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Abstract

Ensuring safe and efficient operations for un-
manned aircraft is vital to their integration into the
civil airspace. This paper proposes a set of encounter-
based metrics that can be used to estimate the
complexity and thus the capacity of an unmanned
airspace. We show that these metrics are able to
provide a more detailed view of safety failure charac-
teristics in the airspace than traditional metrics. The
encounter-based metrics are used to formulate a novel
path planning algorithm that combines 4D trajectory
optimization with a flight scheduling heuristic in order
to reduce the number of difficult to solve encounters
in the airspace. The proposed algorithm is distributed
in nature and can be applied to an airspace managed
by multiple service suppliers that are capable of gen-
erating flight plans. Through simulation, we show that
this approach is able to outperform other distributed
flight planning methods and can perform nearly as
well as a centralized approach that jointly optimizes
flight plans simultaneously. We also demonstrate that
this approach can scale to high operational volumes
and is able to efficiently handle spikes in airspace
usage.

Introduction

From delivery drones to autonomous vertical
take-off and landing (VTOL) passenger aircraft, ap-
plications of unmanned aircraft systems (UASs) have
become a key part of the discussion about the fu-
ture of our skies [1]. It is estimated that the num-
ber of UAS will dramatically increase within the
next 20 years [2]-[4], and new approaches will be
needed to manage this influx of aircraft outside of
traditional air traffic management (ATM) systems.
A number of proposals exist for modernizing the
traffic management process for UAS under a single
framework [5]-[7]. NASA refers to this framework as
UAS Traffic Management (UTM) [5], and we adopt
their terminology in this paper for consistency. While
UTM is a complex system of systems and has many
technological challenges that need to be overcome,

safe and efficient path planning for flight trajectories
is one of the most critical.

Path planning has been studied extensively in
a number of applications from robotics [8] and au-
tonomous cars [9] to drones [10] and commercial
aircraft [11]. However, the path-planning work done
in the context of UTM has been limited to low
vehicle encounter densities [12]-[14] or standalone
algorithms [15]. In both cases, it is not clear how
well the approaches will scale to an airspace with
high density UAS operations in a real world setting.
In addition to difficult scalability requirements, path
planning in the context of UTM may need to be
performed in a distributed setting. In the NASA
UTM architecture, unmanned flight operations may
be managed by different UAS Service Suppliers
(USSs) [5]. This would require a distributed approach
to flight planning, and would make it more difficult to
achieve a globally optimal airspace utilization. In that
architecture, strategic deconfliction is defined by the
requirement that a UTM operation should be free of
4-D intersection with any other UTM operation prior
to departure operation [16], and in this work we aim
to address exactly this problem.

We focus on a class of motion-planning algo-
rithms known as trajectory optimization [17]. At a
high level, trajectory optimization methods attempt to
design a trajectory by minimizing a generalized cost
function and meeting a set of constraints. A number of
trajectory optimization methods have been developed
in recent years that are able to compute collision-
free trajectories from a naive straight line initializa-
tion [18]-[20]. These methods translate well to path
planning in UTM, because prior to optimization a
flight-request for a UAS can be modeled as a point
to point 3D trajectory that may not be collision-free.

We approach the flight planning problem by
first identifying the limitations of existing methods
in airspace with large numbers of operations. We
focus on unstructured airspace with free-flight me-
chanics where the only means of traffic manage-
ment is through flight planning. By first focusing
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Figure 1. Encounter density map (left) and the corresponding encounter distribution (right) for the

multi-modal traffic region.

on individual UAS encounters, we are able to con-
struct a metric that captures macroscopic complexity
properties of the whole airspace. The formalism pre-
sented here identifies precisely how the high density
airspace leads to degrading safety even when state-
of-the-art path planning algorithms are in use. While
conceptually straightforward, we show that the path-
planning problem becomes more difficult to solve as
the number of vehicles in individual encounters in-
creases throughout the airspace. By generalizing this
notion into a single metric we are able to incorporate
it into different planning algorithms and into UTM
architectures both with centralized and distributed
planning.

The goal of this paper is develop a robust and
efficient flight planning approach that can operate in
an airspace with high operational volumes while ad-
hering to the constraints of a UTM. The contributions
of this work are as follows:

1) To our knowledge, the first quantitative com-
parison of planning approaches in high density
unmanned airspace for distributed and central-
ized UTM architectures.

2) A set of encounter-based metrics that provide
an aggregate estimate of complexity in the
unmanned airspace, and an estimated impact of
a single flight on airspace complexity.

3) A novel approach to flight planning that incor-
porates these metrics and is able to significantly
outperform the benchmark methods.

The remainder of the paper is organized as fol-
lows. We first introduce airspace encounters metrics
on which the methodology proposed in this paper
is based on, and propose a notion of airspace ca-
pacity for unmanned and unstructured flight as well
as provide a definition for a dense airspace in the
context of UTM. Next, we describe the path-planning
problem for UAS, and outline how a distributed or a
centralized path planning architecture could work in
UTM. We then describe our algorithmic contribution
as a trajectory optimization approach combined with
an encounter-aware scheduling heuristic. We provide
simulation results that compare our algorithmic ap-
proach to existing methods, and provide some avenues
for future work in the conclusion.

Encounter Distributions and Airspace
Impact Metrics

This section defines two metrics for charac-
terizing an airspace, the encounter distribution and
the encounter expectation. The encounter distribu-
tion captures macroscopic encounter properties of an
airspace, while the encounter expectation quantifies
the expected encounters for a single flight trajectory.
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Figure 2. The encounter distribution and the corresponding fraction of loss of separation events (left),
and the fractional rate of pairwise and multi-threat encounter (right).

A. Encounter Distributions and Airspace Ca-
pacity

Before defining the encounter distribution, we
first formalize the notion of an encounter. The most
general description is defined by a Boolean function
that takes the states of two vehicles in a shared
airspace as input, and outputs whether the vehicles
are in an encounter or not. Typically, the states in-
clude position and velocity of the vehicles, and could
also include more complex information such as their
expected trajectories as well. In this work, we use a
simplified definition where two vehicles within some
constant distance of each other are considered to be in
an encounter. However, the more general definition is
not limited to a constant spherical geometry and can
use more complex geometries that could be dependent
on time, as well as vehicle position and velocity.

The encounter distribution specifies the prob-
abilities over the types of encounters that exist in
an airspace. Specifically, given an encounter in an
airspace, it depicts the probabilistic values for the
number of vehicles in that encounter. An example of
an encounter distribution and a corresponding geo-
graphic encounter density map is shown in Figure 1.
The map and distribution were generated using results
from a four-hour simulation over a multi-modal traffic
region at 1000 takeoffs per hour. The multi-modal
region is intended to model an urban area with
distributed demand clusters for UAV operations and is
described in more detail in the Results Section. Note
that the encounter distribution can be dynamic and

vary with time.

One way to quantify airspace capacity is to
estimate the decision making limitations of the system
responsible for managing that airspace. A number of
metrics have been identified and analyzed to quantify
dynamic density in the context of dynamic airspace
configuration for the Next Generation Air Trans-
portation System (NextGen) [21], [22]. These metrics
attempt to capture the limitation of the cognitive load
on air traffic controllers managing an airspace. It’s not
clear how useful these metrics are in the context of
UTM, and we leave that evaluation for future work.
Instead, we make a simple conjecture that for a given
encounter in the airspace, the path planning problem
becomes more difficult as the number of vehicles
in that encounter increases. In short, an encounter
with more vehicles in it is a complex multi-agent
problem and is less likely to be resolved by a planning
algorithm. These problems are known to be difficult
from a combinatorial standpoint [23], and it is usually
impossible to provide tractability or completeness
guarantees unless a restrictive set of constraints is
met [24], [25]. These conditions are observed in
our simulations as well. In simulation, we observe
that encounters with more than two vehicles in them
contribute disproportionately more loss of separation
events than their pairwise counterparts (see Figure 2).

We use the notion of encounter distributions to
define an operationally dense airspace by observing
that an airspace dominated by encounters with more
than two vehicles will be difficult to manage from
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Figure 3. A visualization of the encounter shift from a reference distribution Py, (middle) to P, (left) and
Pg (right). Minimizing the encounter shift causes the encounter distribution to move towards encounters

with a lower number of vehicles.

a planning perspective. Formally, we can define a
dense airspace by determining if the expectation for
an encounter with more than two UAS is above some
threshold value A, E[Nyas > 2] > A, where Nyas is
the number of UAS in an encounter. A simple choice
is A = 0.5, where over half of the encounters have
more than two UAS in them. We adopt this value for
A in the remainder of this work. We thus consider
an airspace to be operating past its capacity when
E[NUAS > 2] >0.5.

The advantage of using encounter distributions
to describe the complexity of an airspace lies in
their ability to track how different configurations of
the airspace impact the encounter distribution and
thus the complexity of the airspace. Here, we de-
fine a single-valued metric based on total variational
divergence that we call the encounter shift. This
metric can be though of a signed distance between
encounter distributions, and can be used to evaluate
the impact that different planning approaches have on
the complexity of the airspace. Given two encounter
distributions P4 and Pp, the encounter shift is given
by

Es(ba | Py) = 3 ¥ welBa) = Bo(), (D)

xeQ

where Q is the support of the encounter distribution
and w, are importance weights associated with the
number of vehicles in an encounter. In Equation 1
P4 is the reference encounter distribution, and Pp is
the distribution of which we want to measure the

encounter shift. This expression differs from total
variational divergence in that it is both a signed and a
weighted sum. The fact that the expression is signed
allows us to track the direction of the shift, and the
weights allow us to place more importance on the
encounters with greater number of vehicles in them.
Figure 3 shows how the encounter shift is affected
by the shape of the encounter distribution. When
the encounter distribution moves towards encounters
with lower numbers of vehicles in them, the shift is
negative. A move the other way creates a positive
shift. In practice, minimizing the encounter shift also
minimizes the complexity of the encounters in the
airspace, making it simpler for path-planning algo-
rithms to manage.

B. Encounter Driven Airspace Impact Predic-
tion

We now consider how the encounter shift can
be used during path planning to decrease the overall
complexity of the airspace. Consider the contribution
of total encounters from a single flight plan to the
airspace as a whole. This contribution can be divided
into two parts:

1) Immediate Impact: the encounters a particular
flight creates with existing traffic

2) Future Impact: the encounters a flight will
create with traffic that will be flying in the
future

Given a flight plan that leads to N immediate en-
counters with n vehicles, it is possible to write the



total expected encounters with n vehicles from the
flight as

N, = N! +E[Nyas = n] (2)

Where E[Nyas = n] is the expected number of future
encounters with n vehicles from the flight in question.
To compute E[Nyas = n], we use historical traffic data
for the airspace of interest.

The process of computing the expected number
of encounters with n vehicles, E[Nyss = n], can
performed by discretizing historical encounter infor-
mation and performing statistical inference on it. This
process allows us to predict the number of encounters
that are not immediately accounted for a given flight,
i.e. the encounters that may occur from other vehicles
that will be flying in the future. Formally, our goal is
to compute the full joint probability of all encounters
over a given trajectory

P(e%ve%,...,eg | trajectory) =
P(el | trajectory) x

P(e} | trajectory, e}) ... P(e2 | trajectory,ef,...e3)

3)

where ¢/ denotes the i’ n vehicle encounter on the
trajectory. In the expression we chose to truncate the
permutations for i and #n at five, although neither i or
n need to be bound.

There are a number of methods to compute the
joint probability, such as Navie Bayes [26] by making
the assumption that all encounters are independent.
However, because our primary objective is to estimate
the encounter distribution for a single flight, we can
instead determine the probability of encounters with n
vehicles over a trajectory for n independent values of
interest. We can then use those probability values to
construct the encounter distribution. If we continue
to make the assumption that all encounters are in-
dependent events, we can write the probability of a
encounters with n vehicles over the whole trajectory
as a modified geometric distribution that has the form

T—1
P(Nyas =n) =p} [T(1—p}) )

=1
where T denotes the total number of timesteps in the
trajectory of the vehicle, and p!, is the probability of
an encounter with n vehicles at time-step . We can

obtain p!, using a normalized historical encounter data
from the airspace discretized into finite sized 3D bins
or voxels (see Figure 4. In this work, we use timesteps
that are one second in length. A temporal component
can be added to the encounter data if the historical
data is expected to vary with time. While such data
may not be readily available, we assume it exists in
this work, and we obtain it through simulation.
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Figure 4. An example trajectory over a geographic
heat-map of encounter distribution density

By combining the expression for total expected
encounters in Equation 2 with the encounter shift,
we can compute the encounter shift between the
underlying encounter distribution of the airspace and
the one generated for a single flight plan. This metric
provides a prediction of the impact a single flight
has on the airspace as a whole. While statistically,
this approach is prone to effects of variance, we
observe that for an airspace simulation with a non-
trivial number of flights, it is possible to use this
metric to drive the airspace either towards or away
from complex operations.

Problem Formulation

This section outlines the flight-planning problem
in UTM. We define the general requirements for a
flight plan, and describe the mathematical formalism
that goes along side of it. We pose the problem in the
context of two UTM architectures: one where traffic
management capabilities are completely distributed
between multiple USSs, and one where centralized
flight planning is possible.



C. Collision-Free Flight Plans

In this work, a flight-plan is defined to be a set of
4D waypoints parameterized by (x,y,z,7) that meets
the time constraint #;;| > t; between two waypoints p;
and p;;1. A flight plan is generated during the pre-
flight planning phase of an operation, and we leave
the problem of in-flight re-routing and contingency
planning for future work. Computing a conflict-free
flight plan before the flight requires accounting for
any uncertainties associated with the trajectories of
other UAS in the airspace to ensure no safety viola-
tions occur after takeoff. There are a number of other
ways to represent a flight plan. A common approach
is to use a set of time-bounded 3D polygons around
the flight volume, also known as intent [27]. However,
this representation is more restrictive and constrains
the approaches that can be used for flight planning.

Flight planning can be formulated as an opti-
mization problem, where we attempt to minimize an
objective function subject to inequality and equality
constraints:

min f(x) (5a)
gi(x) <0, i=1,2,...Ripeg (5b)
hi(x) =0, i=1,2,...n4 (5¢)

where x is a set of waypoints representing the
flight plan, and f, g;, h; are scalar functions. The
objective may consider the risk associated with a
trajectory [28], and numerical terms that encourage
a minimal length path. Typically, the optimization is
performed over a T x K dimensional vector with T
being the number of time-steps and K the number of
degrees of freedom. In this work, we treat time as
a degree of freedom, and instead have 7' flight plan
waypoints we optimize over.

subject to

D. Centralized and Distributed Planning

The choice between centralized and distributed
planning typically depends on the effectiveness of
communication networks, the available resources, and
the constraints imposed by the system architecture. In
this work, we make the following distinction between
centralized and distributed planning:

1) Centralized: a planning approach that can
jointly optimize plans simultaneously. This ap-
proach requires a single central entity to be
responsible for flight planning.

2) Distributed: a planning approach that is dis-
tributed between multiple entities. Existing plan
information can be freely exchanged between
entities to ensure deconfliction, but it is not
possible to jointly optimize plans.

Distributed
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Request 3 | | | |
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Recuest1 1 I O
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Idle/Flight Prep Flight

Figure 5. Distributed (top) and centralized (bot-
tom) planning architectures. A flight plan is opti-
mized jointly in the centralized architecture, and
individually in the distriubted architecture.

Note that the primary distinction between cen-
tralized and distributed planning is the ability of the
centralized planner to optimize plans simultaneously.
In the context of trajectory optimization, this implies
an optimization over a shared objective. While a lot of
work has been done on solving optimization problems
with a shared objective in a distributed setting [29],
[30], the assumptions made in these settings, such as
a requirement that the cost function be convex, are
usually too restrictive for path-planning algorithms
like trajectory optimization methods. Recent work has
also shown that coordination between multiple asyn-
chronous planners is feasible [31], but it is not clear
how well the approach can scale to relatively short,
high-frequency operations like the ones envisioned in
UTM. We assume that such methods are too restric-
tive at this time, and that joint optimization of a single
planning objective with a shared set of constraints
between distributed planners is not feasible. We thus
leave any distributed architectures with capabilities
for joint multi-plan optimization as future work.

For a UTM, the ability to perform centralized
planning depends on the architecture of the system.



For example, centralized planning is not possible in
the NASA UTM architecture unless a single USS is
designated as the sole planner for the airspace in
a given region. Folding the planning function into
a single Air Navigation Service Provider (ANSP)
would also enable centralized planning. The intent
of the NASA UTM architecture is to be distributed
in nature, and that leads to a number of trade-
offs from a planning perspective. At a high level,
the advantage of a distributed architecture is that
it enables multiple entities to independently manage
their UAS operations, while adhering to coordination
when needed to ensure safety. However, this leads
to sub-optimal airspace utilization in regions where
multiple USSs are operating simultaneously, and can
lead to cascading effects that cause severe airspace
congestion in highly used regions [32]. This problem
is particularly evident in free-flight operations where
multiple USSs may need to plan around each other
without any structural constraints in the airspace to
organize operations. While negotiation schemes have
been discussed in the context of the distributed UTM
architecture [16], the implementation and the impact
of the negotiation on sub-optimal use of airspace is
not clear.

In the centralized architecture, all flight plans are
generated by a single planner which allows them to
be globally optimal. However, the disadvantage of the
centralized approach is that it may not be scalable
to high operational frequencies and would require
operators to share their mission data with a central
entity. It may also be less adaptable to emerging
use cases and technologies, making it less desirable
from an operators’ stand point. The planning cycles
for each architecture are shown in Figure 5. In the
distributed architecture, plans are computed one at a
time if they are owned by different USSs. While com-
pleted plans can be shared between USSs, there is no
information sharing during the planning process itself.
In the centralized architecture, all plans are jointly
optimized, because a single entity is responsible for
collecting flight requests and computing associated
plans. The advantage of the centralized architecture
is that it can jointly optimize flight plans as requests
come in, for all flights that have not yet started, and
it does not require additional negotiation schemes or
protocols.

Flight Planning

In this section, we first outline the flight planning
algorithm used in this work. We then describe the
methodology for incorporating encounter distributions
into the flight-planning process. We conclude the
section with an overview of how this algorithm fits
into the overall UTM architecture, and explain how
the distinction between centralized and distributed
UTM architectures impacts flight-planning.

E. 4D Trajectory Optimization for Highly Uti-
lized Airspace

We use gradient-based trajectory optimization
to compute flight trajectories in this work. One of
the biggest challenges in creating collision-free flight
plans is that the environment in consideration has
both static and dynamic obstacles in it. The static
obstacles are used to model constructs like temporary
flight restrictions (TFRs) that remain unchanged for
the duration of a single flight. Dynamic obstacles
include other UAS, and large airspace constructs
that are in motion such as weather events, and are
more difficult to incorporate into the planning pro-
cess. While the problem of motion planning with
dynamic obstacles has been studied extensively, most
approaches focus on online re-planning in static en-
vironments [33], velocity obstacles [34], or discrete
grid-based search [35]. While these approaches can
be applied to flight planning, they are either difficult
to scale to continuous state spaces or are most suitable
for problems where online re-planning is appropriate.

To naturally handle dynamic obstacles this work
treats time as an optimization variable during plan-
ning. However, we introduce a heuristic that is able
to efficiently approximate the safe time intervals be-
tween each waypoint in dynamic environments during
optimization. In this way, our approach is similar to
safe interval path planning [36], but is capable of
scaling to continuous state spaces while remaining
computationally efficient. The heuristic uses a dis-
tance measure to add or remove 4D waypoints from
the flight trajectory as the plan is being generated.
The bounds of the measure are based on geometric
distance and are set prior to the optimization process.
If a segment between two waypoints is not collision
free and falls outside of the bounds, the segment
is either expanded or contracted. A segment that is
geometrically longer than the upper bound, is split
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evenly in half by introducing a new waypoint, while
a segment that is shorter is merged with neighboring
segments by removing a waypoint. The heuristic is
important for two primary reasons:
1) It enforces a bound on the number of waypoints
in the trajectory
2) By expanding and contracting the segments
between waypoints, they can converge to the
length of the smallest collision free interval

Because this heuristic is used at each iteration of the
optimization process, the optimization is not guaran-
teed to converge to a local minima. The heuristic
modifies the parameter space of the objective if it
either adds or removes a waypoint. To handle this
problem, we split the optimization into two parts,
with the first allowing the addition and removal of
waypoints, and the second freezing the number of
waypoints in the trajectory in place and proceeding
with standard gradient optimization. We found this
approach to work particularly well, because the first
half of the optimization process allows the trajectory
to converge to a reasonable number of waypoints
given the obstacles in the configuration, while the
second fine-tunes that representation of the trajectory
with respect to the constraints and the objective. We
leave convergence proofs of this approach for future
work.

In our approach, we apply the penalty method as
a way to enforce constraints [37]. The penalty method
transforms a constrained optimization problem into an

unconstrained problem by including the constraints in
the objective. Using the /; exact penalty method the
transformed objective takes on the following form:

Nineq Negq
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where |g;(x)|T= max(0,g;(x)) is the penalty satisfy-
ing the inequality constraint, and |4;(x)| is the penalty
satisfying the equality constraint. By formulating the
constraints in this way, and picking a sufficiently large
penalty coefficient u, the optimization eventually
drives all of the constraint violations to zero. The
iterative approach is outlined in Algorithm 1.

Input:

Tierm: terminating conditions

Iwaypr- iteration to freeze number waypoints

a: initial step-size

f: optimization objective

Xo: initial trajectory from a flight request

while not 7;.,,, do
if i <4y, then

if not collisionFree(x;) then
x; = expandWaypoints(X;)
X; = contractWaypoints(x;)
end

end
Xit1 < X — oV f(x;)

end
Algorithm 1: Gradient based trajectory optimiza-

tion with waypoint expansion



We pick iyqyp: such that it is equal to roughly half
of the iterations that will be performed during the
optimization.

As stated previously, by formulating the objec-
tive in this way and allowing waypoint expansion,
we are able to optimize the trajectory directly in
the 4D space while considering dynamic obstacles
such as UAS and weather events. We are also able
to compute the gradients directly by keeping both
the constraints and the original objective as smoothly
differentiable functions. This allows our planning
algorithm to scale well to complex environments with
many other co-existing UAS. In this work, we use a
real-time constraint and an iteration constraint i = 500
as the termination conditions, with iy, = 250. The
step size « is incrementally reduced at each iteration
after i,,4y,: has been exceeded.

F. Encounter-Aware Flight Planning

In the previous section, we introduced a trajec-
tory optimization approach that can efficiently per-
form deconfliction and scale to airspace with a large
number of UAS. However, the algorithm only works
to deconflict a trajectory against the existing trajecto-
ries and obstacles in the airspace, without considering
capacity constraints and the overall impact on the
airspace as a whole. To address this problem, we
introduce a decomposition in our planning approach
between the lower-level trajectory optimization and
the high-level traffic management decision making
such as schedule allocation, altitude assignment, and
corridor control. We adopt an approach similar to
the NASA SAFES5O architecture [38], and allow the
scheduling of the flight to be independent of the
trajectory generation. While scheduling and trajectory
generation could be coupled we introduce this de-
composition to allow our approaches to scale and to
more easily integrate the encounter metrics introduced
earlier into the flight-planning process. We defer
the coupling of the trajectory-optimization and the
higher-level traffic management for future work.

To introduce encounter metrics into the planning
process, we focus on a single aspect of high-level
traffic management - flight-scheduling. We consider
a simple approach to scheduling, where we attempt
to optimize the future take-off time of the UAS with
regards to a quantity of interest. For example, if
a flight request come in at time #y, it may take-

off anytime between #y and f,,y, Where f,, is the
maximum delay that flight can incur. If the take-
off time is optimized in regard to the total number
of encounters with already planned flights, we can
compute the total number of those encounters for
hypothetical flights that would start in the time range
[f0,tmax] and determine the optimal take-off time. We
call this approach First Come Scheduling. The name
was chosen, because the first vehicles to request plans
in an airspace will not incur any delays, while plans
at later times may be asked to delay in order to
minimize the number of encounters with existing
vehicles. For simplicity, we discretize the time range
at fixed intervals Ar, and evaluate the immediate
encounters for a flight request starting at each of the
discrete start times.

We introduce the encounter shift metric into
this scheduling approach by considering how the en-
counter shift changes as we change the take-off time
of the flight request. We evaluate the encounter shift
of a flight-request between the encounter distribution
of the airspace at each point in the interval [fo, fyax]
and pick a take-off time with lowest encounter shift
value. The evaluation process is outlined in Figure 6
for a request on the time interval [0,90]. In the
example, the encounter shift is minimized at ¢ = 10s,
and we call this scheduling process the Encounter
Schedule. In the remainder of this work we use
t = 10s and #,,4x = 90s The trajectory optimization
approach outlined earlier can be used following either
of the scheduling approaches. Because the scheduling
and the trajectory optimization are decoupled it is
also possible to evaluate the effectiveness of the
approaches individually.

While it is possible to minimize the encounter
shift by introducing structure into the airspace, we
leave that investigation for future work. Instead, we
focus on using take-off scheduling that is encounter
aware to minimize the encounter shift for each flight.
In particular, one important aspect of minimizing
the encounter shift during scheduling is that it helps
address the problem of planning in many-vehicle
encounters. By optimizing the take-off time for each
flight with regards to the encounter shift, we natu-
rally drive the airspace to have fewer many vehicle
encounters. We demonstrate this property in detail in
the Results Section.



G. Jointly Optimized Flight Planning

Jointly optimizing flight plans can be done with
a centralized planner, that can process all flight re-
quests within an airspace and perform multi-trajectory
optimization. During this optimization process, the
planner computes multiple optimized trajectories that
are collision free simultaneously. Note that this does
not require that the take-off times for the trajectories
being optimized are the same only that the planning
process is mutually shared for all of the flights. The
formulation of the problem is nearly identical to
the single trajectory optimization in Equation 5 ex-
cept the optimization vector X now includes multiple
trajectories. The complexity of optimizing multiple
trajectories simultaneously grows quadratically with
the number of encounters despite the optimization
vector growing linearly, so the problem becomes more
computationally expensive to solve.

It is important that the planner work in a realistic
airspace simulation where flight requests can come in
well before the flight or just a few moments prior to
take-off. However, jointly optimizing all known flight
requests is not feasible, particularly if the number of
operations is high. In this work, we enforce a limit
on the number of trajectories the planner optimizes
simultaneously by defining a time horizon at which
the joint optimization ends #,,. The approach is as
follows:

Input: 7,,,

while 7 <1,,; do
if new requests then

F « flight requests in range [t,f,;]
T <« JointOpt (F)
end
take off for all in .7 starting at ¢
tt+Ar

end
Algorithm 2: Rolling horizon joint trajectory op-

timization

After the planner has gone through a single opti-
mization cycle, the process can start with a new 7,,,.
In this work, we use Ar = 1s. While it is possible
to efficiently perform coordinated planning even in
the presence of asynchronous schedules [31], we do
not explore this route in this work. We assume a
centralized planner that can process flight requests si-
multaneously for when we perform joint optimization
of multiple trajectories.
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Figure 7. Take-off heat-map for the multi-modal
region used to evaluate the approaches in this
work.

Results

The scalability and effectiveness of the encounter
aware planning approach is demonstrated through
hundreds of hours of airspace simulation. We compare
the approach to stand alone trajectory optimization,
two schedule based approaches for deconfliction, and
a joint optimization planning approach. We examine
the performance of each in a high-fidelity airspace
simulation.

H. Simulation Model

We use a high-fidelity airspace simulator to eval-
uate our approach. In the simulation, flight-requests
are generated using a stochastic process and are based
on a demand model. The demand model used in this
work is multi-modal from a geographic perspective.
For a map of take-off heat-map of a 5 hour simulation
run, see Figure 7. The region is 18km x 18km in
size. The requests are passed onto a planner which
can be configured to follow any of the management
approaches and their combination discussed in the
previous section. Planning is performed in a dis-
tributed way except for joint optimization.

To model the vehicles in our simulation, we use
a simple point-particle dynamic model with a hybrid
PID and logic control for guidance. The prescribed
cruise speed and cruise altitudes of the vehicles are
40ms~! and 120m respectively. While the simulated
vehicles have on board sensing and conflict resolution
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Figure 8. The encounter distributions with 1000 take-offs per hour for no deconfliction (left), joint
optimization (center), and encounter aware trajectory optimization (right). The horizontal line represents
the fraction of pairwise encounters in the the encounter aware trajectory optimization simulations.

capabilities we do not consider them in this work,
and instead focus on the evaluation of the planning
approaches proposed.

I. Airspace Simulations

The goal of the airspace simulations is to eval-
uate the viability of the approaches presented earlier
in the context of strategic pre-flight deconfliction. We
consider point to point operations with take-off rates
ranging from 100 to 1000 per hour. The following
approaches are evaluated in this section:

« Trajectory Optimization: standalone trajectory
optimization approach. Referred to as Traj Opt
in the evaluations.

« First Come Scheduler: a scheduler that attempts
to minimize the number of encounters for a flight
request.

o Encounter Scheduler: a scheduler that attempts
to minimize the encounter shift for a flight re-
quest.

« Encounter Aware Trajectory Optimization:
combined encounter scheduler and trajectory op-
timization. Referred to as Traj Opt + Encounter.

« Joint Optimization: jointly optimized planning
approach using a centralized planner. Referred to
as Joint Opt.

For each approach, we collected approximately 28
hours of simulated operational time, resulting in 95%
confidence intervals for the results at the lowest take-
off rate of 100 per hour, and 99% confidence interval
at 1000 take-offs per hour.

Qualitatively, the differences in encounter distri-
butions between encounter aware flight planning and
the joint optimization approaches are shown in Fig-
ure 8 for 1000 take-off/hr simulations. The encounter

distribution for an airspace managed by the encounter
aware planner has a significantly larger fraction of
pairwise encounters compared to encounter with more
than two vehicles. This is in contrast to the encounter
distribution from simulations with no deconfliction
and the encounter distribution with joint optimization,
where the encounters are more evenly distributed.
A key property of the encounter aware planner is
that it drives the airspace into a less complex regime
by shifting the encounter distribution to simpler en-
counter sets. This has a significant impact on the
overall safety of the airspace (see Figure 9). We
note that the encounter aware trajectory optimization
planner outperforms all the planning approaches in-
cluding the one using joint optimization at 1000 take-
offs/hr. This is a particularly surprising result, as we
expect joint optimization to be the superior approach
because it is centralized. However, we suspect that
at the higher take-off/hr rates, we are reaching the
limit of how well a centralized method can perform
and thus see a worsening performance compared to
the encounter aware method. Route efficiencies are
shown in Figure 10 as ratios of actual over nominal
route lengths. Deconfliction approaches that use only
scheduling have an efficiency of 1.0, and are not
shown. Overall, we see that joint optimization is
the most efficient approach, with the encouter aware
planning performing nearly as well.

We also examine the resulting encounter charac-
teristics for each method of the airspace in question
in Table I. The table shows the encounter shift for
each method at different take-off/hr rate as well as
the percentage of the encounter which have more
than two vehicles in them. Both of these metrics are
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important in assessing airspace complexity. Here, we
are able to observe the primary difference between the
joint optimization and the encounter aware methods.
Because the joint optimization method is not attempt-
ing to manage the encounters in the airspace, we see
that it actually has a positive encounter shift at 1000
take-offs/hr. This implies that the airspace managed
by the joint optimization planner has more complex
encounters than the one with no deconfliction at all. It
should also be noted that the encounter aware trajec-
tory optimization planner has the lowest encounter

shift, signifying it is able to drive the encounter
distribution towards simple encounter scenarios. This
would explain the gap in safety performance between
the encounter aware and the joint optimization ap-
proaches.

Conclusion

A robust and efficient distributed planning
method is presented in this paper. The approach
combines 4D trajectory optimization and an encounter
aware scheduling heuristic, and is shown to outper-
form existing methods for distributed flight-planning.
As part of this work, we also provide a number of
numerical benchmarks that compare our approach to
a other distributed planning algorithms and a cen-
tralized joint optimization approach in a high-fidelity
airspace simulation environment. We show that our
approach is able to consistently perform more safely
and efficiently than other distributed approaches at all
the operational densities considered in this work. We
show that by reducing the fraction of many-vehicle
encounters in the airspace, our approach is not only
able to achieve better safety performance but is also
more efficient than traditional planning approaches.

While this work provides a starting point, a num-
ber of questions still remain about traffic management
in the unmanned sky. In particular, one big challenge
lies in understanding the requirements of UTM. It is
not clear how demand for UAS will evolve in the next
20 years, making it difficult to create requirements



Metric

CAS

Take-off Rates (1 / hr)

100 250 500 1000
| No Deconfliction (ref) | - | | | S
Traj Opt -0.02 £ 0.01 [ -0.04 £0.03 [ -008 £ 0.03 [ -0.14 £ 0.05
Encounter Shift Encounter Scheduler -0.10 £ 0.02 | -0.22 £ 0.08 | -0.47 &+ 0.16 | -0.84 £ 0.11
Encounter Traj Opt -0.11 + 0.01 | -0.29 + 0.09 | -0.63 + 0.21 | -1.02 + 0.14
Joint Opt 0.01 £ 0.02 | -0.12 + 0.04 | -0.02 + 0.05 | 0.13 + 0.04
| No Deconfliction [ 56 =13 [195£21 [3[8£25 [514£33
. Traj Opt 48 +15 171 £37 293 £ 32 545 £ 39
Multi-threat E Schedul 0.1 + 0.1 43 + 1.7 219 + 54 | 368 + 32
Encounter Percent ncounter Scheduler . . . K B .
Encounter Traj Opt 0.2 £0.1 49 £12 23.6 £29 414 +£ 2.8
Joint Opt 534+ 0.9 20.8 + 2.7 34.6 + 3.2 58.9 + 3.8

Table I. Encounter metrics for varying take-off rates and different planning algorithms

and a functional system that can manage unmanned
traffic, and future work will examine how flexible our
approach is to a wide range of requirements. We also
plan to examine other methods beyond the penalty
method trajectory optimization [37], as it is known to
have difficulties in convergence which could impact
the overall quality of the flight-plans it produces. An-
other important aspect will be in evaluating how well
the flight-planning approaches outlined in this work
can integrate into the current airspace. Of particular
importance is the ability to interface with human
decision makers in ATC [39]. Lastly, we plan to
examine other approaches to inferring the encounter
shift. Such as the ones that have been applied to
predict delays in air traffic networks [40]. One thing
is certain. To enable safe and efficient operation of
UAS, a traffic management system is needed that is
robust, reliable, and scalable. The work presented in
this paper is a small step towards that goal.
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