Volume

Scalatbility of Request Load

Read-Availability

Write-Availability

Data model

Backend Systems

Constraints

Automized

Choice

Model Class

MongoDB Redis Db4o Cassandra HBase

Mediator

REST-Server

REST-Server

Event Server

[SELECT [* | _id]]
FROM <bucket>
[WHERE <condition> [AND <condition> ...]]
[ORDER BY, LIMIT, OFFSET]

1

2

Client

Write

Matching Objects (Streamed)

Match registered queries

Forward object
3

Register

Client

Expiration-
based Caches

Invalidation-
based Caches

Server Cache Sketch

St
al

en
es

s-
M

in
im

iz
at

io
n

M
o

de
In

va
lid

at
io

n
-M

in
im

iz
at

io
n

M
o

de

10201040

10101010

Write Counting
Bloom Filter

Expiration
Priority Queue

Request
Path

Server/DB

Invalidations,
Objects Report Expirations

and Writes

Needs Invalidation?

Client Cache Sketch

at
connect

Periodic
every t

seconds

at
transaction

begin

Cache
Hits

10101010 Bloom filter
Needs Revalidation?

Browser Cache,
Forward Proxy,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

1

2 3

4

Optimistic
Client Caching

2
Staleness
Bounding

1

3
Conflict
Avoidance

4
Invalidation
Minimization

Write record x
ORESTES

Write record x
ORESTES

Stream Processing
System

x

Write record x
ORESTES

Stream Processing
System

x

Treat every matching
query q as changed

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record and
Query Keys

Write record x
ORESTES

Stream Processing
System

x

Treat every matching
query q as changed

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record and
Query Keys

Write record x
ORESTES

Stream Processing
System

x

Treat every matching
query q as changed

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record and
Query Keys

Notification to
Subscribers

(WebSockets, SSE, Mobile Push)

Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann,
Malte Lauenroth, Michael Schaarschmidt

19. August 2014

Internet

Seoxy
Desktop

Mobile

Tablet

 Orestes as a startup, funded since March 2014

Thank you

Contact:

gessert@informatik.uni-hamburg.de

http://orestes.info

http://baqend.com

