

January 2010

Masonry design guide

Showing you the way

Contents

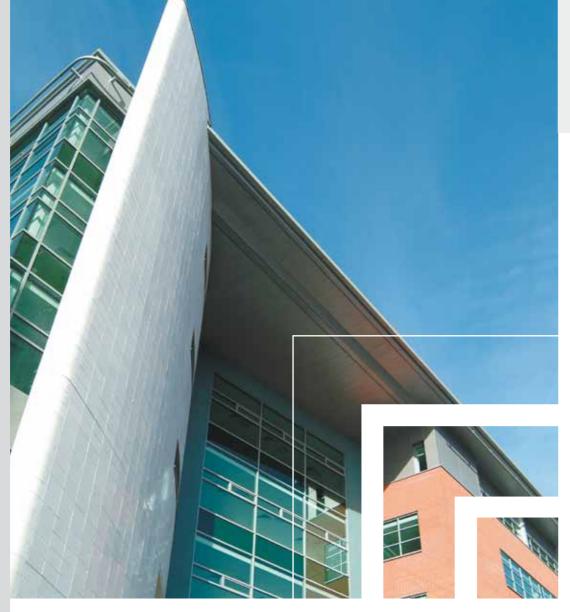
3 Product performance

- 3 Quality assurance
- 3 The British Standards Kitemark
- 3 Weathering resistance
- 3 Dimensional tolerances
- 4 Cut products
- 4 Composition
- 4 Use of colour
- 4 Manufacturing control category
- 4 Air permeability

5 Modular design

- 5 Use of tables
- 5 Principles of tables
- 5 Using 5mm joints
- 8 Radius walls using standard blocks
- 8 Overhangs
- 8 Perpends
- 8 Radius wall using precast curved units

9 Movement control and bed joint reinforcement


- 9 Accommodation of movement
- 9 Control joints
- 10 Formation of control joints
- 10 Horizontal control joints
- 11 Bed-joint reinforcement
- 11 Internal walls
- 11 External walls13 Stack bonding
- 13 Brick and block banding
- 13 The use of bed joint reinforcement
- 13 Typical manufacturers

14 Fixing and detailing

- 14 Fixings
- 14 Provision for services and fittings
- 19 Structural performance

22 Reinforced masonry lintels

- 23 Cover for reinforcement
- 23 Sequence of construction
- 24 Fire resistance
- 25 References and bibliography

Medici masonery, Twelve Princess Dock, Liverpool

Introduction

The consistently high standards which Forticrete maintain throughout its extensive product range are derived from over 40 years established production experience.

This experience is augmented by a Quality Assurance scheme which guarantees:

- high durability
- low water absorption
- low drying shinkage
- colour consistency
- additional water repellence for improved weathering
- dimensional tolerances to BS EN 771-3:2003

Customer satisfaction is an integral aspect of Forticrete's approach and is expressed in a 'Customer Service Policy Statement' in the Company's Sitework Guide.

Front cover:

Florentine® masonry, Gartnavel General Hospital, Glasgow

Product performance

Quality assurance

Forticrete's Total Quality Management philosophy embraces every aspect of the company's activities and manufacturing processes. The company's main objective is to exceed the requirements of its own criteria, as well as those of its customers and all relevant regulatory authorities.

Forticrete has long recognised that its success is directly linked to the continued satisfaction of its customers. The company has established strict procedures to ensure that every product manufactured at each production plant throughout the UK meets the stringent requirements laid down in its quality control system. All Forticrete Masonry plants are BSI registered and operate to the requirements of BS EN ISO 9001:2000 - the National and International Standard for quality systems. On-going training and educational programs for management, technical and production personnel ensure that the company's adherence to these requirements is achieved at all levels.

Strict adherence to quality procedures creates quality products and many of Forticrete's Specification Masonry products are licensed to carry the prestigious British Standards Kitemark.

The British Standards Kitemark

The Kitemark is a BSI Certification Trade Mark. BSI licenses the use of the Kitemark on products only after it has:

- i) had a sample of the product tested independently to satisfy itself that the product conforms to the marked British Standard specification.
- iii) visited and assessed the manufacturer to BS EN ISO 9001:2000 and has satisfied itself that the quality system operated by the manufacturer ensures the product's continuing conformity to specification.

Weathering resistance

All Forticrete Specification Masonry products are manufactured with water repellent additives which dramatically reduce both water absorption and penetration.

These additives are incorporated in the constituent mix design and are therefore an inherent feature of the products even after cutting, splitting or texturing of the surface.

This improved ability to repel moisture greatly accelerates the drying process following inclement weather, thereby reducing the adhesion of atmospheric dirt particles which normally lead to unsightly staining.

An additional benefit during construction is a reduced initial suction of moisture from the joints, allowing improved curing of the mortar without any loss of adhesion.

Dimensional tolerances

All Forticrete Masonry Products are manufactured to the required tolerances of BS EN 771-3: 2003, Class D1; Walling Stone to BS EN 771-5: 2003 and Cast Stone to BS EN 1217. However, in conjunction with the company's Quality Assurance registration, Forticrete has targeted an improvement on the British Standard tolerances, as shown in Table 1.

Product	Length	Thickness	Height
Specification Masonry			
Textured™	+2,-2	+2,-2	+2,-2
Fairface™	+2,-2	+2,-2	+2,-2
Twinbloc™	+2,-2	+2,-2	+2,-2
Ribloc®	+2,-2	+2,-2	+2,-2
Sparstone™	+2,-2	+2,-2	+2,-2
Novastone®	+2,-2	+2,-2	+2,-2
Polished Masonry			
Florentine®	+2,-2	+1,-3	+2,-2
Venezia™	+2,-2	+1,-3	+2,-2
Medici®	+2,-2	+1,-3	+2,-2
Splitface™ Masonry			
Splitface™	+2,-2	N/A	+2,-2
Ribloc®	+2,-2	N/A	+2,-2
Sparstone™	+2,-2	N/A	+2,-2
Glazed Masonry			
Astra-Glaze®-SW™	Т	o ASTM C90- Type	1
Walling Stone			
Anstone®	Т	o BS EN 771-5: 200	03
Shearstone™	T	o BS EN 771-5: 200	03
Cast Stone			
Dressings (see table 2)			
Regency® Ashlar	+2,-2	+2,-2	+2,-2
Standard Masonry			
Arenabloc™	+2,-2	+2,-2	+2,-2
Painting Quality	+2,-2	+2,-2	+2,-2
Commons	+3,-5	+3,-5	+3,-5

Table 2. Dimensional tolerances cast stone & precast masonry							
Unit Length	Tolerance						
0-600mm	±2mm						
601-1000mm	±3mm						
1001-2500mm	±4mm						
2501-4000mm	±5mm						
>4000mm	±6mm						

Cut products

Forticrete is able to offer a comprehensive cutting service for the creation of special shapes and sizes.

The general tolerance on cut dimensions is \pm 2mm, although in certain circumstances it is not possible to achieve this, e.g. where a shallow cut is less than 25° to a face.

The general tolerance on cut angles is \pm 1.5° and taper-to-cut faces will be within \pm 1mm.

Composition

Forticrete masonry products are manufactured from the highest quality raw materials which are rigorously checked for performance and consistency. This process results in high quality products which meet the demanding requirements of our customers and the appropriate regulatory standards.

To ensure consistently coloured and textured products, particular emphasis is placed on the tight control of material gradings and on-line process equipment.

Use of colour

Forticrete has pioneered the use of coloured masonry.

The colours are specially matched to cater for regional differences, so that if needed they can blend comfortably into the local vernacular

In addition to their harmonising and economical advantages in conservation areas, the Forticrete range of colours has a wider aesthetic potential. Bands and shapes of colour can be used to create both visual devises and dramatic effects.

If combined with particular bond patterns and textures the permutations are endless.

Table 3. Typical material gross dry density Textured™, Fairface™, Sparstone™, Florentine®, Venezia™ & Standard Masonry

Spa	rstone™,	Florent	ine®, Venezi	a™ & Standard M	lasonry
Face Size	Width	Ref.	Format	Gross Dry Der Specification Masonry	nsity (Kg/m³) Standard Masonry
390x190	90	K1	Solid	2100	2000
	90	K3	Hollow	1700	1600
	140	P1	Solid	2100	2000
	140	P3	Hollow	1250	1150
	140	P2	Hi-Light®	1500	1400
	190	R3	Hollow	1240	1220
440x215	90	G1	Solid	2100	2000
	100	D1	Solid	2100	2000
	100	D3	Hollow	1550	1450
	140	H1	Solid	2100	2000
	140	НЗ	Hollow	1400	1400
	140	H2	Hi-Light®	1460	1450
	215	F1	Solid	2100	2000
	215	F3	Hollow	1400	1400

Manufacturing control category

BS 5628 is the British Standard Code of Practice for the design and use of masonry. It is based on Limit State Design principles which allow the designer to choose a partial safety factor γm for material (See table 4) which is in turn affected by the choice of contractor or material supplier.

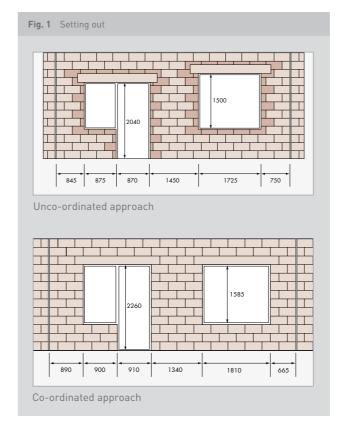
As this safety factor is applied directly to structural calculations it can be seen that the design performance of masonry can be improved by choosing a manufacturer supplying products conforming to Category I Manufacture Control. The benefit in terms of this alone is in the order of a 12% increase, in the design vertical load capacity of the blockwork.

Please note that these are the partial factors of safety on material strength only.

Table 4. Partial safety	factors for material stre	ngth
Manufacturing control category	00	ruction category
	Special	Normal
I	2.5	3.1
II	2.8	3.5

Air permeability

Table 5. Air permeability


The latest amendments to Part L (Conservation of Fuel and Power) of the Building Regulations include a limit on air permeability. Forticrete products have been tested independently for air leakage and return excellent results, as summarised in Table 5.

Product	Format	Air Permeability m³/hr/m²
Textured™	Solid	2.16
Textured™	Hi-Light®	2.59
Textured™	Hollow	0.58
Fairface™	Solid	2.07
Fairface™	Hi-Light®	4.66
Florentine [®]	Solid	0.98
Florentine®	Hi-Light®	1.42
Medici®	Solid	1.03
Anstone® Walling	Solid	0.18
Shearstone™ Walling	Solid	0.14

Modular design

When detailing masonry panels, the designer should set out masonry units to full or half block lengths where possible to avoid unsightly and unnecessary cutting of units on site. Co-ordinating dimensions will also ensure that the masonry is properly bonded.

Figure 1, contrasts the effects of an unco-ordinated and co-ordinated approach to setting out of masonry. (Using 440×215 mm blocks as an example).

Tables 6 to 9 enable the vertical and horizontal co-ordination of $390 \times 190 \text{mm}$ and $440 \times 215 \text{mm}$ block face sizes to be set out at the design stage.

Use of tables

Step 1 Using the wall configuration to be considered, select the appropriate co-ordination factor column from the tables.ie CO+. CO or CO-:

CO+ This is the co-ordinated size plus a joint (ie, actual block length or height + 2 joints)

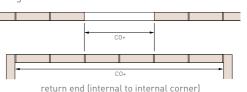
This is the co-ordinated size (ie, actual block length or height + 1 ioint)

Bed Joint Reinforcement should be introduced in the blockwork panels, above and below the openings in Fig 1. See also page 12.

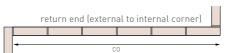
CO- This is the co-ordinated size minus a joint (ie, actual block length or height).

Step 2 From the selected co-ordination factor column, find the required blockwork dimension and then read off the related number of blocks.

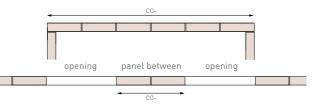
Tables are provided for guidance purposes only. Consideration should be given to allow for the discontinuation of panels when movement joints are incorporated (generally 9m externally and a maximum of 12.2m internally.)


Forticrete cannot be held responsible for errors in the final design. All dimensions should be checked by the designer.

Reference should also be made to BS 8000 Part 3 'Code of practice for masonry' which covers allowable building tolerances on site.


Principles of tables

All blockwork dimensions are determined by one of three alternatives which relate to specific wall configurations.


Co-ordinated size plus a joint (CO+) i.e. door and window openings

Co-ordinated size (CO)
i.e. block panels with opposite return ends or quoins.

Co-ordinated size minus a joint (CO-)
 i.e. block piers or panels between openings.

Using 5mm joints

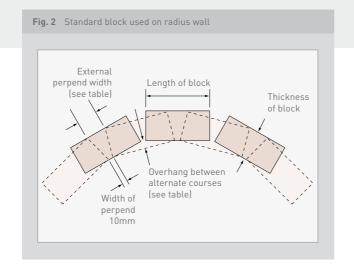
Regency Ashlar Traditional and City Bonds in the Regency range are also manufactured to larger sizes to accommodate 5mm mortar joints.

This requires careful consideration with regard to setting out and also in the use of wall ties and bed joint reinforcement.

 $4 \mid$ \mid 5

No of	olocks	CO+	CO	CO-	No of I	olocks	CO+	CO	CO-	No of I	blocks	CO+	CO	CO-
	0.5	210	200	190	25		10010	10000	9990		49.5	19810	19800	19790
1		410	400	390		25.5	10210	10200	10190	50		20010	20000	19990
	1.5	610	600	590	26		10410	10400	10390		50.5	20210	20200	20190
2		810	800	790		26.5	10610	10600	10590	51		20410	20400	20390
	2.5	1010	1000	990	27		10810	10800	10790		51.5	20610	20600	20590
3		1210	1200	1190		27.5	11010	11000	10990	_ 52		20810	20800	20790
	3.5	1410	1400	1390	28		11210	11200	11190		52.5	21010	21000	20990
4		1610	1600	1590		28.5	11410	11400	11390	53		21210	21200	21190
	4.5	1810	1800	1790	29		11610	11600	11590		53.5	21410	21400	21390
5		2010	2000	1990		29.5	11810	11800	11790	_ 54		21610	21600	21590
	5.5	2210	2200	2190	30		12010	12000	11990		54.5	21810	21800	21790
6		2410	2400	2390		30.5	12210	12200	12190	55		22010	22000	21990
	6.5	2610	2600	2590	31		12410	12400	12390		55.5	22210	22200	22190
7		2810	2800	2790		31.5	12610	12600	12590	56		22410	22400	22390
	7.5	3010	3000	2990	32		12810	12800	12790		56.5	22610	22600	22590
8		3210	3200	3190		32.5	13010	13000	12990	57		22810	22800	22790
	8.5	3410	3400	3390	33		13210	13200	13190		57.5	23010	23000	22990
9		3610	3600	3590		33.5	13410	13400	13390	58		23210	23200	23190
	9.5	3810	3800	3790	34		13610	13600	13590		58.5	23410	23400	23390
10		4010	4000	3990		34.5	13810	13800	13790	59		23610	23600	23590
	10.5	4210	4200	4190	35		14010	14000	13990		59.5	23810	23800	23790
11		4410	4400	4390		35.5	14210	14200	14190	60		24010	24000	23990
	11.5	4610	4600	4590	36		14410	14400	14390		60.5	24210	24200	24190
12	40.5	4810	4800	4790		36.5	14610	14600	14590	61	/4.5	24410	24400	24390
4.0	12.5	5010	5000	4990	37	0.7.5	14810	14800	14790		61.5	24610	24600	24590
13	40.5	5210	5200	5190		37.5	15010	15000	14990	_ 62	/O.F	24810	24800	24790
4.1	13.5	5410	5400	5390	38	00.5	15210	15200	15190		62.5	25010	25000	24990
14	4/5	5610	5600	5590		38.5	15410	15400	15390	63	10.5	25210	25200	25190
4.5	14.5	5810	5800	5790	39	00.5	15610	15600	15590		63.5	25410	25400	25390
15	45.5	6010	6000	5990		39.5	15810	15800	15790	64		25610	25600	25590
4./	15.5	6210	6200	6190	40	/O.F	16010	16000	15990		64.5	25810	25800	25790
16	1 / -	6410	6400	6390	- / 4	40.5	16210	16200	16190	65	/==	26010	26000	25990
4.17	16.5	6610	6600	6590	41	/1 =	16410	16400	16390		65.5	26210	26200	26190
17	47.5	6810	6800	6790		41.5	16610	16600	16590	66	// =	26410	26400	26390
10	17.5	7010	7000	6990	42	/0.5	16810	16800	16790	- /7	66.5	26610	26600	26590
18	10.5	7210	7200	7190		42.5	17010	17000	16990	67	/8.5	26810	26800	26790
19	18.5	7410	7400	7390	43	/0.5	17210	17200	17190		67.5	27010	27000	26990
19	10 5	7610	7600	7590		43.5	17410	17400	17390	68	/O.F	27210	27200	27190
20	19.5	7810	7800	7790	44	// -	17610	17600	17590		68.5	27410	27400	27390
20	20.5	8010 8210	8000 8200	7990 8190	45	44.5	17810	17800	17790 17990	69	69.5	27610 27810	27600 27800	27590 27790
21	20.5	8410			40	45.5	18010	18000	18190	70	07.0	28010		27790
21	21.5	8610	8400 8600	8390 8590	46	43.3	18210 18410	18200 18400	18390	_/U	70.5	28210	28000 28200	28190
22	21.5	8810	8800	8790	40	46.5	18410	18400	18590	71	70.5	28410	28400	28390
22	22.5	9010		8790	47	46.3				_ / 1	71.5	28610		28390
23	22.5	9210	9000 9200	9190	4/	47.5	18810 19010	18800 19000	18790 18990	72	71.5	28810	28600 28800	28390
23	23.5	9410	9400	9390	48	47.5	19010	19000	19190		72.5	29010	29000	
24	Z3.3	9610	9600	9390	48	48.5	19210	19400	19190	73	72.5	29210		28990
24	24.5	9810	9800	9790	49	48.3	19410	19400	19390	/3	73.5	29210	29200 29400	29190 29390

No of blocks	CO+	CO	No of blocks	CO+	CO	No of blocks	CO+	CO
1	210	200	21	4210	4200	41	8210	8200
2	410	400	22	4410	4400	42	8410	8400
3	610	600	23	4610	4600	43	8610	8600
4	810	800	24	4810	4800	44	8810	8800
5	1010	1000	25	5010	5000	45	9010	9000
6	1210	1200	26	5210	5200	46	9210	9200
7	1410	1400	27	5410	5400	47	9410	9400
8	1610	1600	28	5610	5600	48	9610	9600
9	1810	1800	29	5810	5800	49	9810	9800
10	2010	2000	30	6010	6000	50	10010	10000
11	2210	2200	31	6210	6200	51	10210	10200
12	2410	2400	32	6410	6400	52	10410	10400
13	2610	2600	33	6610	6600	53	10610	10600
14	2810	2800	34	6810	6800	54	10810	10800
15	3010	3000	35	7010	7000	55	11010	11000
16	3210	3200	36	7210	7200	56	11210	11200
17	3410	3400	37	7410	7400	57	11410	11400
18	3610	3600	38	7610	7600	58	11610	11600
19	3810	3800	39	7810	7800	59	11810	11800
20	4010	4000	40	8010	8000	60	12010	12000


No of	blocks	CO+	CO	CO-	No of I	olocks	CO+	C0	CO-	No of I	olocks	CO+	CO	CO-
	0.5	235	225	215	25		11260	11250	11240		49.5	22285	22275	2226
1	0.0	460	450	440		25.5	11485	11475	11465	50	17.0	22510	22500	22490
	1.5	685	675	665	26	20.0	11710	11700	11690		50.5	22735	22725	2271
2	1.0	910	900	890		26.5	11935	11925	11915	51	00.0	22960	22950	2294
	2.5	1135	1125	1115	27	20.0	12160	12150	12140		51.5	23185	23175	2316
3	2.0	1360	1350	1340		27.5	12385	12375	12365	52	01.0	23410	23400	2339
J	3.5	1585	1575	1565	28	27.5	12610	12600	12590		52.5	23635	23625	2361
4	0.0	1810	1800	1790		28.5	12835	12825	12815	- 53	JZ.J	23860	23850	2384
4	4.5	2035	2025	2015	29	20.5	13060	13050	13040		53.5	24085	24075	240
5	4.5	2260	2250	2240		29.5	13285	13275	13265	- 54	JJ.J	24310	24300	2429
J	5.5	2485	2475	2465	30	27.0	13510	13500	13490	- 34	54.5	24535	24500	245
/	0.0					20.5					34.3			
6	6.5	2710	2700	2690		30.5	13735	13725 13950	13715	55		24760	24750	2474
-	6.5	2935	2925	2915	31	01.5	13960		13940		55.5	24985	24975	249
7	7.5	3160	3150	3140		31.5	14185	14175	14165	56	F / F	25210	25200	251
	7.5	3385	3375	3365	_ 32	00.5	14410	14400	14390		56.5	25435	25425	254
8		3610	3600	3590		32.5	14635	14625	14615	57		25660	25650	256
	8.5	3835	3825	3815	33		14860	14850	14840		57.5	25885	25875	258
9		4060	4050	4040		33.5	15085	15075	15065	_ 58		26110	26100	260
	9.5	4285	4275	4265	34		15310	15300	15290		58.5	26335	26325	263
10		4510	4500	4490		34.5	15535	15525	15515	_ 59		26560	26550	265
	10.5	4735	4725	4715	35		15760	15750	15740		59.5	26785	26775	267
11		4960	4950	4940		35.5	15985	15975	15965	_ 60		27010	27000	269
	11.5	5185	5175	5165	36		16210	16200	16190		60.5	27235	27225	272
12		5410	5400	5390		36.5	16435	16425	16415	61		27460	27450	274
	12.5	5635	5625	5615	37		16660	16650	16640		61.5	27685	27675	276
13		5860	5850	5840		37.5	16885	16875	16865	62		27910	27900	2789
	13.5	6085	6075	6065	38		17110	17100	17090		62.5	28135	28125	281
14		6310	6300	6290		38.5	17335	17325	17315	63		28360	28350	283
	14.5	6535	6525	6515	39		17560	17550	17540		63.5	28585	28575	285
15		6760	6750	6740		39.5	17785	17775	17765	64		28810	28800	287
	15.5	6985	6975	6965	40		18010	18000	17990		64.5	29035	29025	290
16		7210	7200	7190		40.5	18235	18225	18215	65		29260	29250	292
	16.5	7435	7425	7415	41	10.0	18460	18450	18440		65.5	29485	29475	294
17	10.0	7660	7650	7640		41.5	18685	18675	18665	66	00.0	29710	29700	296
	17.5	7885	7875	7865	42	41.0	18910	18900	18890		66.5	29935	29925	299
18	17.5	8110	8100	8090	- 42	42.5	19135	19125	19115	67	00.0	30160	30150	301
10	18.5	8335	8325	8315	43	42.0	19360	19350	19340	- 07	67.5	30385	30375	303
19	10.5	8560	8550	8540	_45	43.5	19585	19575	19565	- 68	07.0	30610	30600	3059
17	19.5	8785	8775	8765	44	40.0	19810	19800	19790		68.5	30835	30825	308
20	17.5	9010	9000	8990		44.5	20035	20025	20015	69	00.5	31060	31050	3104
20	20.5	9235	9225	9215	45	44.5	20260	20025	20015	07	69.5	31285	31050	3102
21	20.5	9235	9450	9440	40	45.5	20260	20250	20240	70	07.3	31285	31275	3149
21	21 5					43.3				/U	70 F			
22	21.5	9685	9675	9665	46	// -	20710	20700	20690	71	70.5	31735	31725	317
22	00.5	9910	9900	9890	-/2	46.5	20935	20925	20915	71	E4 E	31960	31950	3194
00	22.5	10135	10125	10115	47	/8.5	21160	21150	21140	- 70	71.5	32185	32175	321
23	00.5	10360	10350	10340		47.5	21385	21375	21365	72	F0 F	32410	32400	3239
	23.5	10585	10575	10565	_48		21610	21600	21590		72.5	32635	32625	326
24		10810	10800	10790		48.5	21835	21825	21815	73		32860	32850	3284
	24.5	11035	11025	11015	49		22060	22050	22040		73.5	33085	33075	330

No of blocks	CO+	CO	No of blocks	CO+	CO	No of blocks	CO+	CO
1	235	225	21	4735	4725	41	9235	9225
2	460	450	22	4960	4950	42	9460	9450
3	685	675	23	5185	5175	43	9685	9675
4	910	900	24	5410	5400	44	9910	9900
5	1135	1125	25	5635	5625	45	10135	10125
6	1360	1350	26	5860	5850	46	10360	10350
7	1585	1575	27	6085	6075	47	10585	10575
8	1810	1800	28	6310	6300	48	10810	10800
9	2035	2025	29	6535	6525	49	11035	11025
10	2260	2250	30	6760	6750	50	11260	11250
11	2485	2475	31	6985	6975	51	11485	11475
12	2710	2700	32	7210	7200	52	11710	11700
13	2935	2925	33	7435	7425	53	11935	11925
14	3160	3150	34	7660	7650	54	12160	12150
15	3385	3375	35	7885	7875	55	12385	12375
16	3610	3600	36	8110	8100	56	12610	12600
17	3835	3825	37	8335	8325	57	12835	12825
18	4060	4050	38	8560	8550	58	13060	13050
19	4285	4275	39	8785	8775	59	13285	13275
20	4510	4500	40	9010	9000	60	13510	13500

Radius walls using standard blocks

Within certain limits, standard blocks may be laid running bond to a circular or other curved plan form. The practical limits are determined by the acceptable face width of perpends on the outer radius, and the amount of overhang between successive courses.

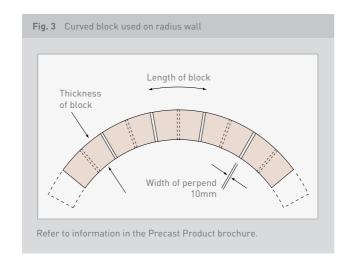
For requirements outside the parameters shown in the table below, Forticrete has a facility to create bespoke products. However, an exact match cannot be guaranteed due to the different manufacturing processes employed. Forticrete recommend that matching samples be compared at the design stage.

thickn		ock s 90mm 200mm	thickne	ock ss 90mm 400mm	thicknes	ock ss 100mm 225mm	thicknes	ock s 100mm 450mm
Wall radius (mm)	Overhang (mm)	External perpend width (mm)	Overhang (mm)	External perpend width (mm)	Overhang (mm)	External perpend width (mm)	Overhang (mm)	External perpend width (mm
1000	5	28	20	50	6	32	22	54
1200	4	25	17	42	5	29	20	46
1400	3.5	23	14	39	4.5	26	17	42
1600	3.0	21	12	35	4	24	15	37
1800	2.5	20	11	32	3.5	22	13	34
2000	2.5	19	10	30	3	21	12	32
2500	2.5	19	10	28	2.0	17.5	8	26
3000	1.5	16	7	23	2.0	18	8	25
3500	1.0	15	6	21	1.8	17	7	23
4000	<1.0	14.5	5	20	1.5	16	6	21
4500	<1.0	14.0	4.5	19	1.0	15	5.5	20
5000	<1.0	13.5	4.0	18	<1.0	14.5	5.0	19
5500	<1.0	13.5	3.5	17	<1.0	14	4.5	18
6000	<1.0	13	3.0	16.5	<1.0	13.5	4.0	17

Overhangs

The overhang values are what can be expected if the wall is built fair-face on both sides.

Overhangs of $4\,\mathrm{mm}$ and below are normally acceptable for fairface work.


Perpends

Where the blocks are only seen on the internal radius, the perpend can be kept at 10mm.

If the external radius is seen, the perpend width may be reduced by closing up on the inside face or by cutting one or both ends of the blocks on the splay.

Radius wall using precast curved units

The intended appearance of the radius wall will determine whether the use of standard blocks is practical or desirable. Consideration should therefore be given to the use of precast curved units to achieve the required effect.

Movement control and bed joint reinforcement

Accommodation of movement

All Building materials are subject to movement due to temperature and moisture changes. Designers should therefore ensure that the effects of such movement are accommodated to prevent unsightly cracking which may further result in structural defects.

A number of factors should be considered by the designer.

- specifying a product with low drying shrinkage, e.g. Forticrete Masonry
- specifying the correct mortar
- providing control joints at suitable centres
- using bed-joint reinforcement (See page 11)
- protecting the blocks before and during construction

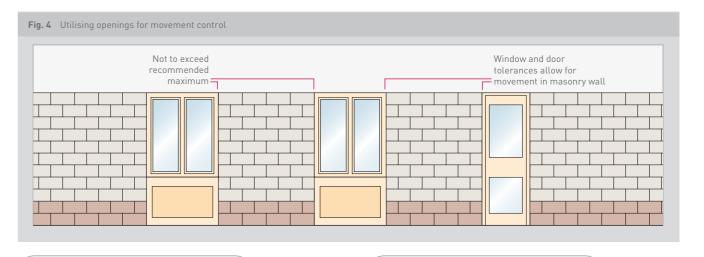
Detailed information is covered within BS5628: Part 3: 2005

Control joints

Control joints are vertical separations built into a wall and located where cracking may occur due to excessive stresses caused mainly by drying shrinkage.

As a general guide the joints should be at regular spacing up to 9.0m in external walls and up to 12.2m maximum for internal walls.

Table 11. Recommended spacing of movement control joints									
Product range	Internal spacing (metres)	External spacing (metres)							
Specification Masonry (except Novastone®), Polished Masonry, Splitface™ Masonry	12.2	9							
Glazed Masonry, Novastone®, Cast Stone, Walling Stone	6	6 6							
Standard Masonry Dense, Standard Masonry Lightweight	9	6 6							

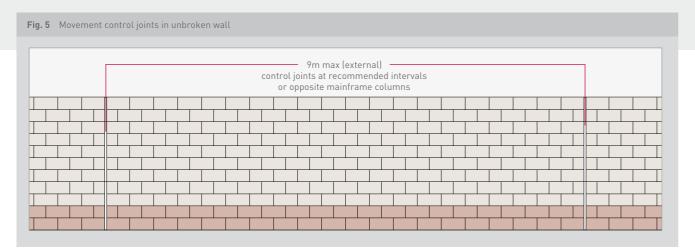

It should be noted that on south and east elevations, the effect of the early morning sun on these faces can raise the temperature very rapidly and cause greater movement to take place than elsewhere in the structure. It is recommended that the above rules are strictly adhered to unless further advice is taken.

Control joints may also be required at:

- changes in wall height and thickness.
- junctions with other forms of construction e.g. steel stanchions and reinforced concrete columns.
- intersections with other walls and partitions particular attention should be given where return walls occur.
- return angles in L, T and U shaped buildings.
- chases or recesses for piping, pilasters, fixtures, etc.
- one or both sides of some large wall openings, e.g. windows, louvres or doors. However the addition of localised bed-joint reinforcement above and below openings can often eliminate the need for control joints. (See pages 11 and 12)
- movement joints in roof and floor slabs. These joints in the main structure must be continued through the wall construction. The width of the wall joint and the compressible filler should be similar to that used in the roof and floor slabs.

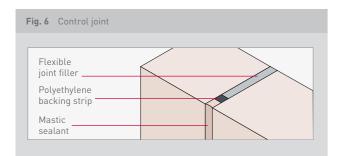
Slender panels of masonry are more susceptible to drying shrinkage movement because of the lack of restraint from the weight of masonry above. Therefore a totally square panel would have maximum effect in accommodating this potential movement.

Helpful hint



The sum of two panel lengths on either side of a corner should generally not exceed the recommendations for single panel length.

Helpful hint


The inclusion of one or two courses of a darker coloured masonry will disguise splash marks and build-up of general dirt and grime.

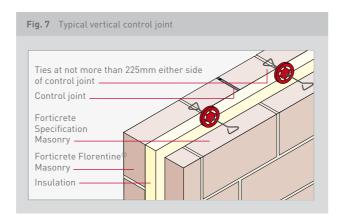
Helpful hint

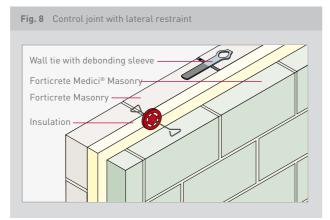
Formation of control joints

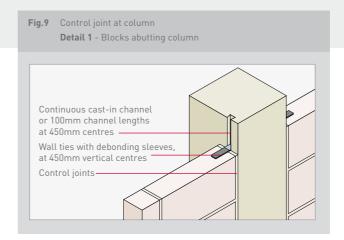
The wall is built in the 'normal' half bond manner with the exception that on alternate courses, half length blocks are used to form a straight vertical joint.

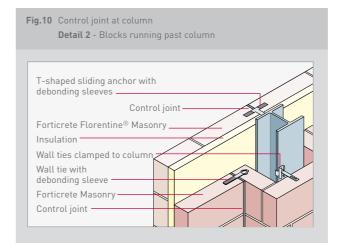
The sealant should be one of the following or similar:

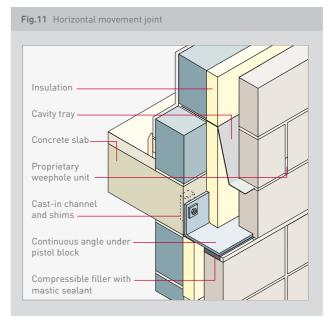
- an acrylic based sealant, such as these produced by Tremco Ltd tel: 01753 691696
- a two-part polysulphide, such as these produced by Fosroc Expandite Ltd tel: 01827 262222
- a silicone-based sealant, such as these produced by Adshead & Ratcliffe Ltd tel: 01773 826661


Internally the joint should be left open as long as possible to enable the wall to dry out thoroughly. Control joints should be carried through all finishes. With partition walls not exceeding 8m in length the unbonded detail shown in Fig. 14 on page 15 will be adequate to accommodate this movement.


In cavity walls the control joints in each leaf should be offset. The flexibility of the cavity ties is normally sufficient to compensate for the very small differential movement between two leaves. Generally, the joint spacing is greater on the inner leaf so the staggering of joints is relatively simple. Additional wall ties should be provided either side of the control joint to enhance stiffness. Fig. 8 indicates how the control joint should be constructed incorporating a standard wall tie and plastic sleeve which may be used to create a de-bonding effect, for example that supplied by Halfen, Tel: 08705 316300. (See also Figs. 9 and 10)


Horizontal control joints


Limitation on uninterrupted height


When the method of limiting the uninterrupted height is adopted in accordance with BS 5628: Part 1, the outer leaf should be supported at intervals of not more than every third storey or every 9m, whichever is less. This method employs shelf angles and horizontal joints, which subsequently provides a means of vertical movement control. However, for buildings not exceeding four storeys or 12m in height, whichever is less, the outer leaf may be uninterrupted for its full height.

Helpful hint

In Figure 10 Forticrete quoins may be used to form column encasement giving a stronger bond.

Bed-joint reinforcement

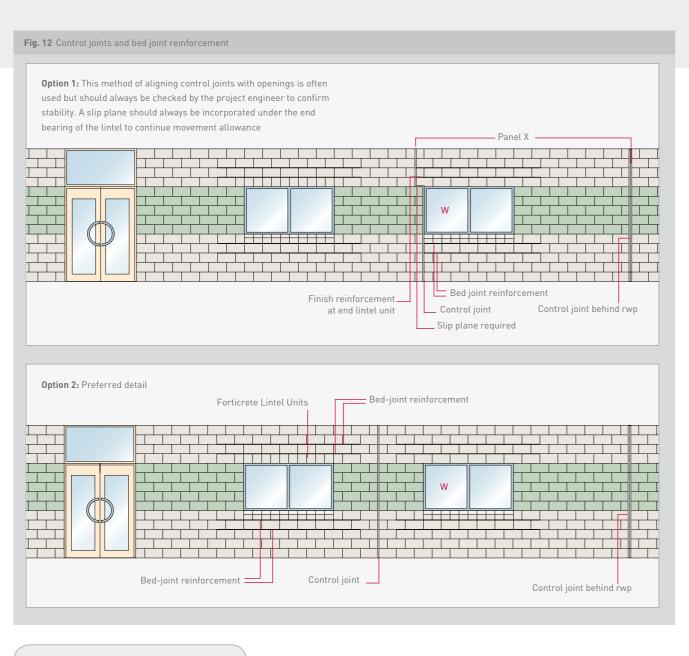
Bed joint reinforcement is used to control the stresses induced in masonry walls, including the control of shrinkage.

Bond beams can have the same effect, but bed joint reinforcement may be more effective in controlling movement and is generally more economical.

Internal walls

Table 12 gives an indication of the relationship between the spacing of control joints and that of bed-joint reinforcement for internal walls not subject to wind loads based on experience.

Ratio L/H Panel length L (determined by control joint spacing) to panel height H Limit of panel length L rrespective of panel height H Vertical spacing of bed-joint reinforcement In part of the spacing of sed-joint inforcement course revery other course course	Table 12. Spacing of cont for forticrete m		l bed joint	reinforceme	nt
rrespective of panel height H 12.2m 13.6m 15.2m 18.4m Vertical spacing of bed-joint no re- every 3rd every other every	Panel length L (determined by control joint spacing)	2	2.5	3	4
	, ,	12.2m	13.6m	15.2m	18.4m
	, ,		-	1	,


External walls

For external walls subject to wind loading, a structural engineer must be consulted to assess the spacing of control joints and bed joint reinforcement. However, Forticrete offer a free checking service before the design is passed to the structural engineer for final approval.

In walls which have door and window openings, bed-joint reinforcement will eliminate the use of frequent control joints. Reinforcement should be provided in the first and second courses above and below all openings and should extend no less than 600mm either side of the opening (See Fig. 12). Other uses of bed joint reinforcement are near the top of the structural walls abutting concrete roofs, and in providing additional strength to parapet (upstand) walls.

Alternatively, in Fig 12 the control joint adjacent to window W on panel X could be omitted if bed-joint reinforcement is incorporated in every course throughout the length between the door and the joint behind the rainwater pipe.

Where bed-joint reinforcement is required to enhance structural performance e.g. improving the flexural strength of stack bonded construction, it should be of the wire weld (ladder) type. Care must be exercised in selecting the correct width of reinforcement which should be approximately 40mm less than the width of the masonry unit. It is also important to ensure that the reinforcement is fully bedded in mortar and adequate adhesion between blocks is maintained.

A DPC inserted under bearing of lintel over window W in option 1 is required as a slip plane to accommodate the movement which will occur at the discontinuation of the control joint.

Helpful hint

Ensure that due consideration is given to the thickness of bed joint reinforcement when used in conjunction with 5mm mortar joints (as with Regency Ashlar Traditional and City Bonds), especially at corner detailing and lapping of reinforcement.

Helpful hint

Stack bonding

Stack bonding has a distinctive uniform bond pattern that is particularly suitable for panels in framed structures. It is often provided for aesthetic appearance without consideration for its design limitations. Stack bonding is economical to lay as it eliminates the need for cutting blockwork. However, the following criteria should be considered carefully when using a stack bond pattern.

The lack of cross bonding from the block directly above or below each unit will affect the flexural strength of the panel considerably. The compressive strength will also be reduced slightly.

In stack bond masonry, heavy concentrated loads will be carried down to the support by the particular vertical tier or "column" of masonry under load, with little distribution to adjacent masonry.

It is for this reason that BS 5628 does not recognise stack bonding as a "normal masonry bond pattern" when indicating calculation values for use by the designer/engineer.

Experience has shown that for blockwork masonry, Bed Joint Reinforcement should be included at every other course (450mm centres) for the full height of the stack bonded panel, and also for the width of the panel between columns or movement joints.

The reinforcement must not bridge the movement joints.

Alternatively bond beams can be used to restrain the panel against flexural failure. In effect, Bed Joint Reinforcement in alternate courses, will give the stack bond pattern a similar stability to that of a stretcher bond pattern.

It is important that when using this form of construction technique, a structural engineer must be consulted.

Brick and block banding

Over recent years, walls combining both clay and concrete masonry have become increasingly popular. If chosen, due account should be taken to accommodate differential movement.

Two design approaches can be used. BS 5628 suggests that slip planes be incorporated at the junction of the two dissimilar materials. However, this would seem to considerably reduce the flexural strength of the wall. The second approach is to tie the dissimilar materials together using Bed Joint Reinforcement, which reinforces the interface sufficiently to withstand the stresses induced by differential movement.

In either case it is advisable to ensure that movement joints are spaced at approximately 6m centres. Unfortunately little research has been carried out which would justify either design approach. Although both approaches have been used, slip planes are mostly incorporated on full height panels where shelf angles are used. To our knowledge no failures in this type of construction have been reported. This may be due to the low drying shrinkage of Forticrete masonry.

For further information please contact the Technical Department on 0800 262136.

The use of bed joint reinforcement

Bed joint reinforcement may be used for a variety of purposes and locations, as set out in Table 13 below either for structural applications or crack control only.

Typical manufacturers

Expamet Building Products Tel: 01429 866 655 BRC Building Products Ltd. Tel: 01785 240029

Table 13. The use of bed joint reinforcement						
	Ladder type for structural	Expanded metal type				
	applications	for crack control only (below & above				
Purpose/location	applications	openings and tying)				
Increased panel sizes (refer to table 12)	•	1 3 7 3				
Alternative to using windposts	•					
Increased movement joint spacing	•					
Feature courses, corbles, plinths	•	•				
Collar joint walls	•	•				
Corner and 'T' junction pieces	•	•				
Stack bonded panels	•					
Differential movement control	•	•				
Brick/block banding	•	•				
Above and below openings	•	•				

Fixings and detailing

Fixings

Aggregate concrete blocks provide an ideal substrate for many types of fixings. This ranges from light, medium and heavy-duty fixings. Although it is generally easier to fix into solid blockwork, it is possible to fix into the solid portion of hollow blockwork with certain light and medium duty fixings. Alternatively, for a stronger connection, it is possible to fill the hollow portion of the blockwork with concrete for the units that require the fixing. This technique would allow a substantial fixing to be applied to the hollow unit once filled with concrete and allowed to set.

For light duty use, plastic plug and screw type fixings are ideal and can achieve adequate pull out strengths for general applications. Pull out strengths will vary between different strengths and density of blockwork. It is therefore advisable to consult Forticrete's Technical Department for guidance and typical pull out strengths.

Medium duty applications will generally require a heavier gauge fixing than the light duty option. This will obviously depend on the fixing requirement.

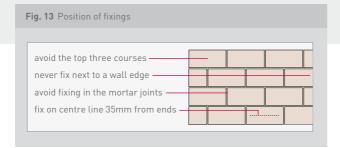
Heavy duty fixings should be considered carefully. The most common form of fixing is the chemical anchor or resin bonded rod. It is generally not advisable to use expanded anchor bolts on aggregate concrete blocks due to the action of the fixing, which tends to put excessive strain onto the blockwork when trying to expand. It may be possible to use expanding anchor type fixing for light or medium duty applications, bearing in mind the above caution. This should be discussed with Forticrete's Technical Department, to ensure suitability of the product in question.

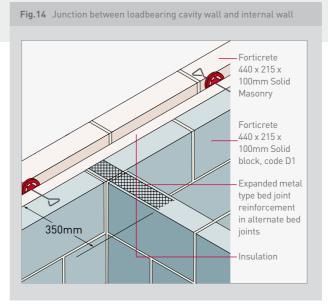
It is possible to substitute hollow blockwork with solid blockwork in areas where fixings are necessary. An example is blockwork next to a roller shutter door. Fixing strength is critical because vibration from the motion of the door may put extra stress onto the fixings. The solid blocks would obviously enhance the pull out strengths giving full restraint to the shutter door. However, it may also be necessary to reinforce the bed joints with Bed Joint Reinforcement to cope with the stresses imposed on the surrounding blockwork. Alternatively, the hollow blockwork could be filled with concrete at the position where the fixing is needed to ensure total stability. It may be necessary to consult with a Structural Engineer for this type of detailing, as there may be a need for specialist types of fixings in certain installations.

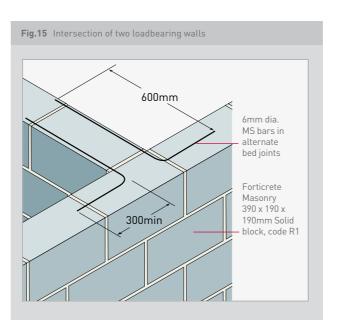
When fixings have to be considered after the completion of the building, there are numerous additional factors to consider.

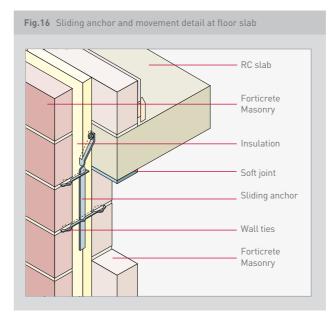
These include:

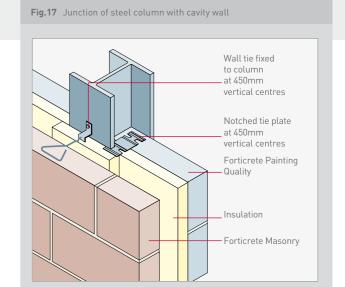
- the range of blockwork strengths
- the possibility of voids if unknown
- the variable quality of mortar
- the difficulty of avoiding mortar joints when the surface is rendered or plastered
- the correct choice of fixing system to suit loading and whether hollow, Hi-Light® or solid blocks are the supporting background

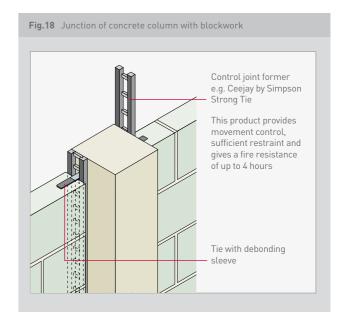


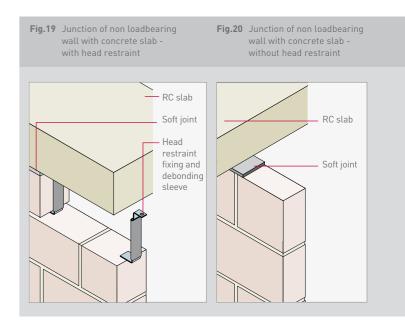

Figure 13 is a useful indicator of where to locate fixings within a blockwork wall. It may be used at the design stage, during construction, as well as after the building has been occupied.

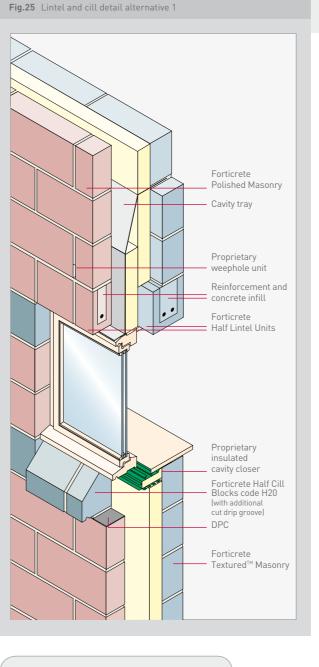

Rawplug Fixing	Block Designation	Average Ultimate Load (kN)	SWL (kg
8mm Rawl-in-one	Solid 7N	1.22	30
OIIIII I\awt-III-OIIE	Hollow 7N	1.38	35
	Hi-Light® 7N	1.42	35
10mm Rawl-in-one	Solid 7N	2.14	50
TOTTITI Nawt-III-OHE	Hollow 7N	1.26	30
	Hi-Light® 7N	1.61	40
8mm Rawlbloc	Solid 7N	1.92	45
OIIIII Nawibloc	Hollow 7N	2.24	55
	Hi-Light® 7N	1.83	45
10mm Rawlbloc	Solid 7N	1.81	45
TOTTITITION	Hollow 7N	2.73	65
	Hi-Light® 7N	2.68	65
8500 Rawlnut	Solid 7N	4.25	105
0J00 Nawthut	Hollow 7N	2.41	60
	Hi-Light® 7N	2.6	65
1055 Rawlnut	Solid 7N	5.53	135
1000 Nawiilut	Hollow 7N	6.36	155
	Hi-Light® 7N	5.44	135
M10 R-kem Resin	Solid 7N	11.1	270
linc. dia. 15 x 95 mesh sleevel	Hollow 7N	6.3	155
(inc. dia. 15 x 75 mesh steeve)	Hi-Light® 7N	7.6	190
	9		
Fischer Fixing	Block Designation	Average Ultimate Load (kN)	SWL (kg
SX Plug	Dense 7N	3.58	52
571 tag	Lightweight 7N	3.7	54
UX Plug	Dense 7N	2.17	32
571 tag	Lightweight 7N	1.8	25
M Unit	Dense 7N	5.83	85
	Lightweight 7N	4.9	71
FIP 380C	Dense 7N	11.1	283
111 0000	Lightweight 7N	5.5	140
FIS V360S	Hi-Light®	10.53	265
KD8	Hi-Light®	8.75	214
FHY	Hi-Light®	7.2	184
SXS	Hi-Light®	2.04	31
FU	Hi-Light®	3.33	51

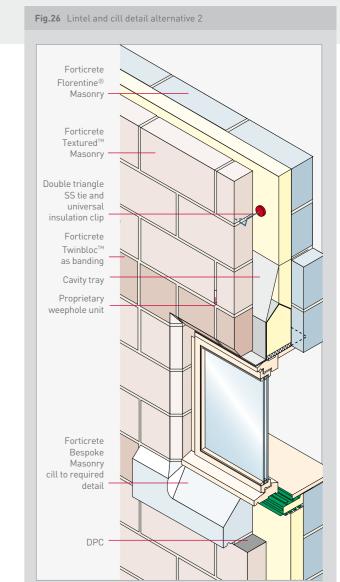

Provision for services and fittings

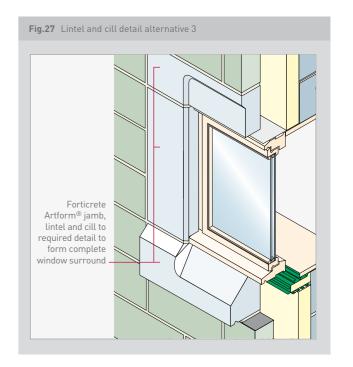

When making provision for services and services fittings, designers should ensure that none of the functions of the wall are impaired by fixings, chases or holes.


The designer should consider the effects of chasing on stability, bearing in mind the recommendations of BS 5628: Part 3, particularly where walls or leaves are constructed of hollow units. In walls or leaves constructed of solid units, the depth of horizontal chases should not normally exceed one-sixth of the thickness of the single leaf at any point, whilst the depth of vertical chases should not normally exceed one-third of the thickness of the single leaf at any point. The cutting of holes up to approximately 300mm square in the wall to accommodate items of equipment may be permitted. See Sitework Guide for further clarification.







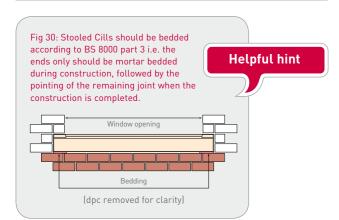
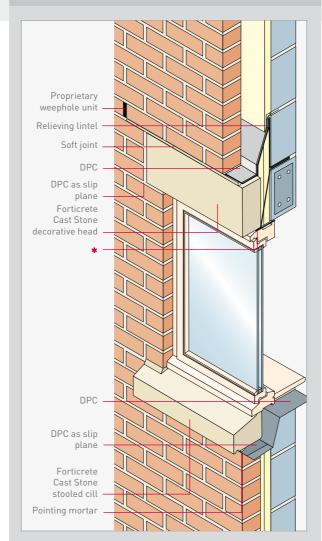
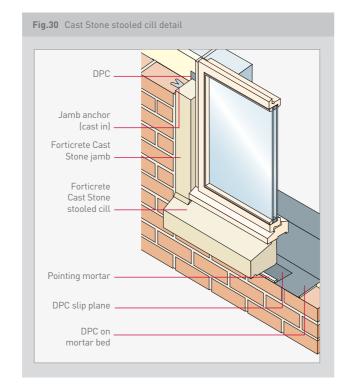

14 15

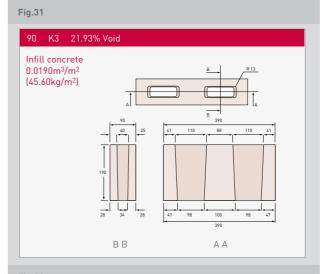
To eliminate stress and differential movement, bed joint reinforcement should be provided for two courses above and below all openings and should extend no less than 600mm either side of the opening.

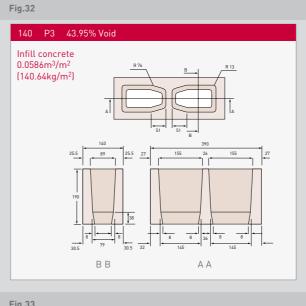
Helpful hint

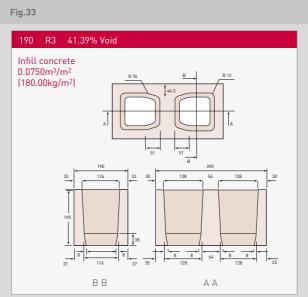
*Fig 29 Bed joint to allow for a maximum deflection of 5mm for steel support lintel

Fig.28 Cast Stone Decorative Head with supporting lintel detail Proprietary weephole unit DPC as slip plane - DPC as slip plane Stone decorative head - DPC as slip plane DPC as slip plane - Forticrete Cast Stone slip cill

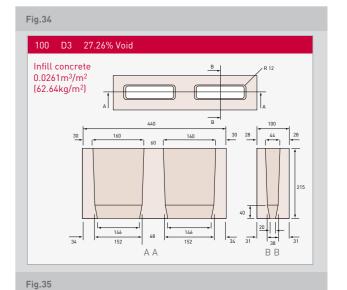




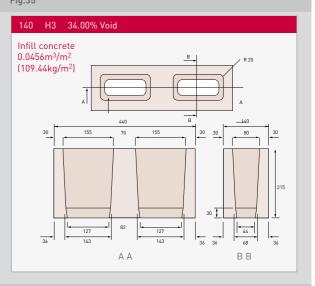

Fig.29 Cast Stone Decorative Head with relieving lintel detail

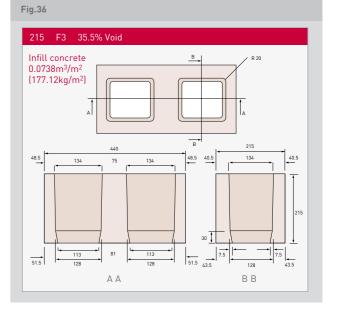




Structural performance


Hollow block dimensions and void percentages 390 x 190mm blocks





Hollow block dimensions and void percentages 440 x 215mm blocks

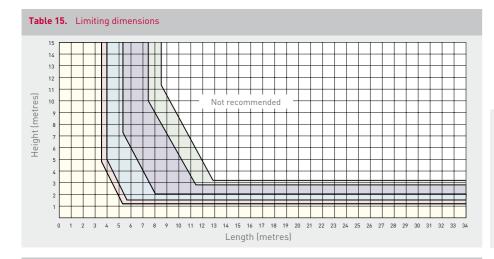
 18

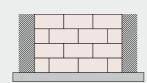
The stringent quality control and testing procedures applied to all Forticrete products allows the specifier confidence in applying the design criteria for safe and economical walling construction. These criteria include the strength of the masonry unit, its height/thickness ratio and the type of mortar used.

The dimensional characteristics of concrete blocks allow the construction of walls of very high strength and stability, to the extent that the characteristic compressive strength of a wall constructed from 7.3 N/mm² Forticrete blockwork 100mm thick can be equal to that using 20 N/mm² compressive strength bricks.

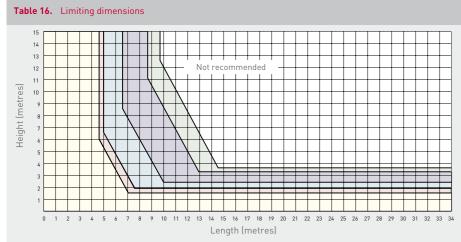
Key: recommended thickness 90mm 100mm 140mm 190mm 215mm

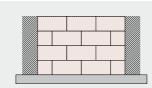
Tables 15-19 give limiting dimensions for internal non loadbearing panels

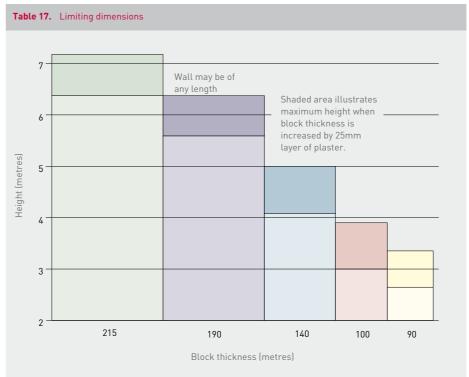

BS 5628: Part 3 gives guidance for non load bearing internal partitions not subject to wind load. The limiting dimensions and recommended block thickness shown in tables 15 to 19 are based on this Code of Practice. Consideration should be given to the following:

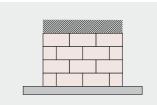

- the size and location of openings
- the use of the building, which may necessitate some wind load to be considered
- location of control joints
- fire resistance
- sound reduction

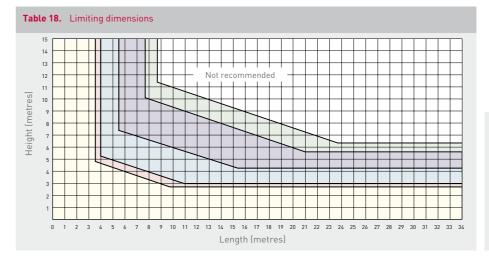
Comparing a 100mm block and a 215mm block (using table 15 - lateral restraint at base and ends only)

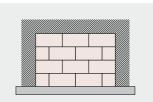

Example 1 a 100mm block wall 15m high may be 4.0m in length, whereas a 215mm block wall 15m high may be 8.5m in length.


Example 2 a 100mm block wall 4m high may be 4.5m in length, whereas a 215mm block wall 4m high may be 12.5m in length.




Fairface $^{\text{TM}}$ or painted walls having adequate lateral restraint at ends and base only.




Walls having adequate lateral restraint at ends and base only and 13mm plaster both sides.

Walls having adequate lateral restraint at top and base only.

Walls having adequate lateral restraint at both ends, top and base.

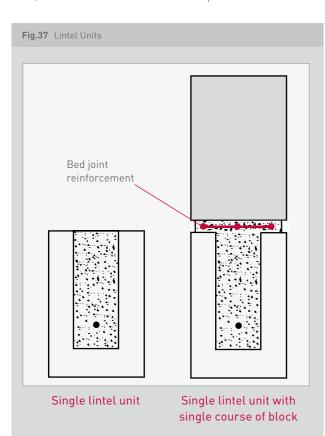
Walls having adequate lateral restraint at both ends, top and base with 13mm plaster both sides.

20 21

Reinforced masonry lintels

Forticrete reinforced masonry lintels may be used to span openings in wall panels whilst maintaining the appearance of the block units. Tables 9, 10, 11 and 12 provide an indication of the loading that the lintels can sustain for a given span.

The lintels should be designed in accordance with


BS 5628 Part 2 'Code of Practice for the Use of Reinforced Masonry'. The tables have been developed applying the recommendations of this British Standard. The infill assumed is a C32/40 concrete with 10mm aggregate size.

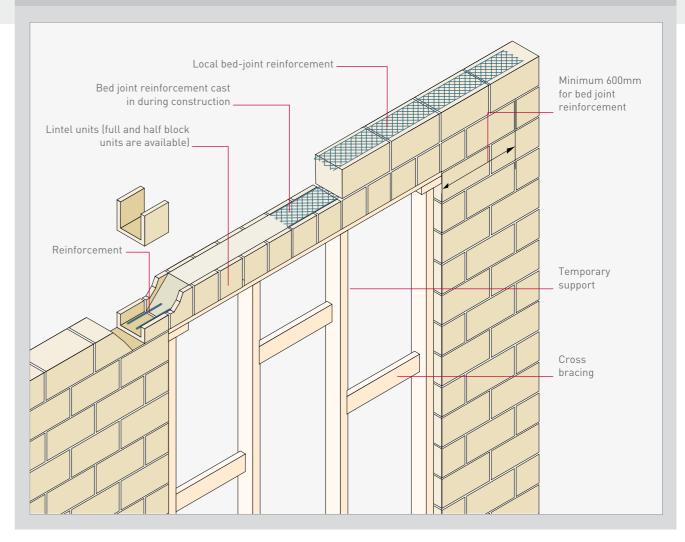
The values given within the tables are for guidance only. The reinforcement quantities and the application of the lintel should be approved by the project Structural Engineer.

The safe working loads within the tables are assumed uniformly distributed and a partial factor of safety on loading of 1.50 has been adopted to convert the lintels' ultimate strength to the safe working loads indicated. The span of the lintel is typically the distance between the centre line of the bearings. To achieve durability for Exposure Situation E3 (BS 5628 Part 2), stainless steel reinforcement is required as indicated with an *.

Note: Spans indicated within the tables represent the structural span of the lintel only.

The end bearing of the lintels should be calculated paying due allowance to the compressive strength of the blockwork at the bearings and the anchorage requirements of the reinforcement at the bearings. In some cases the ends of the reinforcement may require a full hook to achieve the required bond length. For further advice on the design and application of Forticrete lintel units, refer to the Forticrete Technical Department.

Table 20. 390 X 190mm lintel unit with one course of masonry and bed joint reinforcement above											
Lintel Width	Block Ref	Reinforcement (high yield)	ULS Moment (kNm)	ULS Shear (kN)	600					an (mn	
90	K28/K14	1H6* 1H8* 1H10*	3.2 5.4 7.8	5.1 5.3 5.5	11.3 11.8 12.2	7.6 7.9 8.1	5.7 5.9 6.1	4.5 4.7 4.9	3.8 3.9 4.1	3.2 3.4 3.5	2.8 2.9 3.1
140	P28/P14	1H6* 1H8* 1H10*	3.3 5.7 8.5	7.8 8 8.2	17.3 17.8 18.2	11.6 11.9 12.1	8.7 8.9 9.1	6.9 7.1 7.3	5.4 5.9 6.1	4.0 5.1 5.2	3.1 4.4 4.6
190	R28/R14	2H6 2H8 2H10	6.4 10.7 15.5	10.6 10.9 11.4	23.6 24.2 25.3	16.1	11.8 12.1 12.7	9.4 9.7 10.1	7.9 8.1 8.4	6.7 6.9 4.2	5.9 6.1 6.3


Lintel Width	Block Ref	Reinforcement (high yield)	ULS Moment	ULS Shear		Safe UI	DL in kN	N/m for	span (n	nm
			(kNm)	(kN)	600	900	1200	1500	1800	2100
90	K28/K14	1H6*	1	1.9	4.2	2.8	2.1	1.7	1.4	1.2
		1H8*	1.3	2.1	4.7	3.1	2.3	1.9	1.6	1.3
		1H10*	1.3	2.3	5.1	3.4	2.6	2.0	1.7	1.5
140	P28/P14	1H6*	1.1	2.9	6.4	4.3	3.2	2.6	1.8	1.3
		1H8*	1.7	3.1	6.9	4.6	3.4	2.8	2.3	2.0
		1H10*	2	3.3	7.3	4.9	3.7	2.9	2.4	2.1
190	R28/R14	2H6	1.9	3.9	8.7	5.8	4.3	3.5	2.9	2.3
		2H8	2.4	4.3	9.6	6.4	4.8	3.8	3.2	2.7
		2H10	2.4	4.7	10.4	7.0	5.2	4.2	3.5	2.9

	and bed joint reinforcement above										
Lintel Width	Block Ref	Reinforcement (high yield)	Moment	ULS Shear				kN/m			
			(kNm)	(kN)	600	900	1200	1500	1800	2100	2400
100	D28/D14	1H6* 1H8*	3.8 6.6	6.5 6.7	14.4 14.9	9.6 9.9	7.2 7.4	5.8 6.0	4.8 5.0	4.1 4.3	3.5 3.7
		1H10*	9.6	6.9	15.3	10.2	7.7	6.1	5.1	4.4	3.8
140	H28/H14	1H6* 1H8* 1H10*	3.8 6.6 9.9	8.9 9 9.3	19.8 20.0 20.7	13.2 13.3 13.8	9.9 10.0 10.3	7.9 8.0 8.3	6.3 6.7 6.9	4.6 5.7 5.9	3.5 5.0 5.2
190	A28/A14	2H6 2H8 2H10	7.4 12.3 17.5	12.3 12.7 13.1	27.3 28.2 29.1	18.2 18.8 19.4	13.7 14.1	10.9 11.3 11.6	9.1 9.4 9.7	7.8 8.1 8.3	6.8 7.1 7.3
215	F28/F14	2H6 2H8 2H10	7.6 12.9 19.1	13.8 14.1 14.6	30.7 31.3 32.4		15.3 15.7 16.2	12.3 12.5 13.0	10.2 10.4 10.8	8.8 9.0 9.3	7.0 7.8 8.1

Table 22. 440 x 215mm lintel unit with one course of masonry

Lintel Width	Block Ref	Reinforcement (high yield)	ULS Moment	ULS Shear	!	Safe U	DL in I	kN/m f	or spa	n (mm	1
width	itei	(Iligii yieta)	(kNm)	(kN)	600	900	1200	1500	1800	2100	2400
100	D28/D14	1H6*	1.3	2.6	5.8	3.9	2.9	2.3	1.9	1.6	1.2
		1H8*	2	2.8	6.2	4.1	3.1	2.5	2.1	1.8	1.6
		1H10*	2.2	3	6.7	4.4	3.3	2.7	2.2	1.9	1.7
140	H28/H14	1H6*	1.3	3.4	7.6	5.0	3.8	3.0	2.1	1.6	1.2
		1H8*	2.1	3.5	7.8	5.2	3.9	3.1	2.6	2.2	1.9
		1H10*	2.7	3.7	8.2	5.5	4.1	3.3	2.7	2.3	2.1
190	A28/A14	2H6	2.3	4.8	10.7	7.1	5.3	4.3	3.6	2.8	2.1
		2H8	2.8	5.2	11.6	7.7	5.8	4.6	3.9	3.3	2.6
		2H10	2.8	5.6	12.4	8.3	6.2	5.0	4.1	3.4	2.6
215	F28/F14	2H6	2.5	5.3	11.8	7.9	5.9	4.7	3.9	3.0	2.3
		2H8	3.9	5.7	12.7	8.4	6.3	5.1	4.2	3.6	3.2
		2H10	4.2	6.1	13.6	9.0	6.8	5.4	4.5	3.9	3.4

Fig.38 Lintel Units

Cover for reinforcement

Note that BS 5628: Part 2 requires that cover for durability is measured from the insitu concrete only, whereas cover for fire resistance may include the thickness of the masonry lintel/bond beam units.

Sequence of construction

The sequence of trough lintel construction is as follows:

- Build the blockwork to the soffit height of the lintel
- · Provide temporary propping to the lintel units
- Lay the lintel units with a 10mm wide x 20mm deep temporary spacer in each joint. Temporary joint spacers can be of any material which provides adequate retention of the concrete infill and can be removed for pointing (e.g. polystyrene)
- Fit plastic spacers to the reinforcement to ensure correct concrete cover
- Place reinforcement as appropriate
- Complete in-situ filling, tamping by hand
- After curing period strip propping, remove temporary joint spacers and point joints carefully to match surrounding blockwork

- The minimum specification for infill concrete is:
- Aggregate: 10mm (maximum)Concrete strength: C32/40 (minimum)
- Slump: 75mm (minimum)

To achieve the figures in Tables 20 and 22, for a lintel unit with one course of masonry and bed joint reinforcement above, both the reinforcement and the course of masonry must be bedded into the concrete during construction, in a single operation, and left to cure.

22 23

Fire resistance

The fire resistance of the building fabric is in some ways the most important of all the performance properties in blockwork design, as it can affect more than just mere comfort. Provision has to be made not only for the stability of the structure but also for the safety of the occupants.

Table 24. Fire resistance for specification masonry, polished and standard masonry (with class 1 aggregates as BS 5628 part 3)

*Product code	Load- bearing cavity wall	Load- bearing single leaf wall	Non load- bearing cavity wall	Non load- bearing single leaf wall
K1	1 hr	1 hr	6 hrs	2 hrs
P1	6 hrs	2 hrs	6 hrs	4 hrs
R1	6 hrs	4 hrs	6 hrs	6 hrs
P2	4 hrs	2 hrs	6 hrs	3 hrs
K3	4 hrs	0.5 hrs	4 hrs	1 hrs
P3	4 hrs	2 hrs	6 hrs	3 hrs
R3	4 hrs	2 hrs	6 hrs	4 hrs
G1	1 hr	1 hr	6 hrs	2 hrs
D1	6 hrs	2 hrs	6 hrs	2 hrs
H1	6 hrs	3 hrs	6 hrs	4 hrs
A1	6 hrs	4 hrs	6 hrs	6 hrs
F1	6 hrs	6 hrs	6 hrs	6 hrs
D2	4 hrs	2 hrs	6 hrs	2 hrs
H2	4 hrs	2 hrs	6 hrs	3 hrs
D3	4 hrs	2 hrs	6 hrs	2 hrs
Н3	4 hrs	2 hrs	6 hrs	3 hrs
А3	6 hrs	3 hrs	6 hrs	4 hrs
F3	4 hrs	2 hrs	6 hrs	4 hrs

^{*} The product codes above have been taken from the Specification Masonry range. However, the fire ratings above can be taken as consistent for all Forticrete products with the same thickness as the code description, providing the product in question utilises a Class 1 Aggregate (Limestone). For further information on products utilising a Class 2 aggregate (Granite etc) please contact the Forticrete Technical Department.

Table 25.	Fire resistance for Splitface™ masonry
	(th alass 1 annual as DC E/20 asst 2)

'	(with class 1 aggregate as DS 3020 part of						
Product code	Load- bearing cavity wall	Load- bearing single leaf wall	Non load- bearing cavity wall	Non load- bearing single leaf wall			
S30 S4 E54	1 hr 1 hr 1 hr	1 hr 1 hr 1 hr	6 hrs 6 hrs 6 hrs	2 hrs 2 hrs 2 hrs			

Table 26. Fire resistance for Anstone® & Shearstone™ walling stone (with class 1 aggregate as BS 5628 part 3)

Product code	Load- bearing cavity wall	Load- bearing single leaf wall	Non load- bearing cavity wall	Non load- bearing single leaf wall
100	6 hrs	2 hrs	6 hrs	2 hrs
140	6 hrs	3 hrs	6 hrs	4 hrs
215	6 hrs	6 hrs	6 hrs	6 hrs

The outer shell thickness of Forticrete trough lintels can be allowed for when determining fire resistance. Therefore the fire ratings can be assumed as the overall thickness of the lintel/bond-beam including concrete infill.

Helpful hint

Table 27. Fire resistance table for regency ashlar cast stone (with class 1 aggregate as bs 5628 part 3)

•	,933 p,							
Product code	Load- bearing cavity wall	Load- bearing single leaf wall	Non load- bearing cavity wall	Non load- bearing single leaf wall				
Α1	6 hrs	2 hrs	6 hrs	2 hrs				
A3	6 hrs	4 hrs	6 hrs	6 hrs				
A90	6 hrs	2 hrs	6 hrs	2 hrs				
A4	6 hrs	4 hrs	6 hrs	6 hrs				
A70	6 hrs	2 hrs	6 hrs	2 hrs				
A60	6 hrs	2 hrs	6 hrs	2 hrs				
A80	6 hrs	2 hrs	6 hrs	2 hrs				

References and bibliography

Mandatory requirements

The Building Regulations 2000

The Building Standards (Scotland) Regulations 1990 (Amended 2001)

Construction Design & Management (CDM) Regulations 1994

Construction - (Health, Safety & Welfare) Regulations 1996

Environmental Waste Act 1997

Official documents

Manual to the Building Regulations 2000

Approved documents

- A Structure
- B Fire
- C Site Preparation and Resistance to Moisture
- D Toxic Substances
- E Resistance to the Passage of Sound
- F Ventilation
- L Conservation of Fuel and Power
- M Access & facilities for disabled people

Approved Document to Support Regulation 7

(Materials & Workmanship)

British Standard references

BS 476: Fire tests on building materials

and structures

BS 1217: Specification for cast stone

BS 1243: Specification for metal ties for cavity

wall construction

DD140: Wall ties

BS 1881: Testing concrete

BS 5250: Code of practice for control of

condensation in buildings

BS 5262: Code of practice for external renderings
BS 5492: Code of practice for internal plastering

BS 5606: Guide to accuracy in building

BS 5628: Code of practice for use of masonry

(Parts 1,2 and 3)

Cills and copings

BS 5977: Lintels

BS 5642:

BS EN 771-3:2003: Specification for aggregate concrete

masonry units

BS EN 771-5:2003: Specification for manufactured stone

masonry units

BS 6399: Loading for buildings

BS 6457: Specification for reconstructed stone

masonry units

BS 8000: Workmanship on Building Sites (Part 3)

BS 8110: Structural use of concrete

BS EN ISO 9000: Quality management and quality

assurance standards

BS EN ISO 9001:2000: Quality systems. Model for quality

 $assurance\ in\ production,\ installation$

and servicing

Other publications

Chartered Institute of Building and Services Engineers -

CIBSE Guide A

Construction Fixings Association -

Fixings for brickwork and blockwork

Concrete Block Association -

Safe Handling and Use of Concrete Blocks

Concrete Block Association -

Aggregate Concrete Blocks for Use in Sulphate Soil Conditions

Health and Safety Committee -

HSE Construction Sheet No 37 (Handling of Building Blocks)

Notes

Specification Masonry Products

Forticrete Ltd

Thornley Station Industrial Estate

Salters Lane Shotton Colliery

Durham DH6 2QA

Tel: 01429 838001 Fax: 01429 836206

Email: masonry@forticrete.com

Stone Products

Forticrete Ltd

Anstone,

Kiveton Park Station Kiveton Park

Sheffield S26 6NP

Anstone® and Shearstone™ Walling

Tel: 01909 775000

Fax: 01909 775043

E-mail: walling@forticrete.com

Cast Stone:

Tel: 01909 775000 Fax: 01909 773549

E-mail: caststone@forticrete.com

Information on the complete range of Forticrete products can be found on the Internet at

www.forticrete.co.uk

- R Forticrete, Ribloc, Medici, Florentine, Artform, Novastone, Hi-Light and Regency are registered trademarks of Forticrete Ltd. CRH is a registered trademark of CRH plc.
- R Anstone is a registered trademark of Ibstock Brick Ltd.
- R Astra-Glaze is a trademark of Oldcastle APG Northeast, Inc.
- ™ Arenabloc, Hi-Light, Twinbloc, Fairface, Textured, Splitface, Sparstone, Venezia and Shearstone are trademarks of Forticrete Ltd. Astra-Glaze-SW is a trademark of Oldcastle APG Northeast, Inc.

The information contained within this publication is as accurate as possible at the time of going to press. However, this document does not form part of any contract and Forticrete cannot accept liability for any errors or omissions.

In order to maintain its position as a market leader, Forticrete operates a policy of continuous product development and therefore reserves the right to alter specifications without notice.

C Forticrete Ltd. 2010.

