
The Technology Behind 
Progressive Web Apps
Service Workers in Detail

Erik Witt
ew@baqend.com

September 12, techcamp 2018, Hamburg

@baqendcom



What we are going to cover.

PWA Service Workers Speed Kit

Core Features
Building Blocks
Implementation

Lifecycle
Network Interception

Caching Strategies

Cache Coherence
Performance-

Measures



Why do(n‘t) we love native apps?

Weak.Great.

On Homescreen
In App Stores
Loading Fast
Work Offline
Use Phone APIs
Receive Push Notifications

Need Installation
Not Cross Platform
Tedious Realse and 
Update Processes
Maintaining Multiple 
Versions

Progressive Web Apps

seek to combine the great from native and web apps



What are Progessive
Web Apps?



Progressive Web Apps (PWAs)

Fast Loads
through Caching

Offline Mode 
(Synchronization)

Add-to-Homescreen
and Push Notifations

+ +



Try this:

www.baqend.com



Building Blocks of PWAs

1. Manifest 2. Service Worker

PWAs are best practices
and open web standards

Progessively enhance
when supported



Implementing PWAs

<link rel="manifest" href="/manifest.json">
{

"short_name": "Codetalks PWA",
"icons": [
{"src": "icon-1x.png", "type": "image/png", "sizes": "48x48"}],

"start_url": "index.html?launcher=true"
} 

1. Manifest declares Add-to-Homescreen:

PWAs are best practices
and open web standards

Progessively enhance
when supported



Implementing PWAs

2. Service Workers for caching & offline mode:

PWAs are best practices
and open web standards

Gracefully degrade when
not supported

Cache
SW.js

WebsiteWeb
App

Network



Implementing PWAs

3. Add Web Push and Background Sync:

PWAs are best practices
and open web standards

Progressively enhance the
user experience

Sync
SW.js

WebsiteWeb
App

Network

Push



Typical Architecture: App Shell Model

App Shell: HTML, JS, CSS, images
with app logic & layout

Content: Fetched on 
demand & may change
more often



Why PWAs over AMP & Instant Articles?

Independent
Technology

Work across
Devices

No Restrictions
on Development

What is the future of
Progessive Web Apps?



The Future of PWAs is bright.

Payment Request API

• Goal: replace traditional 
checkout forms

• Just ~10 LOC to implement
payment

• Vendor- & Browser-
Agnostic



The Future of PWAs is bright.

Credentials Management API

1. Click Sign-in → Native 
Account Chooser

2. Credentials API stores
information for future use

3. Automatic Sign-in afterwards



The Future of PWAs is bright.

Geofencing

• Notify web app when user
leaves of enters a defined
area

• Requires permission



The Future of PWAs is bright.

Web Speech API

Native Speech Recognition in the
Browser:

annyang.addCommands({
'Hello Meetup': () => {

console.log('Hello you.');
}

});



The Future of PWAs is bright.

Web Share API

• Share site through native 
share sheet UI 

• Service Worker can
register as a Share Target



What are Service Workers?



What are Service Workers?

NetworkService WorkerBrowser Tabs

Programmable Network Proxy, running as a separate 
Background Process, without any DOM Access.



What do Service Workers do?

NetworkService WorkerBrowser Tabs

• Cache Data (CacheStorage)
• Store Data (IndexedDB)

• Receive Push
• Respond when Offline



What do Service Workers do?

NetworkService WorkerBrowser Tabs

• Intercept HTTP Requests
• Sync Data in Background

• Hide Flaky Connectivity 
from the User



Browser Support for Service Workers

Supported by ~90% of browsers.

Requires TLS Encryption.



Late, but all in: Microsoft

Publish PWAs to
Microsoft Store

or

https://blogs.windows.com/msedgedev/2018/02/06/welcoming-
progressive-web-apps-edge-windows-10/#tqIAYGJrOUcxvCWg.97

Bing Crawls 
PWAs

Convert to
AppX

Microsoft Store



How are Service Workers registered?

<script>
navigator.serviceWorker.register('/sw.js');

</script>

NetworkService WorkerBrowser Tabs



How does the Lifecycle look like?

self.addEventListener('install', (event) => {
// Perform install steps

}); 

self.addEventListener('activate', (event) => {
// Perform activate steps

}); 

self.addEventListener('fetch', (event) => {
// React to fetch event

}); 



How to Communicate with Service Workers?

// Send message to browser tab
const client = await clients.get('id');
client.postMessage(someJsonData);

self.addEventListener('push', (event) => {
// Receive push notification

}); 

Fetch, 
Message, Push

Post Message

Browser Tab

(Web) Push Service

Push Notification

self.addEventListener('message', (event) => {
// Receive message

}); 



Intercepting Network Requests

self.addEventListener('fetch', (event) => {
// React to fetch event
const { url } = event.request;
event.respondWith((async () => {
const request = new Request(url.replace('.com', '.de'))
const response = await fetch(request);
const text = await response.text();
const newText = text.replace('Goethe', 'Schiller');
return new Response(newText, { status: 200 });

})());
}); 

There is so much you can do:

• Rewrite Request
• Change Response
• Concat Responses
• Cache Responses
• Serve Cached Data
• …



Service Worker Scope

Request in Scope

Request not in Scope

// Default (and maximum) scope is location of Service Worker
// Gets all requests starting with '/path/'
navigator.serviceWorker.register('/path/sw.js');

Scope determines which requests go to the Service Worker



Service Worker Scope

Request in Scope

Request not in Scope

// Scope option can further limit which requests got to Service Worker
// Gets all requests starting with '/path/subpath/'
navigator.serviceWorker.register('/path/sw.js', { scope: '/path/subpath/' });

Scope can be restricted but not widened



Service Worker Persistence

• Stores Data Persistently
• Stores Structured Data

IndexedDB
an actual database in the browser

• Supports Range Queries
• Browser Support 94%



Service Worker Background Sync

One-off Sync

• executed when user is online
• retried when failed (exponential backoff)

Use Cases
• Save file when online again
• Send email when online again

Experimental

• executed when online, according to
period options

Use Cases
• Load updates to social media time-

line when browser closed

Periodic Sync



Service Worker Debugging



Service Worker Caching

Cache Storage
Stores Request/Response pairs

Cache Storage
• Programmatically managed
• Persistent and non-expiring

• Supports only HTTP
• Only caches GET requests 

(no HEAD)



Caching Strategies – Cache Only

Gets all requests from cache or fails.



Caching Strategies – Cache, Network Fallback

Gets requests from cache & uses network as fallback.

Fallback



Caching Strategies – Network Only

Gets requests from network only.

Fallback



Caching Strategies – Network, Cache Fallback

Gets requests from network, the cache acts
as fallback (offline mode).

Fallback



Caching Strategies – Cache, then Network

Gets requests from cache first and from 
network in background.

First

Second



Major Challenge: Cache Coherence

OutdatedOutdated

All strategies either serve outdated data or degrade performance



What we do with
Service Workers



Speed Kit
Turning Websites into Instantly-Loading

Progressive Web Apps



Faster

More Scalable

What Speed Kit does.



1 0 11 0 0 10

What Speed Kit does.



1 0 11 0 0 10

What Speed Kit does.

F. Gessert, F. Bücklers, und N. Ritter, „ORESTES: a Scalable Database-as-a-Service 
Architecture for Low Latency“, in CloudDB 2014, 2014.

F. Gessert und F. Bücklers, „ORESTES: ein System für horizontal skalierbaren Zugriff auf 
Cloud-Datenbanken“, in Informatiktage 2013, 2013.

F. Gessert, S. Friedrich, W. Wingerath, M. Schaarschmidt, und N. Ritter, 
„Towards a Scalable and Unified REST API for Cloud Data Stores“, in 44. 
Jahrestagung der GI, Bd. 232, S. 723–734.

F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, und N. Ritter, „The 
Cache Sketch: Revisiting Expiration-based Caching in the Age of Cloud Data 
Management“, in BTW 2015.

F. Gessert und F. Bücklers, Performanz- und Reaktivitätssteigerung von OODBMS 
vermittels der Web-Caching-Hierarchie. Bachelorarbeit, 2010.

F. Gessert und F. Bücklers, Kohärentes Web-Caching von Datenbankobjekten im 
Cloud Computing. Masterarbeit 2012.

W. Wingerath, S. Friedrich, und F. Gessert, „Who Watches the Watchmen? On 
the Lack of Validation in NoSQL Benchmarking“, in BTW 2015.

M. Schaarschmidt, F. Gessert, und N. Ritter, „Towards Automated Polyglot
Persistence“, in BTW 2015.

S. Friedrich, W. Wingerath, F. Gessert, und N. Ritter, „NoSQL OLTP Benchmarking: A 
Survey“, in 44. Jahrestagung der Gesellschaft für Informatik, 2014, Bd. 232, S. 693–
704.

F. Gessert, „Skalierbare NoSQL- und Cloud-Datenbanken in Forschung und 
Praxis“, BTW 2015

F. Gessert, N. Ritter „Scalable Data Management: NoSQL Data Stores in 
Research and Practice“, 32nd IEEE International Conference on Data 
Engineering, ICDE, 2016

W. Wingerath, F. Gessert, S. Friedrich, N. Ritter „Real-time stream processing for Big 
Data“, Big Data Analytics it - Information Technology, 2016

F. Gessert, W. Wingerath, S. Friedrich, N. Ritter “NoSQL Database Systems: A Survey 
and Decision Guidance”, Computer Science - Research and Development, 2016

F. Gessert, N. Ritter „Polyglot Persistence“, Datenbank Spektrum, 2016.

Backed by
30 Man-Years of Research



1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 entries and a 5% false positive rate: 11 Kbyte

Consistency: Δ-Atomicity, Read-Your-Writes, Monotonic Reads, 

Monotonic Writes, Causal Consistency

Has Time-to-Live 
(expiration)

How Speed Kit solves Cache Coherence



Adding Speed Kit to a Site



1. Configure Domain

Set which sites/URLS 
Baqend should accelerate 

(white- and blacklist, 
dynamic blocks).



2. Include Code Snippet

Add Speed Kit to your
website’s HTML and upload 

the Service Worker.



3. Speed Kit is Active

Speed Kit intercepts requests 
and serves them through 

Baqend’s infrastructure.



How it works under the hood

Website with
Snippet

Speed Kit
Service Worker

Requests

Baqend
Service

Existing
Backend

Fast Requests

ScheduledRealtime

3rd Party
Services



Optimized & Cached Images

Device Speed Kit CDN

Images transcoded to WebP

Rescaled to match Screen Size

JPG and PNG Recompression

JPG 1280x640px
500 KB

WebP 640x320px
100 KB

Width: 640px



Demo



Now, we have a 
Progressive Web App.

How do we measure
web performance?





V
C

V
is

u
al

 C
o

m
p

le
te

n
es

s

0

1

0 0.1s 0.2s 0.3s 0.4s 0.5s

න
0

∞

1 − 𝑉𝐶 𝑡 𝑑𝑡

Speed Index
avg. time to visibility

First Meaningful Paint
greatest visible change

Time

User-perceived performance



test.speed-kit.com

Does it work for Your Site?



Wrap Up

PWA Service Workers Speed Kit

Super cool 
alternative to
native apps

Powerful 
programmable
network proxy

Combines Service 
Workers & cache

coherence



Learn more about
this topic:

https://blog.baqend.com/



Good Resources
https://developers.google.com/web/fundamentals/performance/?hl=en

https://www.udacity.com/course/website-performance-optimization--ud884

https://hpbn.co/

https://developers.google.com/speed/
pagespeed/

https://test.speed-kit.com
http://www.webpagetest.org/

Performance Tools
https://medium.baqend.com/

https://www.baqend.com/

Web Performance Literature



@baqendcom

ew@baqend.com
Web Performance Engineer

• Web & Data Management 
Consulting

• Performance Auditing
• Implementation Services

consulting@baqend.com

Our Product

Speed Kit:
• Accelerates Any Website
• Pluggable
• Easy Setup

test.speed-kit.com

Our Services

Contact us.

Erik Witt

mailto:consulting@baqend.com
http://www.test.speed-kit.com/

