
Scalable Push-Based Real-Time Queries
on Top of Pull-Based Databases

Wolfram Wingerath
May 8, 2019, Disputation, Hamburg



Outline

• Pull vs. Push 
• Traditional DB Queries
• Why Real-Time Queries?
• How to Provide Them?

• The Primary Challenges
C1 Scalability
C2 Expressiveness
C3 Legacy Support
C4 Abstract API

• Research Question

Discussion
Applications & Outlook

Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

…

∑

A Scalable RTDB Design
InvaliDB: Concept & Prototype



Traditional Databases
The Problem: No Request – No Data!

circular shapes

What‘s the 
current state?

Periodic Polling for query result maintenance:
→ inefficient
→ slow



Real-time Databases
Always Up-to-Date With Database State

circular shapes

Real-Time Queries for query result maintenance:
→ efficient
→ fast



Real-Time Query Maintenance
Matching Every Query Against Every Update

 Potential bottlenecks:
• Number of queries
• Write throughput
• Query complexity

Similar processing for:
• Triggers
• ECA rules
• Materialized views



 C1: Scalability: 

 Handle additional queries

 Handle increasing throughput

Challenges
Real-Time Databases: Major challenges

 C2: Expressiveness: 

 Content search? Composite filters?

 Ordering? Limit? Offset?

 C3: Legacy Support: 

 Real-time queries for existing databases

 Decouple OLTP from real-time workloads

 C4: Abstract API

 Data independence

 Self-maintaining queries

Research Question: „How can expressive push-based 
real-time queries be implemented on top of an existing 
pull-based database in a scalable and generic manner?“



Outline

• Data Management Classes
• Historical Overview
• 4-Part Categorization

• Real-Time Databases
• Poll-and-Diff
• Oplog Tailing

• System Comparison
• Meteor
• RethinkDB
• Parse
• Firebase
• InvaliDBDiscussion

Applications & Outlook

Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

…

∑

A Scalable RTDB Design
InvaliDB: Concept & Prototype



1970

1980

1990

2000

2010

today

Relational 
Model

Ingres

System R

Triggers

Entity-Relationship Model

SQL 
Standard

PostgreSQL

HiPAC

Starburst

Rapide

STREAM

Aurora & 
Borealis

MapReduce

Bigtable

Dynamo

Spark

Storm

Flink

Samza

RethinkDB

Meteor

Firebase

InvaliDB

GFS

Relational Databases

Active Databases

CEP & 
Streams

Big Data & 
NoSQL

Real-Time 
Databases

A Short History of Data Management
Hot Topics Through The Ages

Telegraph

Stream 
Processing

[WRG19, WGW+18]



Data Management Systems
A High-Level Categorization

Database 
Management

Stream 
Processing

Real-Time
Databases

Data Stream 
Management

static
collections

evolving
collections

structured
streams

unstructured
streams

push-basedpull-based

[WRG19, WGW+18]



?
app server

Typical Maintenance Mechanisms (1/2)
Poll-and-Diff

• Local change monitoring: app servers detect local changes
→ incomplete in multi-server deployment

• Poll-and-diff: global changes are discovered through polling
→ staleness window
→ read scalability?

monitor
incoming

writes

CRUD

repeat query every 10 seconds

forward
CRUD

!

app server

[GWR17, Win17]



change log broadcast

Shard BShard A Shard C

database cluster (3 shards)

writes

monitor
change log

push relevant events

Typical Maintenance Mechanisms (2/2)
Change Log Tailing

app server app server

• Every application server receives
all DB writes through oplog
→ write scalability? 

[GWR17, Win17]



Poll-and-Diff Change Log Tailing Unknown 2-D Partitioning

Write Scalability      

Read Scalability     ?
(100k connections)



Composite 
Filters (AND/OR)     

(AND In Firestore)


Sorted Queries     
(single attribute)



Limit      

Offset     
(value-based)



Self-Maintaining
Queries      

Event Stream 
Queries      

Real-Time Database Comparison

[GWR17, Win17]



Outline

• System Model & Overview
• Query Subscription
• Write Ingestion
• Change Propagation

• Real-Time Query Processing
• Two-Dimensional 

Workload Partitioning
• Processing Stages

• Performance Evaluation 
• Read Scalability
• Write Scalability
• Multi-TenancyDiscussion

Applications & Outlook

Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

…

∑

A Scalable RTDB Design
InvaliDB: Concept & Prototype



InvaliDB: A Scalable Real-Time Database Design
System Model & Overview

Event LayerInvaliDB Cluster Application Server Pull-Based Database

 Real-Time & OLTP 
Workloads Decoupled: 

 isolated failure domains

 separated resource
requirements & 
independent scaling

End User

 Realtime-as-a-Service For
Heterogeneous Tenants: 

 resource pooling: high 
matching performance
& overall efficiency

 multi-tenancy: low
provisioning overhead
per application server

[WGF+17, GSW+17]



 Pluggable Query Engine: 

 legacy-compatibility

 multi-tenancy across
databases

w
ri

te
p

ar
ti

ti
o

n
1

w
ri

te
p

ar
ti

ti
o

n
2

w
ri

te
p

ar
ti

ti
o

n
3

InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

query
partition 1

query
partition 2

query
partition 3

read scalability

w
ri

te
sc

al
ab

ili
ty

 Read & Write Scalability: 

 many concurrent users

 high write throughput

 no single-server bottleneck

[WGF+17, GSW+17]



InvaliDB: A Scalable Real-Time Database Design
Staged Real-Time Query Processing

Change notifications go through different 
query processing stages:
1. Filter queries: track matching status

→ before- and after-images
2. Sorted queries: maintain result order
3. Joins: combine maintained results
4. Aggregations: maintain aggregations

filtering

sorting

joins

aggregations

e
v
e
n
t
la
y
e
r

[WGF+17, GSW+17]



InvaliDB Cluster Pull-Based DatabaseEvent Layer Application Server

Evaluation: Performance & Scalability
Prototype Implementation

o Query Processing

 low latency

 customizability

 tried & tested

o Event Layer

 low latency

 high per-node throughput

 ease of deployment

o Database

 typical RTDB expressiveness

 typical NoSQL datastore

 wildly popular

[WGF+17, GSW+17, Win16, WGFR16, GWFR16]



Linear Read Scalability
Sustainable Queries at 1k Writes per Second

1.5 mio. matching ops/s
per node



Linear Write Scalability
Sustainable Throughput With 1k Active Queries

1 mio. matching ops/s
per node



Outline

• Application Scenarios
• Real-Time Queries
• Query Caching

• Future Work
• Publications

• Articles & Papers
• Tutorials
• Book

• Contributions
• Data Management 

Categorization
• InvaliDB: Design & Impl.
• Proof of Practicality

Discussion
Applications & Outlook

Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

…

∑

A Scalable RTDB Design
InvaliDB: Concept & Prototype



var query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt')
.limit(10)
.offset(20);

query.resultList(result => ...);

query.resultStream(result => ...);

Pull-Based Query

Real-Time Query

Use Case 1: Real-Time Queries
An Easy-to-Use JavaScript API

[WGR19a]



Baqend Real-Time Query Performance
Low Overhead, High Efficiency

Read-Heavy Workload Write-Heavy Workload



How to detect changes to
query results:
„Give me the most popular
products that are in stock.“

Add

Change

Remove

Use Case 2: Consistent Query Caching
InvaliDB For Invalidating DB Queries

[WGF+17, GSW+17]



Query Caching
Improving Pull-Based Query Performance

Latency Throughput

[GSW+17]



 Extending Semantics
 Additional Languages, Joins & Aggregations

 Transactions

 Stream-Based Queries & CEP 

 Trade-Offs & Optimizations
 Failure Transparency

 Deployment & Adaptive Scaling

 Client Performance

 Exploring New Use Cases
 Reactive & Collaborative (Mobile) Apps

 Enhancing UI in Existing Applications

 Augmenting Cache Coherence Schemes

Future Research
Open Challenges & Follow-Up Work



[GFW+ 14]
Gessert, Felix; Friedrich, Steffen; Wingerath, Wolfram; Schaarschmidt, 
Michael; Ritter, Norbert: Towards a Scalable and Unified REST API for
Cloud Data Stores, Informatik 2014 (DMC 2014)

[FWGR14] 
Friedrich, Steffen; Wingerath, Wolfram; Gessert, Felix; Ritter, Norbert:
NoSQL OLTP Benchmarking: A Survey, Informatik 2014 (DMC 2014)

[WFR15]
Wingerath, Wolfram; Friedrich, Steffen; Ritter, Norbert: BTW 2015 –
Jubiläum an der Waterkant. In: Datenbank-Spektrum 15 (2015)

[SRS+15]

Seidl, Thomas (ed.); Ritter, Norbert (ed.); Schöning, Harald (ed.);
Sattler, Kai-Uwe (ed.); Härder, Theo (ed.); Friedrich, Steffen (ed.);
Wingerath, Wolfram (ed.): Datenbanksysteme für Business, Technologie 
und Web (BTW 2015) – Konferenzband, BTW 2015

[WFGR15] 
Wingerath, Wolfram; Friedrich, Steffen; Gessert, Felix; Ritter, Norbert: 
Who Watches the Watchmen? On the Lack of Validation in NoSQL
Benchmarking, BTW 2015

Publications
DMC 2014, Datenbank-Spektrum, BTW 2015



[RHL+15]

Ritter, Norbert (ed.); Henrich, Andreas (ed.); Lehner, Wolfgang (ed.);
Thor, Andreas (ed.); Friedrich, Steffen (ed.); Wingerath, Wolfram (ed.):
Datenbanksysteme für Business, Technologie und Web (BTW 2015) –
Workshopband, BTW 2015

[GSW+15]
Gessert, Felix; Schaarschmidt, Michael; Wingerath, Wolfram; Friedrich,
Steffen; Ritter, Norbert: The Cache Sketch: Revisiting Expiration-based
Caching in the Age of Cloud Data Management, BTW 2015

[Win16]
Wingerath, Wolfram: The Joy of Deploying Apache Storm on Docker 
Swarm, highscalability.com (2016).

[WGFR16]
Wingerath, Wolfram; Gessert, Felix; Friedrich, Steffen; Ritter, Norbert:
Real-Time Stream Processing for Big Data, it – Information Technology
58 (2016).

Publications
…, highscalability.com, it – Information Technology



[GWFR16]
Gessert, Felix; Wingerath, Wolfram; Friedrich, Steffen; Ritter, Norbert:
NoSQL Database Systems: A Survey & Decision Guidance, 
SummerSOC 2016

[WGF+17]
Wingerath, Wolfram; Gessert, Felix; Friedrich, Steffen; Witt, Erik; Ritter, 
Norbert: The Case For Change Notifications in Pull-Based Databases, 
SCDM 2017

[FWR17]
Friedrich, Steffen; Wingerath, Wolfram; Ritter, Norbert: Coordinated
Omission in NoSQL Database Benchmarking, SCDM 2017

[Win17]
Wingerath, Wolfram: Real-Time Databases Explained: Why Meteor, 
RethinkDB, Parse & Firebase Don’t Scale, Baqend Tech Blog (2017).

[GWR17]
Gessert, Felix; Wingerath, Wolfram; Ritter, Norbert: Scalable Data 
Management: An In-Depth Tutorial on NoSQL Data Stores, BTW 2017

Publications
…, SummerSOC 2016, SCDM 2017, BTW 2017



[GSW+17]
Gessert, Felix; Schaarschmidt, Michael; Wingerath, Wolfram; Witt, Erik; 
Yoneki, Eiko; Ritter, Norbert: Quaestor: Query Web Caching for
Database-as-a-Service Providers, VLDB 2017

[WGW+18]
Wingerath, Wolfram; Gessert, Felix; Witt, Erik; Friedrich, Steffen; Ritter, 
Norbert: Real-Time Data Management for Big Data, EDBT 2018

[WRG19]

Wingerath, Wolfram; Ritter, Norbert; Gessert, Felix: Real-Time & Stream 
Data Management: Push-Based Data in Research & Practice, Springer 
International Publishing, book published in 2019
ISBN 978-3-030-10554-9

[WGR19a]
Wingerath, Wolfram; Gessert, Felix; Ritter, Norbert: Twoogle: Searching 
Twitter With MongoDB Queries, BTW 2019

[WGR19b]
Wingerath, Wolfram; Gessert, Felix; Ritter, Norbert: NoSQL & Real-Time 
Data Management in Research & Practice, BTW 2019

Publications
…, VLDB 2017, EDBT 2018, Springer Book, BTW 2019



Summary & Contributions

Traditional Databases: 
pull-based queries

◦ inefficient

◦ slow

With InvaliDB: 
push-based queries

◦ scalable & fast

◦ expressive

◦ legacy-compatible

1.) System Categorization

2.) RTDB System Design for
Opt-in Real-Time Queries

3.) A MongoDB-Based
Implementation

4.) Proof of Practicality Through 
Integration With Orestes


