
Cache Sketches
Using Bloom Filters and Web Caching
Against Slow Load Times

Felix Gessert, Florian Bücklers
{fg,fb}@baqend.com

@baqendcom

Who we are

Research Project since 2010

Backend-as-a-Service Startup since 2014

 Felix Gessert, Florian Bücklers

Cache Sketch:
Research Approach

Using Web Caching in
Applications

Introduction Main Part Conclusions

Web Performance:
State of the Art

Presentation
is loading

Average: 9,3s

Why performance matters

Loading…

-1% Revenue

100 ms

-9% Visitors

400 ms500 ms

-20% Traffic

1s

-7% Conversions

An Average Website
Some Statistics

http://httparchive.org/

If perceived speed is such an
important factor

...what causes slow page load times?

The Problem
Three Bottlenecks: Latency, Backend & Frontend

High Latency

Backend

Frontend

 Achieve a fast render of the page by:
◦ Reducing the critical resources needed

◦ Reducing the critical bytes which must be transferred

◦ Loading JS, CSS and HTML templates asynchronously

◦ Rendering the page progressively

◦ Minifying & Concatenating CSS, JS and images

Frontend Performance
Break-down of the Critical Rendering Path

Google Developers, Web Fundamentals
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/analyzing-crp.

 Well known problem & good tooling:
◦ Optimizing CSS (postcss)

◦ Concatenating CSS and JS (processhtml)

◦ Minification and Compression (cssmin, UglifyJS, Google
Closure, imagemin)

◦ Inline the critical CSS (addyosmani/critical)

◦ Hash assets to make them cacheable (gulp-rev-all)

Frontend Performance
Tools to improve your page load

Network Performance
Break down of a single resource load

 DNS Lookup

◦ Every domain has its own DNS lookup

 Initial connection

◦ TCP makes a three way handshake  2 roundtrips

◦ SSL connections have a more complex handshake  +2 roundtrips

 Time to First Byte

◦ Depends heavily on the distance between client and the backend

◦ Includes the time the backend needs to render the page

 Session lookups, Database Queries, Template rendering …

 Content Download

◦ Files have a high transfer time on new connections, since the initial
congestion window is small many roundtrips

Network Performance
Common Tuning Knobs

 Persistent connections, if possible HTTP/2

 Avoid redirects

 Explicit caching headers (no heuristic caching)

 Content Delivery Networks
◦ To reduce the distance between client and server

◦ To cache images, CSS, JS

◦ To terminate SSL early and optimized

 Single Page Apps:
◦ Small initial page that loads additional parts asynchronously

◦ Cacheable HTML templates + load dynamic data

◦ Only update sections of the page during navigation

Network Latency: Impact

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Network Latency: Impact

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

2× Bandwidth = Same Load Time

½ Latency ≈ ½ Load Time

Backend Performance
Scaling your backend

 Horizontally scalable
databases (e.g. “NoSQL”)

◦ Replication

◦ Sharding

◦ Failover

Load Balancer Application Server Database

 Stateless session
handling

 Minimize shared
state

 Efficient Code &
IO

 Load Balancing

 Auto-scaling

 Failover

Polaris:

Idea: construct graph that captures real read/write and
write/write JS/CSS dependencies

Improvement: ~30% depending on RTT and bandwidth

Limitation: cannot deal with non-determinism, requires server to
generate a dependency graph for each client view

Research Approaches
Two Examples

Netravali, Ravi, James Mickens, et al. Polaris: Faster Page Loads
Using Fine-grained Dependency Tracking, NSDI 2016

Shandian:

Idea: Proxy is more powerful than browser, especially mobile
 evaluate page on proxy

Improvement: ~50% for slow Android device

Limitation: needs modified browser, only useful for slow devices

Research Approaches
Two Examples

Wang, Xiao Sophia, Arvind Krishnamurthy, and David Wetherall.
"Speeding up Web Page Loads with Shandian." NSDI 2016.

Client Proxy

Shandian:

Idea: Proxy is more powerful than browser especially mobile ->
evaluate page on proxy

Improvement: ~50% for slow Android device

Limitation: needs modified browser, only useful for slow devices

Other Research Approaches
Two Examples

Wang, Xiao Sophia, Arvind Krishnamurthy, and David Wetherall.
"Speeding up Web Page Loads with Shandian." NSDI 2016.

Client Proxy

Many good ideas in current research,
but:

o Only applicable to very few use cases
o Mostly require modified browsers
o Small performance improvements

Performance: State of the Art
Summarized

Frontend Latency Backend

• Doable with the
right set of best
practices

• Good support
through build tools

• Caching and CDNs
help, but a
considerable effort
and only for static
content

• Many frameworks
and platforms

• Horizontal
scalability is very
difficult

Performance: State of the Art
Summarized

Frontend Latency Backend

• Easy with the right
set of best
practices

• Good support
through build tools

• Caching and CDNs
help, but large
effort and only for
static content

• Many frameworks
and platforms

• Horizontal
scalability is very
difficult

Good Resources:

Good Tools:

https://developers.google.com/web/fundamentals/performance/?hl=en

https://www.udacity.com/course/website-performance-optimization--ud884chimera.labs.oreilly.com/
books/1230000000545

shop.oreilly.com/produc
t/0636920033578.do

https://developers.google.com/speed/
pagespeed/

https://gtmetrix.com http://www.webpagetest.org/

Performance: State of the Art
Summarized

Frontend Latency Backend

• Doable with the
right set of best
practices

• Good support
through build tools

• Caching and CDNs
help, but large
effort and only for
static content

• Many frameworks
and platforms

• Horizontal
scalability is very
difficult

How to cache & scale
dynamic content?

Cache Sketch:
Research Approach

Using Web Caching in
Applications

Introduction Main Part Conclusions

Web Performance:
State of the Art

Goal: Low-Latency for Dynamic Content
By Serving Data from Ubiquitous Web Caches

Low Latency

Less Processing

Stale
Data

In a nutshell
Problem: changes cause stale data

In a nutshell
Solution: Proactively Revalidate Data

Cache Sketch (Bloom filter)

updateIs still fresh? 1 0 11 0 0 10 1 1

Innovation
Solution: Proactively Revalidate Data

F. Gessert, F. Bücklers, und N. Ritter, „ORESTES: a Scalable
Database-as-a-Service Architecture for Low Latency“, in
CloudDB 2014, 2014.

F. Gessert und F. Bücklers, „ORESTES: ein System für horizontal
skalierbaren Zugriff auf Cloud-Datenbanken“, in Informatiktage
2013, 2013.

F. Gessert, S. Friedrich, W. Wingerath, M. Schaarschmidt, und
N. Ritter, „Towards a Scalable and Unified REST API for Cloud
Data Stores“, in 44. Jahrestagung der GI, Bd. 232, S. 723–734.

F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, und
N. Ritter, „The Cache Sketch: Revisiting Expiration-based
Caching in the Age of Cloud Data Management“, in BTW 2015.

F. Gessert und F. Bücklers, Performanz- und
Reaktivitätssteigerung von OODBMS vermittels der Web-
Caching-Hierarchie. Bachelorarbeit, 2010.

F. Gessert und F. Bücklers, Kohärentes Web-Caching von
Datenbankobjekten im Cloud Computing. Masterarbeit 2012.

W. Wingerath, S. Friedrich, und F. Gessert, „Who Watches the
Watchmen? On the Lack of Validation in NoSQL
Benchmarking“, in BTW 2015.

M. Schaarschmidt, F. Gessert, und N. Ritter, „Towards
Automated Polyglot Persistence“, in BTW 2015.

S. Friedrich, W. Wingerath, F. Gessert, und N. Ritter, „NoSQL
OLTP Benchmarking: A Survey“, in 44. Jahrestagung der
Gesellschaft für Informatik, 2014, Bd. 232, S. 693–704.

F. Gessert, „Skalierbare NoSQL- und Cloud-Datenbanken in
Forschung und Praxis“, BTW 2015

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Expiration-based Caches:

 An object x is considered
fresh for TTLx seconds

 The server assigns TTLs
for each object

Invalidation-based Caches:

 Expose object eviction
operation to the server

Web Caching Concepts
Invalidation- and expiration-based caches

Classic Web Caching: Example
A tiny image resizer

Desktop

Mobile

Tablet

Resized
once

Cached and
delivered many

times

 The „Bloom filter principle“:
“Wherever a list or set is used, and space is at a premium,
consider using a Bloom filter if the effect of false positives can be
mitigated.”

Bloom filter Concepts
Compact Probabilistic Sets

A. Broder und M. Mitzenmacher, „Network applications
of bloom filters: A survey“, Internet Mathematics, 2004.

def insert(obj):

for each position in hashes(obj):

bits[position] = 1

def contains(obj):

for each position in hashes(obj):

if bits[position] == 0:

return false;

return true

 Bit array of length m

 k independent hash functions

 insert(obj): add to set

 contains(obj):

 Always returns true if the
element was inserted

 Might return true even
though it was not inserted
(false positive)

Bloom filter Concepts
Visualized

1 m
0 0 0 0 0 0 0 0 0 0

Empty Bloom Filter

1 m
0 1 0 0 0 0 1 0 0 1

Insert x

h1h2 h3

x

1 m
1 1 0 0 1 0 1 0 1 1

Insert y

h1h2 h3

y

Query x

1 m
1 1 0 0 1 0 1 0 1 1

h1h2 h3

=1?
n y

contained

Bloom filter Concepts
False Positives

False-Positive
for z

Query z

1 m
1 1 0 0 1 0 1 0 1 1

h1h2h3

=1?
y

contained

𝑓 ≈ 1 − 𝑒− ln 2 𝑘
≈ 0.6185

𝑚
𝑛

The false positive rate depends on the
bits m and the inserted elements n:

For f=1% the required bits per element are: 2.081 ln(1/0.01) = 9.5

Our Bloom filter
Open Source Implementation

Our Bloom filters
Example: Redis-backed Counting Bloom Filter

 Redis-backed Bloom filters:
◦ Can be shared by many servers

◦ Highly efficient through Redis‘ bitwise operations

◦ Tunable persistence

 Counting Bloom Filters: use counters instead of bits to
also allow removals
◦ Stores the materialized Bloom filter for fast retrieval

0 2 0 0 1 0 3 0 1 1COUNTS

0 1 0 0 1 0 1 0 1 1BITS

 Idea: use standard HTTP Caching for query results and
records

 Problems:

The Cache Sketch approach
Caching Dynamic Data

How to keep the
browser cache up-to-
date?

How to automatically
cache dynamic data in
a CDN?

When is data cacheable and
for how long approximately?

Orestes Architecture
Infrastructure

Content-Delivery-
Network

Polyglot Storage

Backend-as-a-Service Middleware:
Caching, Transactions, Schemas,
Invalidation Detection, …

Standard HTTP Caching
Unified REST API

Baqend Architecture
Infrastructure

Content-Delivery-
Network

IaaS-Cloud

on

CDN

on

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

Needs Revalidation?

The Cache Sketch approach
Letting the client handle cache coherence

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n-

M
in

im
iz

at
io

n

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

The End to End Path of Requests
The Caching Hierarchy

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

DB.posts.get(id) JavaScriptGET /db/posts/{id} HTTP

Updated by
Cache Sketch

Updated by the
server

Cache-Hit: Return Object
Cache-Miss or Revalidation: Forward
Request

Return record from DB
with caching TTL

 Let ct be the client Cache Sketch generated at time t, containing
the key keyx of every record x that was written before it expired
in all caches, i.e. every x for which holds:

The Client Cache Sketch

∃ 𝑟(𝑥, 𝑡𝑟 , 𝑇𝑇𝐿), 𝑤 𝑥, 𝑡𝑤 ∶ 𝑡𝑟 + 𝑇𝑇𝐿 > 𝑡 > 𝑡𝑤 > 𝑡𝑟

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key)

Client Cache Sketch

Bits = 1

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

JavaScript Bloomfilter:
~100 LOCs
~1M lookups per second

Guarantee: data is never stale for more
than the age of the Cache Sketch

The Server Cache Sketch
Scalable Implementation

Performance > 200k
ops per second:

Add keyx if x unexpired
and write occured

Remove x from Blom
filter when expired

Load Bloom filter

1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

 Clients load the Cache Sketch at connection

 Every non-stale cached record can be reused
without degraded consistency

Faster Page Loads1

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 11 KByte

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Faster CRUD Performance

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache
Sketch

fresh records

Revalidate record & Refresh Cache Sketch

Cache Hits

Fresh record & new Cache Sketch

-time t

-time t + Δ

2

Scalable ACID Transcations

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

3

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

validation 4

5Writes (Public)

Read all

prevent conflicting

validations

Committed OR aborted + stale objects

Commit: readset versions & writeset
3

Reads

2

Scalable ACID Transcations

 Novelty: ACID transactions on sharded DBs like MongoDB

 Current Work: DESY and dCache building a scalable namespace
for their file system on this

3

With Caching

Without
Caching

 Problem: if TTL ≫ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

 Trade-Off:

TTL Estimation
Determining the best TTL and cacheability

Longer TTLsShorter TTLs

• Higher cache-hit rates
• more invalidations

• less invalidations
• less stale reads

Idea:
1. Estimate average time to next write 𝐸[𝑇𝑤] for each record

2. Weight 𝐸[𝑇𝑤] using the cache miss rate

TTL Estimation
Determining the best TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

Good TTLs  small Bloom filter

TTL < TTLmin no caching of write-
heavy objects

End-to-End Example

Browser
Browser

Cache
CDN

Cache Server
Client Cache

Sketch
Server Cache

Sketch
b={x2}

t = {(x2, t2),
(x3, t3),(x1, t1)}

b= INITIALIZE c={(x2,t2),(x3,t3)} c={(x1,t1)

b={x2}

CONNECT

bt0={x2}
READ x3

QUERY

x3

RESPONSE

false
GET

x3

RESPONSE

x3

QUERY

x2

RESPONSE

true

READ x2

REVALIDATE

x2
c={(x3,t3)}

RESPONSE

x2,t4
c={(x2,t4),(x3,t3)} c={(x2,t4)}

REPORT READ

x2,t4
b={x2}

t = {(x2, t4),
(x3, t3),(x1, t1)}

RESPONSE

inv=true

WRITE x1
PUT

x1=v
REPORT WRITE

x1

RESPONSE

ok

INVALIDATE

x1

b={x1,x2}
t = {(x2, t4),

(x3, t3),(x1, t1)}

Consistency
What are the guarantees?

Consistency Level How

Δ-atomicity (staleness
never exceeds Δ seconds)

Controlled by age of Cache
Sketch

Montonic Writes Guaranteed by database

Read-Your-Writes and
Montonic Reads

Cache written data and most
recent read-versions in client

Causal Consistency If read timestamp is older
than Cache Sketch it is given,
else revalidate

Strong Consistency
(Linearizability)

Explicit revalidation (cache
miss at all levels)

A
lw

ay
s

O
p

t-
in

Performance

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached
initialization (simulation):

Average Latency for YCSB
Workloads A and B (real):

With Facebook‘s
cache hit rate: >2,5x
improvement

95% Read 5% Writes
5x latency
improvement

Cache all
GET requests

Authorize the user on
protected resources

Validate & renew
session tokens of users

Varnish and Fastly
What we do on the edge

Reject rate
limited users

Handle CORS
pre-flight requests

Access-Control-*

Collect access logs
& report failures

The Cache Sketch
Summary

Static Data Mutable Objects

{
"id":"/db/Todo/b5d9bef9-

6c1f-46a5-…",
"version":1,
"acl":null,
"listId":"7b92c069-…",
"name":"Test",
"activities":[],
"active":true,
"done":false

}

Queries/Aggregates

max-age=31557600

Immutability ideal for
static web caching:

Cache Sketch for browser
cache, proxies and ISP
caches

Invalidations for CDNs and
reverse proxies

SELECT TOP 4,
WHERE tag=„x“

How to do this?

Continuous Query Matching
Generalizing the Cache Sketch to query results

Main challenge: when to invalidate?

◦ Objects: for every update and delete

◦ Queries: as soon as the query result changes

How to detect query result
changes in real-time?

Query Caching
Example

 Add, Change, Remove all entail an invalidation and
addition to the cache sketch

SELECT * FROM posts
WHERE tags CONTAINS 'b'

Query Predicate P

Cached Query Result Q

𝑜𝑏𝑗1 ∈ 𝐐

𝑜𝑏𝑗2 ∈ 𝐐

Change

Add

Remove

InvaliDB

Architecture

ORESTES

Create
Update
Delete

Pub-Sub Pub-Sub

1 0 11 0 0 10 1 1

Fresh Cache Sketch

Continuous
Queries

(Websockets)

Fresh Caches

Polyglot Views

Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Steffen Friedrich, Norbert Ritter:
Quaestor: Scalable and Fresh Query Caching on the Web's Infrastructure. Under Submission.

InvaliDB
Matching on Apache Storm

Apache Storm:
• „Hadoop of Real-Time“
• Low-Latency Stream

Processing
• Custom Java-based

Topologies

InvaliDB goals:
• Scalability, Elasticity,

Low latency, Fault-
tolerance

 Latency mostly < 15ms, scales linearly w.r.t. number of
servers and number of tables

Query Matching Performance
Latency of detecting invalidations

Setting: query results can either be represented as
references (id-list) or full results (object-lists)

Approach: Cost-based decision model that weighs
expected round-trips vs expected invalidations

Ongoing Research: Reinforcement learning of decisions

Learning Representations
Determining Optimal TTLs and Cacheability

[𝑖𝑑1, 𝑖𝑑2, 𝑖𝑑3]

Object-ListsId-Lists

[𝑖𝑑: 1, 𝑣𝑎𝑙: ′𝑎′ , 𝑖𝑑: 2, 𝑣𝑎𝑙: ′𝑏′ ,
{𝑖𝑑: 3, 𝑣𝑎𝑙: ′𝑐′}]

Less Invalidations Less Round-Trips

What is the impact of query caching?

What is the impact of query caching?

Insight:

Query Caching = Real-Time Apps

Continuous Queries
Complementing Cached Queries

 Same streaming architecture can similarly notify the
browser about query result changes

 Application Pattern:

Streaming
Layer

Insert
… tag=‘b‘ …

Subscribe
tag=‘b‘

Orestes

Initial Page Load
using Cached
Queries

Critical data declaratively
specified and proactively
pushed via websockets

Continuous Query API
Subscribing to database updates

var stream = DB.News.find().stream();
stream.on("add", onNews);
stream.on("remove", onRemove);

 Orestes: DB-independent Backend-as-a-Service

 Cache Sketch Approach:
◦ Client decides when to revalidate, server invalidates CDN

◦ Cache Sketch = Bloom filter of stale IDs

◦ Compatible with end-to-end ACID transactions

◦ Query change detection in real-time

Summary

0 1 0 0 1
0 1 0 1 1
1 1 0 0 0
0 0 0 1 1

HTTP
Caching

Cache
Sketch

TTL
Estimation

RT Query
Matching

Invali-
dations

Cache Sketch:
Research Approach

Using Web Caching in
Applications

Introduction Main Part Conclusions

Web Performance:
State of the Art

Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann,
Malte Lauenroth, Michael Schaarschmidt

19. August 2014

Orestes Caching
Technology as a
Backend-as-a-Service

Page-Load Times
What impact does caching have in practice?

0
,7

s 1
,8

s 2
,8

s 3
,6

s

3
,4

s

CALIFORNIEN

0
,5

s

1
,8

s 2
,9

s

1
,5

s

1
,3

s

FRANKFURT

0
,6

s

3
,0

s

7
,2

s

5
,0

s 5
,7

s

SYDNEY

0
,5

s

2
,4

s

4
,0

s

5
,7

s

4
,7

s

TOKYO

Live Demo: Using Caching in Practice

Ziel mit InnoRampUp

Want to try Baqend?

Download Community

Edition

Free Baqend Cloud

instance

Thank you

Questions?

baqend.com

fg@
baqend.com

Twitter:
@baqendcom

