
Insert company logo

JavaScript

Angular2 – Real-Time-Anwendungen mit

TypeScript entwickeln

Florian Bücklers & Hannes Kuhlmann

Florian Bücklers & Hannes Kuhlmann 29/09/2016

@baqendcom

SPQR

Speaker Question Round

Who we are

• Many years of experience in web dev
• Both frontend and backend

• Many Angular 1 projects

• Very curious about Angular 2  introduced it in a production web platform

• What we do: developing Baqend, a serverless backend for faster
websites and apps

• Great match for Angular2 (see our Baqend+Angular 2 starter kit)

Shop

Simultaneous
Users

< 1 second
Page Load

Time

7.8%
Conversion

Rate

3%
Server
Usage

Angular 2

• A framework to build client-side applications

• Code can be written in Typescript, ES6, Dart or JavaScript (without
transpiling)

• Has an expressive template language

• Powerful data binding

• Available as release 2.0.0 since 14/09/2016

Why Angular 2?

• Fixes many performance pitfalls of Angular 1

• Modern design using ES6 features, e.g.:
• Classes, Template strings

• Simplified API and clearer concepts

• Uses Typescript as the primary language for:
• Interfaces

• Type declarations

• Decorators and Annotations

http://spqr.app.baqend.com

http://baqend.com/codetalks
Plunker Live Coding:

Hosted App:

Components

• Components are the main classes where most of our code is

• Template:
• Mostly HTML with some additional instructions

• Styles are scoped to the component (similar to Web Components)

• Component Class:
• Methods and properties that can be accessed and invoked from the rendered

page

• Metadata specified in Decorators:
• Additional instructions like styles, template and directives

Template expressions

• Model to view binding for values and properties

• View to model binding

• View to model & model to view (2-way-binding)

<div [class.active]="question.state == 'active'">

{{question.votes}}

<div (click)="onClick($event)"></div>

<input [(ngModel)]="value"></input>
<!-- short hand for -->
<input [ngModel]="value" (ngModel)="value = $event"></input>

Structural Directives *ngIf, *ngFor

• *ngIf conditionally renders a template

• *ngFor loops over a collection

<!-- *ngIf paragraph -->
<div *ngIf="questions">

We have some questions
</div>

<!-- [ngIf] with template -->
<template [ngIf]="questions ">

<div>
We have some questions

</div>
</template>

<div *ngFor="let question of questions">{{question.question}}</div>

Forms

• ngModel adds two-way binding between model and input value

• ngSubmit handles form submissions

• Access to the form controller ngForm

<input type="text" [(ngModel)]="newQuestion" name="question" required>

<form (ngSubmit)="ask(newQuestion)">

<form #questionForm="ngForm" (ngSubmit)="ask(questionForm.value)">
…
<button type="submit" [disabled]="!questionForm.valid">Ask</button>

</form>

Services

• Services are useful to share common code between different
controllers.

• Services are injectable, so they can be used in any Component / Pipe
/ Directive …

• Services are created by Angular when they are first requested and are
treated as singletons

@Injectable()
export class StorageService {

export class TalkComponent {
//StorageService is injected to the component by angular
constructor(private storageService:StorageService) {}

Pipes

• Pipes are template helpers to transform values

• Pipes are pure by default
• A pure pipe is only invoked if its primitive input changed or the reference of

an object changed

• Impure Pipes
• Needed if the pipe must be reevaluated when properties of an object

changed or elements of an array are updated

• Are always evaluated (expensive)

<small>{{question.date | date:'shortTime'}}</small>

Router

• Routes are defined as URL patterns and handled by a target
component

• Matching route parameters can be accesses by injecting the
ActivatedRoute

const routes: Routes = [
{ path: 'talk/:id', component: TalkComponent }

];

export class TalkComponent {
constructor(private route: ActivatedRoute) {}

ngOnInit() {
let id = this.route.snapshot.params['id'];

}
}

Router Navigation

• The routerLink directive can be used to navigate to a
another route

• The router can be used to navigate programmatically

• Highlight active route links by setting a class

Login

constructor(private router: Router)

navigate(talk) {
this.router.navigate(['/talk', talk.id]);

}

Login

Route Subscription

• You can also subscribe to route parameter changes
• Prevents recreating and redrawing the component when only a parameter

changes

ngOnInit() {
this.sub = this.route.params.subscribe(params => {

let id = params['id'];
});

}

ngOnDestroy() {
this.sub.unsubscribe();

}

Directives

• Extend the behavior of HTML
• Most directives introduce new attributes or HTML elements

• The controller can be exposed with exportAs

• Controller methods can be used within the template

@Directive({
selector: '[collapse]',
exportAs: 'Collapse'

})
export class CollapseDirective {

<button type="button" (click)="navbar.toggle()"></button>
<div collapse #navbar="Collapse">

Model to directive binding

• A directive has no direct access to outer scope
• Instead model data can bind to a directive

• The directive subscribes to changes
export class CollapseDirective {

@Input() collapse:boolean;

ngOnChanges(changes: {[propKey: string]: SimpleChange}) {
if (changes.collapse) {

//changed by model
let from = changes.collapse.previousValue;
let to = changes.collapse.currentValue;

}
}

}

<div [collapse]="navbarCollapse">

Directive to model binding

• A directive has no direct access to the outer scope
• Data can be sent to the model

• And be subscribed to in the view
<div (collapse)="navbarCollapse = $event">

export class CollapseDirective {
@Output() collapse = new EventEmitter<boolean>();

toggle() {
this.expanded = !this.expanded;
this.collapse.emit(this.expanded);

}
}

Directive <-> model binding

• Binding can be two-way, similar to components:
<div [(collapse)]="navbarCollapse">

export class CollapseDirective {
@Input() collapse:boolean;
@Output() collapseChange = new EventEmitter<boolean>();

ngOnChanges(changes: {[propKey: string]: SimpleChange}) {
if (changes.collapse)

//changed by model
}

toggle() {
this.collapseChange.emit(!this.expanded);

}
}

Thank you!
{fb,hk}@baqend.com
http://www.baqend.com/guide/starters/
http://baqend.com/codetalks
http://spqr.app.baqend.com

