

Benjamin Wollmer

Going for Speed: Network

19.04.2021

Invoking a Request Is Easy….

fetch('https://example.com/profil')
.then(response => response.json())
.catch((error) => {
console.error('Error:', error);

});

<link rel="stylesheet" href="styles.css">

19.04.2021 4

19.04.2021 5

Stephen Ludin, Javier Garza
Learning HTTP/2 – A practical guide for beginners. 2017

Get Request
DNS in
Cache?

Is HTTPS?

Connection
open?

Y

Resolve DNS

N

Send Request
Y

Perform TLS
Handshake

YOpen TCP
Connection

N

… But Handling It?

N

Request Waterfall

19.04.2021 Thema, Name des Referenten/der Referentin 6

19.04.2021 7

DNS Lookup Initial Connection

TLS Handshake

Time to First Byte Content Download
https://example.com/

20 ms0 60 ms 80 ms 100 ms40 ms

TCP Handshake

Optimization Knobs
▪ DNS Performance
▪ TCP Connection Handling

▪ TLS Handshakes
▪ HTTP/2 Usage

Request Breakdown

Hypertext Transfer Protocol

HTTP

19.04.2021 9

TLS

HTTP/0.9

REST

HTTP/1.0 HTTP/1.1 HTTP/2 HTTP/3

Just
GET it

Get different
files

Do it
dynmically

Do it secure

Do it fast

State
Transfer

1991 Now

Do it faster

HTTP Requests and Responses

19.04.2021 10

HTTP Requests and Responses

▪ Standarized HTTP request
headers:

▪ authority

▪ path

▪ cookies

▪ user-agent

19.04.2021 11

HTTP Requests and Responses

▪ Negotiation

▪ Preferred Encodings/ Compression
algorithms

▪ User’s languages

19.04.2021 12

HTTP Requests and Responses

▪ Indicates the type of operation:

▪ GET/HEAD: read

▪ PUT: (over-)write

▪ POST: update

▪ DELETE: delete

▪ Others: PATCH, OPTIONS

▪ Different semantics:

▪ Safe, Idempotent, Cacheable

19.04.2021 13

HTTP Requests and Responses

19.04.2021 14

HTTP
Method

Request Has
Body

Response
Has Body

Safe Idempotent Cacheable

GET Optional Yes Yes Yes Yes

HEAD No No Yes Yes Yes

POST Yes Yes No No Yes

PUT Yes Yes No Yes No

DELETE No Yes No Yes No

CONNECT Yes Yes No No No

OPTIONS Optional Yes Yes Yes No

PATCH Yes Yes No No No

HTTP Requests and Responses

▪ Bypass any web caches

▪ Other options, for Cache-Control
e.g.:

▪ max-age

▪ max-stale

▪ only-if-cached

19.04.2021 15

Domain Name System

16

DNS Lookup Initial Connection

TLS Handshake

Time to First Byte Content Download

20 ms0 60 ms 80 ms 100 ms40 ms

TCP Handshake

Domain Name System

▪ Translates Domain Names to IP Addresses
Based on (unreliable but fast) UDP

▪ Database: <Name, Value, Type, Class, TTL>
TTL-based caching ensures performance

▪ Highly Performance-Relevant
DNS lookup in the critical request path

19.04.2021 17

19.04.2021 18

Client
Local DNS Server

baqend.com

Root DNS
Server

TLD DNS Server
for .com

Authoritative Name
Server for baqendPotentially 3-5 RTTs per Domain!

DNS: How it works

DNS: Performance Measures

▪ DNS Replicas + IP Anycasting

▪ Setting TTLs for Caching (e.g., 1 hour)
Problem: Can lead to unavailability

▪ Combine multiple DNS providers

▪ ISP favors the fastest server per region

▪ Availability increased (cf. Dyn attack)

19.04.2021 19
Stackoverflow Blog: https://blog.serverfault.com/2017/01/09/
surviving-the-next-dns-attack/

Transmission Control Protocol

20

DNS Lookup Initial Connection

TLS Handshake

Time to First Byte Content Download

20 ms0 60 ms 80 ms 100 ms40 ms

TCP Handshake

Transmission Control Protocol

19.04.2021 21I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Fall, Kevin R., and W. Richard Stevens. TCP/IP illustrated,
volume 1: The protocols. addison-Wesley, 2011.

Tolerance against
packet loss and

network congestion

Ensure that sent data
arrives in order

Provide data
integrity

Three-Way Handshake

19.04.2021 22I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Receiver Window: amount of data
the client is willing to receive at once

Sequence Number:
order of data

Each side has its
own seq. numbers

Congestion Avoidance

19.04.2021 23https://commons.wikimedia.org/wiki/File:TCP_Slow-
Start_and_Congestion_Avoidance.svg

Variables & Constants
cwnd – Congestion Window Size
ssthresh – Slow Start Threshold
MSS – Maximum Segment Size

Basics: Transmission Control Protocol

Core Question:
How to balance between aggressive
bandwidth use and packet loss?

Many Implementations:

▪ Original: TCP Tahoe and Reno
(original implementations)

▪ Newer ones: TCP Vegas, TCP New
Reno, TCP BIC, TCP CUBIC (Linux),
or Compound TCP (Windows)

19.04.2021 24

Transport Layer Security

DNS Lookup Initial Connection

TLS Handshake

Time to First Byte Content Download

20 ms0 60 ms 80 ms 100 ms40 ms

TCP Handshake

TLS: Cryptographically Secure Channels Over TCP

19.04.2021 26

Encryption
to protect against

eavesdropping

Integrity
to protect

against
modifications

Authentication
To verify the

counterpart‘s
identity

TLS Handshake

19.04.2021 27
I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Initiate key exchange
for symmetric crypto

TLS Options and
supported
Ciphersuites

Pick TLS version &
cipher, send
certificate

Client Server

Acks session
key

TLS False Start: Sending data in the 2nd handshake step

19.04.2021 28

Idea: session key known after 1st handshake
▪ Client already sends application data in 2nd round
▪ Does not change TLS protocol, only timing

Requirements for deplyoment:
▪ Ciphersuite with Forward Secrecy

(Diffie-Hellmann) required by browsers
▪ Server must support ALPN

Application Layer Protocol Negotiation: Upgrading Protocols

19.04.2021 29

Problem: which protocol will be used over TLS?

Client attaches supported
protocols to ClientHello message

Server selects a protocol and
sends it back in ServerHello

message

Session Resumption: Skipping key negotiation the 2nd time

19.04.2021 30

32-Byte Session ID identifies parameters
1. Client sends session ID to server
2. Server looks up ID and reuses ciphersuite and session

key

Problem: shared state across servers

→ Encrypt stateless Session Ticket (RFC 5077)
based on a secret server key

Optimizing TLS Certificates: Performance Best Practices

Minimize length of the trust chain

▪ Missing certs will be fetched
→ DNS, TCP, HTTP overhead

▪ Include intermediate certs

▪ But not CA cert

19.04.2021 31
I. Grigorik, High performance browser
networking. O’Reilly Media, 2013.

Optimizing Certificate Revocation

Problem:
▪ Clients have to check if certificates were

revoked

▪ Certificate Revocation Lists (CRLs): CA
maintains list of revoked serial numbers
→ large & slow

▪ Online Certificate Status Protocol
(OCSP): client requests CA database for
each serial number → additional RTT

Improvement:
▪ OCSP Stapling

▪ Server staples pre-fetched,
timestamped OCSP responses to
certificate reply

19.04.2021 32

Content Delivery Network

DNS Lookup Initial Connection

TLS Handshake

Time to First Byte Content Download

20 ms0 60 ms 80 ms 100 ms40 ms

TCP Handshake

Latency vs Bandwidth

19.04.2021 34I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

?

?

Latency vs Bandwidth

19.04.2021 35I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Adding a Content Delivery Network (CDN)

19.04.2021 36

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Expiration vs Invalidation

19.04.2021 37

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Expiration-based Invalidation-based

Backend

HTTP/2

DNS Lookup Initial Connection

TLS Handshake

Time to First Byte Content Download

20 ms0 60 ms 80 ms 100 ms40 ms

TCP Handshake

HTTP/2 – What is it about

19.04.2021 39

Give new knobs to
tune network
performance

Fix design flaws
of HTTP1.x in

terms of
performance

Keep HTTP
semantics

intact

HTTP/2 – Features

19.04.2021 40

Multiplexing
(1 Connection)

Resource
Prioritization

Server
Push

Header
Compression

HTTP/1.1 Pipelining

19.04.2021 41

Client ServerHTTP/1.1 Client ServerHTTP/1.1
Pipelining

Client ServerHTTP/2
Multiplexing

Problem:
Head-of-line blocking

vs. HTTP/2 Multiplexing

Features: Multiplexing (vs. Pipelining)

19.04.2021 42

HTTP/1.1 HTTP/2
6 TCP connections
with handshake

Requests in
blocks of 6

Load time cut in
half

Higher load time
per request but full
concurrency

Multiplexing vs. Priorities

19.04.2021 43

CSS

JavaScript

JavaScript

PNG

JPG

PNG

JPG

Time

First Paint

CSS

JavaScript

JavaScript

PNG

JPG

PNG

JPG

Time

First Paint

} Higher Priorities

Resource Prioritization

▪ Dependencies: A resource is
transferred ahead of its
dependencies

▪ Weights: Resources with same
parent are send in proportion to
their weight

▪ Browser sets priority
automatically

19.04.2021 44

Features: Header Compression

HPACK Compression:

▪ Dictionaries on client and server for
sent headers

▪ Static dictionary for common
headers

▪ Dynamic dictionary for other
headers

▪ Huffman encoding for header fields

19.04.2021 45
Ilya Grigorik - High Performance Browser Networking – HTTP/2
https://hpbn.co/http2/

Optimization: Domain Sharding

19.04.2021 46

Domain Sharding

Objective:
parallelize requests

HTTP/2
Connection

Advantages

▪ Unlimited parallelism on one connection

▪ Less protocol overhead (1 vs 6 TLS
handshakes)

▪ Better resource prioritization

▪ Better congestion control

Optimization: Concatenation

19.04.2021 47

++

==

Advantages

▪ Better prioritization

▪ Individually cachable

Optimization: Spriting

19.04.2021 48

PNG

Advantages

▪ Better prioritization

▪ Individually cachable

…

PNGPNG PNG

HTTP/2: Push

19.04.2021 49

Client Server

HTML Request

HTML Response

CSS Request

CSS Response

• Server pushes needed resources
proactively to the client

• Browser request is answered
immediately from push cache

CSS Request

Response

Push CSS Response

Push Cache

Saves:

• one roundtrip for the request
• several roundtrips for download

HTTP/3

Problem: HTTP/2 Head-Of-Line Blocking

▪ Now on TCP Level

▪ 1 Connection = Everything is
blocked

▪ Performance may be worse
then HTTP/1.1 (Bad Connection)

19.04.2021 51

HTTP/3: TCP → UDP (QUIC)

▪ Semantics Stay

▪ Browser Support

▪ (Only) Enabled in Chrome

▪ Additional Computing Overhead

▪ Quic

▪ Secure by Default

▪ Independed Requests

▪ Fast Network Switch

19.04.2021 52

Compression

HTTP Text Compression

Content Encoding Desktop Mobile Combined

No text compression 60.06% 59.31% 59.67%

Gzip 30.82% 31.56% 31.21%

Brotli 9.10% 9.11% 9.11%

Other 0.02% 0.02% 0.02%

19.04.2021 54
Web Almanac 2020, Chapter 19: Compression
https://almanac.httparchive.org/en/2020/compression

Deflate vs. Brotli

▪ Encoded Dictionary

▪ Decompression:

▪ ~443 MB/s - ~484 MB/s

▪ Compression:

▪ ~146 MB/s - ~32 MB/s

▪ Static Dictionary

▪ Decompression:

▪ ~441 MB/s - ~508 MB/s

▪ Compression:

▪ ~145 MB/s - ~0.6 MB/s

19.04.2021 55
J. Alakuijala, E. Kliuchnikov, Z. Szabadka, L. Vandevenne: Comparison of Brotli,
Deflate, Zopfli, LZMA, LZHAM and Bzip2 Compression Algorithms, 2015

The Forgotten Ones

Delta Encoding

▪ Reuse Stale Content

▪ Only Updates

SDCH

▪ Predecessor of Brotli

▪ Dynamic Dictionaries

19.04.2021 56

Summary

19.04.2021 57

Optimize TCP, DNS
and TLS

Reduce Latency
by Caching

Make use of new
HTTP Features

