JavaScript

BaQend

Florian Bucklers & Hannes Kuhlmann

4 \
Angular2 — Real-Time-Anwendungen mit \\/‘/(R&
TypeScript entwickeln \\A 4///

Speaker Question Round

9 @bagendcom

code.tal ks. Florian Biicklers & Hannes Kuhlmann 29/09/2016
2016

Who we are

* Many years of experience in web dev
* Both frontend and backend
 Many Angular 1 projects
 Very curious about Angular 2 = introduced it in a production web platform

 What we do: developing Bagend, a serverless backend for faster
websites and apps

* Great match for Angular2 (see our Bagend+Angular 2 starter kit)

by THINKS

STRYVE

2

BEIGE

MERINO WEISS

T ———
.

BaQend

< 1 second
Page Load
Time

v

7.8%

Conversion
Rate

STRYVE oy THINKS S h 0O p

N

Aktuell

46557

aktive Nutzer auf der Wi

W MOBILGERAT M TABLET M DESKTOP

Simultaneous
Users

‘
O

3%
Server
Usage

STRYVE by THINKS

Teppino,

REISHUNCER @
e
A \sz/«\
sc')\/geugew
~PARADIES-'

Angular 2

* A framework to build client-side applications

* Code can be written in Typescript, ES6, Dart or JavaScript (without
transpiling)

* Has an expressive template language
* Powerful data binding
e Available as release 2.0.0 since 14/09/2016

Why Angular 27

* Fixes many performance pitfalls of Angular 1

* Modern design using ES6 features, e.g.:
* Classes, Template strings

* Simplified APl and clearer concepts

* Uses Typescript as the primary language for:
* Interfaces
* Type declarations
* Decorators and Annotations

Plunker Live Coding:

http://bagend.com/codetalks

Hosted App:

http://spar.app.bagend.com

Components

 Components are the main classes where most of our code is

* Template:
* Mostly HTML with some additional instructions
* Styles are scoped to the component (similar to Web Components)

 Component Class:
 Methods and properties that can be accessed and invoked from the rendered
page
* Metadata specified in Decorators:
* Additional instructions like styles, template and directives

Template expressions

* Model to view binding for values and properties

{{question.votes}}

<div [class.active]="question.state == 'active'"'>

* View to model binding

<div (click)="onClick(Sevent)"></div>

* View to model & model to view (2-way-binding)

<input [(hgModel)]="value"></input>
<l-- short hand for -->
<input [ngModel]="value" (ngModel)="value = Sevent"></input>

Structural Directives *nglf, *ngFor

* *nglf conditionally renders a template

<I-- *nglf paragraph -->
<div *nglf="questions">

We have some questions
</div>

<l-- [nglf] with template -->
<template [nglf]="questions ">
<div>
We have some questions
</div>
</template>

* *ngFor loops over a collection

<div *ngFor="1let question of questions">{{question.question}}</div>

Forms

* ngModel adds two-way binding between model and input value

<input type="text" [(ngModel)]="newQuestion" name="question" required>
* ngSubmit handles form submissions
<form (ngSubmit)="ask(newQuestion)">

* Access to the form controller ngForm

<form #questionForm="ngForm" (ngSubmit)="ask(questionForm.value)">

<button type="submit" [disabled]="!questionForm.valid">Ask</button>
</form>

Services

e Services are useful to share common code between different
controllers.

* Services are injectable, so they can be used in any Component / Pipe
/ Directive ...

@Injectable()
export class StorageService {

 Services are created by Angular when they are first requested and are
treated as singletons

export class TalkComponent {
//StorageService is injected to the component by angular
constructor(private storageService:StorageService) {}

Pipes

* Pipes are template helpers to transform values

<small>{{question.date | date:'shortTime'}}</small>

* Pipes are pure by default
* A pure pipe is only invoked if its primitive input changed or the reference of
an object changed
* Impure Pipes

* Needed if the pipe must be reevaluated when properties of an object
changed or elements of an array are updated

* Are always evaluated (expensive)

Router

* Routes are defined as URL patterns and handled by a target
component

const routes: Routes = [
{ path: 'talk/:id', component: TalkComponent }

I;

* Matching route parameters can be accesses by injecting the
ActivatedRoute

export class TalkComponent {
constructor(private route: ActivatedRoute) {}

ngOnlnit() {
let id = this.route.snapshot.params['id'];

}
}

Router Navigation

* The routerlLink directive can be used to navigate to a
another route

Login

* The router can be used to navigate programmatically

constructor(private router: Router)

navigate(talk) {
this.router.navigate(['/talk’, talk.id]);

}

* Highlight active route links by setting a class

Login

Route Subscription

* You can also subscribe to route parameter changes

* Prevents recreating and redrawing the component when only a parameter
changes

ngOnlnit() {
this.sub = this.route.params.subscribe(params => {
let id = params['id'];
hE
}

ngOnDestroy() {
this.sub.unsubscribe();

}

Directives

* Extend the behavior of HTML

 Most directives introduce new attributes or HTML elements

* The controller can be exposed with exportAs

@Directive({
selector: '[collapse]’,
exportAs: 'Collapse’

)

export class CollapseDirective {

* Controller methods can be used within the template

<button type="button" (click)="navbar.toggle()"></button>
<div collapse #navbar="Collapse">

Model to directive binding

* A directive has no direct access to outer scope
* Instead model data can bind to a directive

<div [collapse]="navbarCollapse" >

* The directive subscribes to changes

export class CollapseDirective {
@Input() collapse:boolean;

ngOnChanges(changes: {[propKey: string]: SimpleChange}) {
if (changes.collapse) {
//changed by model
let from = changes.collapse.previousValue;
let to = changes.collapse.currentValue;

}
}
}

Directive to model binding

* A directive has no direct access to the outer scope
e Data can be sent to the model

export class CollapseDirective {
@Output() collapse = new EventEmitter<boolean>();

toggle() {
this.expanded = lthis.expanded;

this.collapse.emit(this.expanded);

}
}

 And be subscribed to in the view

<div (collapse)="navbarCollapse = Sevent">

Directive <-> model binding

* Binding can be two-way, similar to components:

<div [(collapse)]="navbarCollapse">

export class CollapseDirective {
@Input() collapse:boolean;
@Output() collapseChange = new EventEmitter<boolean>();

ngOnChanges(changes: {[propKey: string]: SimpleChange}) {
if (changes.collapse)
//changed by model

}

toggle() {
this.collapseChange.emit(!this.expanded);
}
}

Thank youl!

{fb,hk}@bagend.com
nttp://www.bagend.com/guide/starters/
nttp://bagend.com/codetalks
nttp://spqr.app.bagend.com

