

EQUITY RESEARCH UPDATED 04/22/2025

Apptronik

TEAM

Jan-Erik Asplund Marcelo Ballve
Co-Founder Head of Research
jan@sacra.com marcelo@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment, legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is made regarding future performance. Information, opinions and estimates contained in this report reflect a determination at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification, copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to, copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized duplication, redistribution or disclosure of this report will result in prosecution.

Apptronik

Al-powered humanoid robots for industrial use cases

#robotics

VALUATION \$1,500,000,000

<u> 2025</u>

FUNDING \$436,000,000

2025

Visit Website

HEADQUARTERS

Austin, TX

Details

CEO

Jeff Cardenas

Valuation

Apptronik is valued at \$1.5 billion following its \$403 million Series A funding round in February 2025. The round was led by Google with participation from Mercedes-Benz, Japan Post Capital, and ARK Invest.

The company has raised a total of \$436 million to date. Notable is that Apptronik operated with minimal external capital for its first five years, having raised only about \$86 million in venture funding prior to the recent Series A round.

Product

Apollo is a general-purpose humanoid robot designed to perform physical labor across warehousing, logistics, and manufacturing environments. Standing 5'8" and weighing 160 pounds, Apollo can carry up to 55 pounds of payload and execute tasks that traditionally require human workers. The robot represents Apptronik's eighth humanoid iteration since 2016, building on technical foundations established during the founders' work with NASA on the \$5M+ Valkyrie robot project.

At the hardware level, Apollo features a modular design that allows its upper body (containing battery and compute) to be attached to different lower bodies: legs for navigating human environments, wheels for faster movement (5-8x faster than bipedal walking), or fixed pedestals for stationary precision work. This modularity extends to end effectors, which can be swapped out for different tasks, with potential integration of more advanced hands from partners like Sanctuary AI.

The robot is designed from the ground up with commercialization in mind. While most humanoids have historically cost hundreds of thousands or millions of dollars, Apollo has a bill-of-materials targeting under \$50,000, making it economically viable for regular industrial use. Apptronik designed Apollo specifically to address supply chain constraints, avoiding single-source vendors and enabling large-scale manufacturing.

Business Model

Apptronik employs a vertically integrated hardware model with a B2B go-to-market strategy and dual monetization approaches. The company designs and builds its robots in-house, with particular expertise in developing the critical actuator systems that represent 30-40% of a robot's bill of materials. This vertical integration contrasts with earlier robotics startups that often relied more heavily on third-party components.

The company's go-to-market strategy features two complementary approaches: a Robot-as-a-Service (RaaS) model where customers pay subscription fees for robot usage, and a traditional capital expenditure model where customers purchase robots outright. This dual approach is calibrated to different customer segments—logistics providers (particularly third-party logistics companies) prefer the service model to avoid heavy capital expenditures, while manufacturing firms typically favor owning equipment outright.

Apptronik's manufacturing strategy leverages its Texas location's proximity to Mexican manufacturing facilities, where labor costs approximately one-third of U.S. rates. This approach balances cost efficiency with supply chain resilience, avoiding over-reliance on Asian manufacturing while maintaining quality control. The modular design of Apollo creates additional revenue opportunities through component upgrades and replacements, similar to how enterprise hardware companies generate recurring revenue through maintenance and enhancement.

The company's strategic partnership with Google mirrors Amazon's approach with Agility Robotics—creating what amounts to a "shadow robotics division" for Google without the full costs and HR complexities of internal development. Apollo serves as the exclusive humanoid platform for Google's Gemini Robotics initiative, providing Apptronik with both capital and technical collaboration while maintaining corporate independence.

Competition

Tech giant partnerships

Major technology companies are forming exclusive partnerships with humanoid robotics startups, creating powerful competitive blocs. Google has selected Apptronik as its exclusive humanoid robotics partner for Gemini Robotics, providing substantial funding and AI capabilities. This mirrors Amazon's strategic investment in Agility Robotics, which focuses on bipedal robots for warehouses and logistics.

These partnerships create advantaged positions for the selected robotics companies, providing capital, technical resources, and potential deployment channels. However, they differ in exclusivity—while Google has designated Apollo as the exclusive platform for Gemini Robotics, NVIDIA has taken a more horizontal approach with Project GR00T, supplying its AI technology to multiple robotics partners including Figure and 1X.

Capital advantage players

Several competitors have pursued massive funding rounds to accelerate development and deployment. Figure raised \$750 million in early 2024 and is reportedly in talks for another \$1.5 billion at a \$40 billion valuation. This "biggest warchest" strategy contrasts with Apptronik's historically capital-efficient approach, where the company operated on revenue for its first five years.

These well-funded competitors can afford extensive R&D experimentation, higher-cost components, and aggressive hiring of scarce robotics talent. They can also absorb longer payback periods during early commercial deployments. Boston Dynamics, under the ownership of Hyundai Motor Group, similarly benefits from substantial corporate backing that enables long-term technology development without immediate profitability requirements.

Manufacturing approach differentiators

The manufacturing and supply chain strategies of humanoid robotics companies create distinct competitive positions. Tesla's vertically integrated manufacturing capabilities, built through automotive production, give it potential advantages in mass production of its Optimus robot. The company's experience with high-volume production could translate to lower unit costs as manufacturing scales.

Chinese humanoid robotics companies benefit from proximity to the rapidly maturing component supply chain in Asia, where manufacturers are achieving 40-60% cost reductions on standardizable parts like chassis, basic electronics, and simple actuators. Apptronik's approach of designing with supply chain constraints in mind and leveraging the Texas-Mexico manufacturing corridor represents a middle path, balancing cost considerations with supply chain resilience and quality control.

TAM Expansion

Cross-sector deployment

Apptronik's initial focus on logistics and warehousing represents just the beginning of potential market applications. The company can expand into manufacturing and assembly operations where humanoid form factors offer advantages over traditional automation. While complex dexterous manipulation remains challenging, manufacturing environments have numerous tasks suitable for current capabilities, particularly in materials handling and machine tending.

Apollo's capabilities could extend to construction, hospitality, healthcare support, and retail settings as the technology matures. Each of these sectors faces labor shortages and increasing wage pressures, with buildings, facilities, and equipment designed for human workers. The ability to navigate human-centric environments without facility modifications creates substantial economic advantages over specialized robots that require purpose-built surroundings.

Form factor adaptations

Apollo's modular architecture enables Apptronik to address diverse use cases through configuration rather than complete redesign. The ability to mount the upper body on wheels, pedestals, or legs creates versatility that expands addressable applications while maximizing utilization rates —a key factor in economic viability.

This modularity strategy allows Apptronik to create purpose-optimized configurations for specific tasks while maintaining common components and software. For precision assembly, a pedestal-mounted version could provide stability. For movement-intensive tasks like order picking, a wheeled base offers speed advantages. For unstructured environments with steps or obstacles, the legged configuration enables access without facility modifications.

Geographic market penetration

While initial deployments will likely focus on North American logistics customers, Apptronik can expand globally to address acute labor shortages in countries with aging demographics. Japan faces particularly severe challenges, with more adults wearing diapers than children and rapidly declining working-age populations. Japan Post Capital's investment in Apptronik signals potential market entry in this region.

European markets represent another expansion opportunity, with countries like Germany facing similar demographic challenges and high manufacturing labor costs. The industrial automation market in Europe is substantial, with particular strength in automotive and industrial manufacturing. The dual RaaS and capital expenditure go-to-market strategy enables Apptronik to adapt to regional preferences in equipment financing and ownership.

Risks

Economic viability hurdles: The fundamental economics of humanoid robots face significant challenges. When accounting for robot slowness (3x slower than humans), lack of adaptability (15% penalty), maintenance costs (\$4K/year), supervision requirements (\$2K/year), and hardware expense (\$20K/year), the economic case often fails unless robots cost under \$60K and achieve near-human speed.

Al development lag: Building the real-world training data needed for humanoid robots to operate effectively represents a decade-long process according to industry experts. Even Tesla, with extensive labeled datasets for autonomous driving, is starting from scratch for indoor environments, creating a situation where all competitors must build their data advantages through incremental deployment and learning.

Academic-industrial gap: Apptronik's leadership, with roots in academic and NASA research environments, excels at R&D but may struggle with product management and commercial strategy. The contrast between the company's modest marketing approach and its technical accomplishments creates a positioning disadvantage against media-savvy competitors like Figure, potentially affecting market perception, customer acquisition, and talent recruitment.

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment, legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is made regarding future performance. Information, opinions and estimates contained in this report reflect a determination at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification, copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to, copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized duplication, redistribution or disclosure of this report will result in prosecution.

Published on Apr 22nd, 2025