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1 INTRODUCTION 
From its inception, TRI has engaged with university partners to conduct sponsored research in 
artificial intelligence.  From 2016 through 2020, TRI has supported work at Michigan, MIT, and 
Stanford.   

Beginning in 2021, TRI will continue to support those three institutions, and in addition will 
support other institutions.  This document announces research opportunities starting in 2021 
and solicits participation by an expanded university partner base.  The Frequently Asked 
Questions (FAQ) document on the program website provides more information about this 
research announcement. 

A separate document, Research Announcement TRI-02, is available only by invitation and 
announces research opportunities for a separate solicitation targeting early stage researchers. 

2 PROGRAM DESCRIPTION 
The objectives of the Joint TRI-University program include the following: 

• Add significant new knowledge and understanding to the field of artificial intelligence; 
• Demonstrate the potential to radically advance areas beyond the state of the art; 
• Promote the transfer of knowledge through the meaningful exchange of scientific and 

technical information between TRI researchers and university partners; and 
• Create the potential for the creation and sharing of community infrastructure, including 

data and software, to further research, promote reproducibility, and support education. 
 
Proposed topics should align with and contribute to the TRI mission, including automated 
driving, home robotics, and machine assisted cognition.  In exceptional cases, TRI may consider 
topics with high potential for revolutionary advance despite not aligning strongly with the TRI 
mission. 
 
A TRI researcher should serve as an active member of the research team (not simply a sponsor).  
In exceptional cases, the program may consider topics with high potential for revolutionary 
advance despite the absence of a TRI researcher as an active member.  

3 PROGRAM SCHEDULE 
The following table presents the overall program schedule. 

Date Description 

12/16/2019 Research Announcement (this document) 

1/1/2020 – 1/31/2020 Open Discussion with TRI Researchers 

3/2/2020 Request for White Papers 

3/31/2020 White Papers Due 

5/1/2020 Request for Proposals 

5/29/2020 Proposals Due 

6/30/2020 Funding Decisions Announced 



7/1/2020 – 3/31/2021 Principal Investigators hire students and staff (if needed) 

4/1/2021 PI meeting for Year One at one location.  Funding begins 

9/1/2021 – 10/30/2021 Site visits Year One (at university location) 

1/1/2021 – 1/15/2021 Review of Year One Progress for every project at one location 

4/1/2022 Kickoff meeting Year Two 

4 AWARDS 
The award will take the form of an industry-sponsored research agreement. 
 
The proposal will describe the time required to complete the proposed work.  TRI expects the 
typical duration to be 2-3 years, structured as follows:   
 

• Base:  One year (for example, 4/1/2021 – 3/31/2022) 
• Option Period 1:  One additional year (for example, 4/1/2022 – 3/31/2023) 
• Option Period 2:  One more additional year (for example, 4/1/2023 – 3/31/2024) 

 
Funding for the entire proposed duration of the project is not guaranteed.  Based on the Review 
of Year One Progress (Section 3), TRI will choose whether to exercise Option 1.  The Review of 
Year One Progress meeting will focus on achievement of proposed milestones.  Projects that do 
not meet their proposed Year One milestones will need to justify their continuation for Year 
Two. 
 
Historically, TRI has acted to discontinue projects based on non-performance.  TRI expects that 
it is the nature of high-risk research with challenging objectives that some approaches will be 
found to be less fruitful than anticipated, and the project may need to change approaches or 
directions. 

5 APPLICATION 
The application process will occur in three stages: (i) discussion with TRI researchers, (ii) if 
invited, white paper submissions, and (iii) if invited, proposal submissions. 
 
White papers will outline the proposed technical approach.  Proposals will describe how the 
team will conduct the proposed research.  Proposals should not re-state technical discussion 
provided in the white paper. 

5.1 ELIGIBILITY 
The proposer must be employed at a North American educational institution. 

5.2 OPEN DISCUSSION WITH TRI RESEARCHERS 
During the month of January 2020, proposers may reach out to TRI Researchers identified in 
Section 7 to conduct an open discussion of a research topic.   
 



One of the reasons that TRI requires relatively shorter white papers and proposals is that TRI 
believes that verbal, face-to-face discussion may be more effective than relatively longer 
documents.  As the simplest, most effective path to a mutual understanding of a research 
project, TRI encourages proposers to engage with TRI Researchers. 

5.3 FORMAT OF WHITE PAPER 
Length:  Cover Page plus one (1) page 

Format: Body font no less than 11 point, figure font no less than 8 point, margins > 0.75 inches. 

Contents of White Paper 

• Cover Page:  Proposal Title, University Principal Investigator Name, University Name, 
TRI Researcher Name (or state “None”), Proposer Team, Topic Identifier (this is the 
number of the topic in Section 7, or state “None”) 

• Description – What are you trying to do, in general terms with no jargon? 

• Technical Objective – What are the technical goals, in specific and measurable terms? 

• Technical Approach – What is the proposed approach to meet the TRI research need? 

• Novelty and Innovation - What is novel and innovative about your approach? 

5.4 FORMAT OF PROPOSAL 
Length:  Cover Page plus three (3) pages 

Format: Body font no less than 11 point, figure font no less than 8 point, margins >= 0.75 inches. 

There is no need for new technical discussions; the white papers covered this already. 

5.4.1 Cover Page 
• Proposal Title 

• University Principal Investigator Name and University Name 

• Other University Investigator(s) and University Name(s) 

• TRI Researcher Name(s) 

• White Paper Identifier (this is the number listed as the ID in the first column of the 
Proposals to Request list) 

• Period of Performance – The start and end dates of the project (entire duration, not just 
Year One) 

• Intent to Subcontract – Yes or no 

5.4.2 Technical Proposal 
• Work Breakdown – Identify the high-level tasks to be performed.  There is no need to 

elaborate on or justify the technical tasks, because the white paper already covered 
them. 

• Organizational Structure – Describe how team members will coordinate their work. 
Explain which team member does each high-level task listed in the Work Breakdown.   



• Performance Metrics – Describe in specific and measurable terms how progress will be 
evaluated.  Well-formulated performance metrics have an unambiguous meaning; a 
naive observer will be able to evaluate whether they have been achieved.  Examples of 
well-formulated metrics include the following:  precision, recall, intersection over union, 
maximum operating range, power consumption, probability of detection.  

• Technical Milestones – Using the performance metrics, specify milestones to be reached 
at 6-month intervals.     

• Cost – Identify the cost to perform the proposed research for each year over the 
proposed period of performance.  In addition, identify the total cost. 

5.4.3 Supplementary Materials (Not Included in the Proposal Page Limits) 
Experience with the white papers demonstrated that some authors felt more comfortable 
providing supplementary materials.  Proposals may contain one page of supplementary 
materials.  In general, these will not be reviewed.  

5.4.4 Cost Proposal (Not Included in the Proposal Page Limits) 
• The cost breakdown should be prepared by the sponsored projects office of the 

University Principal Investigator using their own format.  This breakdown will allocate 
costs to university-standard categories such as labor, other direct costs, capital 
equipment, and overhead.  The cost breakdown documents do not count against the 
page limits.  

• One university may subcontract to another university, however the one university 
serving as the prime contractor may not charge overhead on subcontractors (double 
overhead is not permitted). 

• Personnel listed on the cover page (Section 5.4.1) are expected to make a definite 
commitment to participate actively in the proposed project, including making all 
reasonable efforts to attend the PI meeting, Site Visit, and Review Meeting. 

• For costing purposes, assume the following requirements: 
o A PI meeting in San Francisco, California on Tuesday – Thursday of the first 

week of April 
o A site visit meeting at the university in September or October with 10 Toyota 

personnel 
o A Review meeting in Atlanta, Georgia on Tuesday – Thursday of the second 

week of January 
o Note that this assumption is for costing purposes, and that the locations of the PI 

meeting and the Review meeting are subject to change 

5.5 SUBMISSION 
To submit a white paper or proposal, submit a PDF file to tri-ra01-submit@tri.global. The 
submitted file must include all materials, including the cover page, the technical sections, the 
supplementary material (if any), and the cost breakdown. 

5.6 QUESTIONS 
To submit questions about the application process, send a message to tri-ra01-
questions@tri.global 

mailto:tri-ra01-submit@tri.global
mailto:tri-ra01-questions@tri.global
mailto:tri-ra01-questions@tri.global


To view answers to the submitted questions about the application process, visit the FAQ on the 
program website. 

6 EVALUATION CRITERIA 
Proposals will be evaluated using the following criteria listed in descending order of importance. 

1. Overall Scientific and Technical Merit.  The proposed technical approach is innovative, 
feasible, and achievable. 

2. Proposer Team.  The proposed technical team has the expertise and experience to 
accomplish the proposed tasks. 

3. Alignment with TRI Mission.  A TRI researcher serves as an active member of the 
research team.  The proposed work directly contributes to an automated driving, home 
robotics, or machine assisted cognition project at TRI. 

4. Potential for Revolutionary Advance.  The proposed approach improves performance by 
an order of magnitude or develops a disruptive technology that could doom current 
approaches. 

 
A TRI Steering Committee will evaluate proposals.  The Steering Committee will not include 
TRI Researchers who have proposed to the program. 

7 TOPIC AREAS 
The three following sections list the topic areas of interest.  Each topic area includes the name 
and email address of the TRI researcher, for use in the discussion period (see table in Section 3).  
The order in which the topic areas appear is not significant and does not imply any kind of 
ranking.   
 
The topic writeups have been written by the interested TRI Researchers, in their own voice and 
with their own style. As a result, the writeups exhibit variability in structure and layout.  We 
view this as a feature not a “bug.” 
 
The groupings into Automated Driving, Robotics, and Machine Assisted Cognition reflect the 
organizational home of the topic author.  It is entirely possible for a topic listed in, for example  
Driving, to be valuable for and conceptually relevant to Robotics or Machine Assisted 
Cognition. 

8 TOPICS:  AUTOMATED DRIVING 

8.1 GUARANTEED GUARDIAN: PLANNING WITH SAFE SETS FOR 
INTERACTIVE AUTONOMOUS DRIVING 

TRI Researcher: Avinash Balachandran 
Email Address: Avinash@tri.global  
TRI Thrust:  Driving 
 
With the concept of the “Toyota Guardian” system in mind, in this proposal we focus on 
developing an on-line planning framework to allow the human driver broad flexibility in 
controlling their vehicle, while providing a guaranteed safe intervention in the case that the 

mailto:Avinash@tri.global


human gives a potentially unsafe control command. By taking into account human-robot 
interactions in real-world driving scenarios, we propose to develop algorithms to characterize 
the safe behavior of a vehicle in the presence of other agents in terms of safe sets. We will 
consider two approaches to constructing safe sets: (1) game-theoretic reachability analysis and 
(2) probabilistic analysis. With the former approach the objective is to analyze safety and 
performance in the worst-case (with respect to the other agents) while, with the latter approach, 
the objective is to reason probabilistically with respect to the behavior of the other agents. For 
both approaches, we will study methodologies to properly trade off safety and efficiency, 
possibly through hybridization schemes. In both approaches we will stress a focus on 
mathematically guaranteed performance, on-line computational speed, and experimental 
verification in simulation and on hardware systems. 
 
I. Algorithmic Aspects of Reachability Set-Based Planning 
In order to make same decisions, it is necessary to determine states that a vehicle can operate 
in while adhering to a set of prescribed rules and constraints. We propose to obtain such safe 
states through formal verification tools such as Hamiltonian-Jacobi (HJ) reachability analysis. 
analysis provides a set of “keep out states” that, if breached, can eventually lead to a violation 
of the constraints. It also provides an optimal policy to enact to avoid this set of “keep out 
states” when a vehicle encounters the boundary of this set. For example, we are interested in 
determining the set of states in the joint space of all vehicles in the neighborhood of the ego 
vehicle that can lead to a collision for the ego vehicle despite the best efforts of the driver. A 
guardian system would enact the optimal policy to avoid this set, overriding the driver’s 
commands if the vehicle is found to be on the set boundary. 
 
Since HJ analysis is based on dynamic programming, current approaches are generally not 
computationally efficient enough to provide a solution for high-dimensional problems such as 
driving in the presence of multiple other vehicles. Therefore, to compute solutions online in 
real-time, we plan to explore how to (1) split the problem into a hierarchy of easier-to-solve 
subproblems, (2) parallelize computations to take advantage of multi-core hardware, and (3) 
rely on offline pre-computation where possible. HJ reachability analysis also typically assumes 
perfect state knowledge, which is never the case in autonomous driving. Therefore, we will 
investigate how to incorporate perception uncertainty, including uncertainty in deep learning 
perception modules, into HJ reachability to maintain safety despite compounded uncertainty 
along the perception-planning pipeline. 
 
II. Algorithmic Aspects of Probabilistic Set-Based Planning 
In some cases, deterministic reachability can be too conservative, in the sense that a state may 
be unsafe only under a sequence of highly unlikely control actions by the other vehicles in an 
ego vehicle’s neighborhood. Reachability tools typically do not distinguish between “formally 
unsafe but a collision is highly unlikely” versus “formally unsafe and a collision is highly 
likely.” Therefore, in parallel with our research on reachability, we will also explore 
probabilistic models of safety, which will give a finer resolution on the degree of safety of a 
state or a trajectory. By taking into account the stochasticity of the system, we will develop a 
dynamic occupancy mapping technique based on approximate Gaussian processes that can be 
run in real-time. Gaussian process regression is used to represent a nonlinear pattern through 
an infinite number of functions with associated uncertainties. These uncertainties about the 
maneuverable areas allow a vehicle to trade off between safety and conservativeness, allowing a 



guardian system to choose the best action while incorporating to a risk tolerance for collision. 
We treat safety in this case as a probabilistic concept, either as a chance constraint (the 
probability of violating the constraint must be below a threshold), or as risk sensitivity (we 
penalize variance or some other notion of uncertainty directly in an objective function). 
To incorporate uncertainties into occupancy mapping, we need to reason about other vehicles’ 
beliefs and other vehicles’ perception models. For this, we propose to develop a driver model 
through (possibly risk-sensitive) inverse reinforcement learning in simulation, which can later 
be transferred to the real world using state-of-the-art ‘sim-to-real transfer’ techniques. Also, as 
for HJ reachability, probabilistic methods for computing safe sets also tend to be 
computationally intensive, and not well-suited to on-line implementation. We therefore will 
investigate approximate methods to reasoning probabilistically that maintain provable 
conservativeness, while given the speed required for online execution. We will consider 
spatially limited GPs computed with proximity graphs, as well as sparse GPs computed using 
variational inference techniques. 
 
III. Computational and Numerical Aspects of Set-Based Planning 
Set-valued and game-theoretic planning problems are often naturally expressed as nested 
bi-level or multi-level optimization problems in which the feasible set of an outer problem is 
determined by the solution of an inner constrained optimization problem. Such problems, even 
when they are convex, are difficult to solve numerically with standard algorithms. We propose 
the development of a dedicated solver that can be tailored to specific problem instances that 
occur in autonomous driving, such as planning collision-free trajectories in the presence of other 
drivers. To ensure that the algorithm is scalable and fast enough for real-time applications, 
sparsity structure and parallelism (e.g. across timesteps in a trajectory and other vehicles in 
collision checking calculations) will be exploited to take maximum advantage of multi-core 
processors. Similarly, HJ reachability and probabilistic safe-set computations can both be 
expressed as partial differential equations (PDEs), or partial difference equations in discrete 
time. In this case, one of the core challenges to computing safe sets is in the numerical aspects 
of solving these PDEs. While these issues are typically not treated together with analytical and 
algorithmic aspects of reachability, we believe that to provide online speed, a comprehensive 
approach incorporating numerics together with analysis and algorithmics is essential. We will 
investigate methods for simplifying, parallelizing, and compressing the solution of these PDEs, 
e.g. through “concentration” techniques which represent the PDE as a collection of samples, 
neural network techniques that compress the value function that is the solution of the PDE, and 
model reduction techniques that represent the PDE through a lower order set of ODEs. In all 
cases we will stress mathematical guarantees of these solution techniques together with 
practical computational speed. 
 
IV. Experiments and Hardware Implementation 
We propose to pursue these research thrusts in the context of specific traffic scenarios that are 
known to be difficult cases for autonomous driving. For example, we will consider merging on 
a freeway in traffic, and making an unprotected left turn at an intersection. Our research will 
include theoretical and algorithmic results, as well as verification on simulation platforms such 
as CARLA, and scale hardware platforms we have developed in our labs. Finally, we will test 
our algorithms on full scale driving platforms such as the X1 test vehicle and TRI test vehicles. 



8.2 AUTONOMOUS DRIFTING 
TRI Researcher: Avinash Balachandran 
Email Address: Avinash@tri.global  
TRI Thrust:  Driving 
 
Our goal is to make a fully autonomous tandem drift scenario akin to Formula Drift. Our 
previous work has help us converge on a definition of vehicle stability internally and has shown 
how technologies required for drifting can be applied to aggressive lane changes.  

A comprehensive statement of research needs is in preparation. 

8.3 INCORPORATING CONTROL BARRIER FUNCTIONS WITHIN 
STOCHASTIC MODEL PREDICTIVE CONTROL 

TRI Researcher: Brian Goldfain 
Email Address: Brian.Goldfain@tri.global  
TRI Thrust:  Driving 
 

A key enabling technology for capable self-driving vehicles is the ability to plan a collision free 
path on a road while considering all relevant information about the environment, vehicle, and 
goals. Human drivers perform this task seamlessly as they interact with other drivers, 
pedestrians, and cyclists, all while balancing the rules of the road and progressing toward their 
goal. Current approaches to solving the planning problem have proven capable in limited 
operating domains, but as that domain expands and more information must be considered to 
make safe driving decisions, they tend to become computationally intractable, may fail to return 
a feasible solution at all, or simply cannot incorporate the requisite amount or type of 
information. New approaches are needed to handle the problem complexity and reason over 
possible futures in real time during the dynamic driving task to enable the next generation of 
automated vehicle capabilities. 

When deciding how to drive, the planning layer of an automated vehicle reasons over its own 
expected motion, predicted motions of dynamic objects in the environment, road rules, and 
navigation objectives. Proposed approaches should be able to handle the complex interactions 
among multiple agents required as the operational design domain expands. To benefit from the 
scale of data collection from a fleet of vehicles, considerations should be taken to utilize large 
amounts of training data. 

In addition to a wide scope of valid input data and predictive capabilities, a planner should 
constrain its requested behavior to what is physically achievable by the vehicle. As the 
complexity of the planning problem increases, it becomes more difficult to find a plan that 
satisfies all the task constraints. A typical solution is to relax constraints or deploy simplified 
models throughout the computational pipeline. While these approximations may enable a 
solution to be found, they can suffer from the previously mentioned problem where the 
requested maneuvers may be physically impossible. Proposed approaches should be able to 
balance model complexity with accuracy and monitor and potentially correct for any infeasible 
results. 

Particular areas of interest are machine learning, online adaptation, nonlinear dynamics, generic 
cost criteria, guarantees on feasibility/reachability, control barrier functions, parallel 
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computing, and real time operation without specialized hardware. Integration and testing in 
traffic scenarios and on real platforms are essential. 

8.4 BAYESIAN ADAPTIVE CONTROL AND FAST RE-PLANNING FOR SAFETY 
CRITICAL SYSTEMS 

TRI Researcher: Brian Goldfain 
Email Address: Brian.Goldfain@tri.global  
TRI Thrust:  Driving 
 

"In an automated vehicle software stack, the bottom two layers are typically the planning and 
control modules. Planning is responsible for deciding how a vehicle should move through the 
world to successfully accomplish its task. Control is then responsible for turning that plan into a 
sequence of steering, throttle, and brake commands that are executed by the vehicle. Splitting 
the computation allows decisions to be optimized over different time scales using methods 
suitable for the types of information consumed at each stage in the pipeline. Typically, planning 
operates on task and environment information such as navigation goals, traffic signage and 
rules, and prediction of dynamic objects to generate a new plan for the vehicle to follow at a rate 
of a few times per second. Controls uses that plan, and knowledge of the capabilities and 
constraints of the vehicle, to compute the steering, throttle, and brake commands that will 
realize the desired driving behavior, typically at a much faster rate. 

In order to maintain performance guarantees within planning and control, the modules should 
maintain contracts over the information they ingest. Example contract components include 
required data rates, time horizons, a shared understanding of uncertainty, and properties of the 
solution itself such as feasibility. Ideally, there would also be leeway for a module to refine the 
decisions made by upstream modules according to relevant information, which may not be 
available to upstream modules. For example, the trajectory that a planner requests a controller 
to follow must be within the capabilities of the vehicle and should maintain comfort and other 
objectives whenever possible. However, the planner considers relevant task information, but 
only a simplified vehicle dynamics model, whereas the controller consumes a simplified task 
description and has a much more detailed dynamics model. In an ideal world, contract 
violations would never occur, but unpredictable events encountered while driving, design 
considerations, computational restrictions, and access to information at each level can cause the 
requests passed between modules to occasionally violate the agreed-upon contracts. 

Proposed solutions should have the ability to monitor its inputs for contract violations from 
modules above the controller and overcome some amount of violation with a “best-effort” 
solution to continue driving safely. Exploring approaches for the control module to adapt a plan 
and continue driving in the face of violations will have a direct impact on driving performance 
and will allow an exploration of how contracts can be handled throughout the entire software 
stack. Proposed solutions must operate in real time in concert with the entire self-driving 
software stack to demonstrate a clear benefit in terms of on road driving performance, which 
will also be verified in computer simulations and closed course testing. An emphasis will be put 
on real world driving performance. 

Particular areas of interest include adaptive control, machine learning, tube model predictive 
control, reachability, and quadratic programming. 
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8.5 OPTIMAL POLICY BEHAVIOR PLANNING 
TRI Researcher: Constantin Hubmann 
Email Address: Constantin.Hubmann@tri.global  
TRI Thrust:  Driving 
 

Most state-of-the-art Motion Planning architectures for autonomous driving are split up over 
different layers:  

• A kinodynamic trajectory planner 
• A Behavior planner which sets the constraints of trajectory planning problem(s) 
• A state estimation and prediction module which infers latent states of the environment 

and predicts the trajectories of the other drivers in a probabilistic fashion. 

This separation into different modules can be robustly implemented but does not allow for 
global optimal behavior, correct modeling of interaction (the influence of ego actions on future 
trajectories of others) and makes correct, probabilistic handling of uncertainties difficult. This is 
the case as splitting up the motion planning problem under uncertainty into different, 
independent smaller problems is a simplification of the problem. It may ultimately lead to 
overly conservative behavior compared to global problem formulations, that may provide 
solutions in the policy space. Additionally, such an approach requires to tailor behavior 
generation to specific cases, which may become difficult for the magnitude of possible 
scenarios. 

Non-deterministic, global problem formulations such as MDPs or even its extension for 
probabilistic states, POMDPs, provide a policy instead of a trajectory which allows for less 
conservative, globally optimal behavior. The global, optimal formulation allows for a more 
generic framework, which adapts easier to new scenarios due to its generic nature and 
formulation. 

Possible topics in this area are: 

• Online solving of (PO)MDPs by use of Monte Carlo Tree Search 
o Parallelization of sampling 
o Learning of the optimal Value function and action selection (especially 

interesting with the vast amount of upcoming Guardian data) for speeding up 
MCTS 

o Fundamental research: transfer from Monte Carlo Tree Search to Monte Carlo 
Graph Search, balancing of (Q-)Value estimation, Action selection 

• Deep Imitation learning for policy generation 
o Very interesting because of the massive amount of upcoming Guardian data 
o Fundamental research in input state representation, safety guarantees, etc 

• Deep Reinforcement Learning for policy generation 
o May be very promising in the long run 
o TRI is one of the few companies that has the possibility to do this: Strong ML 

Team and strong financial backing to train on huge simulation data 
o Results can also be used as heuristics for MCTS 
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8.6 SEMI-SUPERVISED LEARNING FOR UNDERSTANDING OBJECTS IN 
DRIVING DATA 

TRI Researcher: Dennis Park, Sudeep Pillai 
Email Address: Dennis.Park@tri.global, Sudeep.Pillai@tri.global  
TRI Thrust:  Driving 
 

What do you want to do? 
The goal of this project is to train robust 3D perception models with the least amount of labels 
annotated by humans. The ideal outcome is a set of machine learning training strategies that 
can operate with partially labeled sequences of sensory data, for example, when only 1 out of 
10,000 frames are labeled. 
 
We will focus on the task of detecting 3D objects in driving scenes, using multi-modal sensory 
input. Our approach will be lower-bounded by the performance of current state-of-the-art 
fully-supervised learning algorithms, which leverage only the small portion of labeled data. The 
key problem is how to surpass these algorithms by leveraging the large amount of unlabeled 
data that will become available to Toyota starting from 2020. 
 
We plan to exploit a set of inductive biases that has already proven to be effective in the 
machine learning community. This includes, but not limited to, object permanence (i.e. the same 
object is found in the neighboring frames) and consistency in confidence (i.e. the confidence of 
detector is invariant to a set of transformations that preserves the object identity). 
 
In addition, we also want to explore how to exploit the structure of the sensor data as 
supervisory signals for object detection. Tentative questions we plan to explore includes how to 
impose a geometry-based consistency as constraints of inference (e.g. ground-plane 
assumption), or using detectors operating on different modalities (e.g. lidar vs. rgb) to derive 
geometric constraints. 
 
Why do we care? 
Robust perception system is a critical component of autonomous driving system. Although the 
research community has seen large improvements using data-driven machine learning models, 
training such models requires a large set of labeled data. 
 
A unique advantage of Toyota as #1 automobile manufacturer is that we will soon have access 
to “Toyota-scale” sensory data that is order-of-magnitude larger than what our competitors 
have. This, however, imposes a unique challenge as well: manually labeling such data will 
quickly become infeasible. Therefore, developing a successful semi-supervised learning for 
perception system will bring the biggest advantage to Toyota. 
 
Technical problem statement 
Given a dataset D = {Xi, Y i} ∪ {Xj}, where are multi-modal sensory D = {Xi, Y i} ∪ {Xj} Xk data 
(RGB + Lidar) and Y k are corresponding 3D bounding box labels, train a discriminative model 
f(X) = Y such that it minimizes a semi-supervised loss on D. The loss is derived from principles 
of object permanence, invariance of confidence over a set of transformations, and 3D geometric 
constraints. 
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8.7 IMITATION LEARNING FOR HIGH-UNCERTAINTY DRIVING 
SCENARIOS 

TRI Researcher: Dennis Park, Adrien Gaidon 
Email Address: Dennis.Park@tri.global, Adrian.Gaidon@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 
The goal of this project is to train an imitation-learning agent that can learn to manipulate 
unmanned vehicles in challenging driving scenarios with high uncertainty (e.g. making 
unprotected left-turn, complex nudge-around scenarios). The agent learns the behavior by 
mimicking large scale expert demonstrations, without an explicitly designed cost function. The 
ideal outcome is a set of machine learning training strategies that can learn prototype controllers 
in challenging driving scenarios, at least in simulation environment. 
 
While imitation learning (IL) has been widely explored in the RL community, the unique 
challenge of TRI is to extend the state-of-the-art IL algorithms from toy-like environments to 
complex driving environments. This requires designing algorithms that are highly intertwined 
with the underlying perception system. To reduce the dimensionality of the state space and 
remain consistent with existing state-of-the-art perception algorithms, we constrain the 
perceptual space to be in Bird’s Eye View (BEV), where traffic agents are represented on an 
orthographic planar surface viewed from the top. This also allows for adapting the action space 
to simplified orientation control, plus a few more low-dimensional variables (e.g. brake or 
accelerator). 
 
The challenges lie in multiple layers. First, the agent is in a "PU learning" setting (Positive 
Unlabeled): it needs to learn mostly from positive instances only (expert demonstrations), while 
being robust to noisy demonstrations and implicitly learning to avoid negative scenarios. 
Second, the BEV state space represents the (non-linear) propagation of uncertainty through a 
typical modular driving architecture (coming from mapping, localization, detection, tracking, 
prediction). Hence, the agent needs to learn to reason under that complex uncertainty using 
only demonstrations to predict a distribution of optimal actions. Third, real-world driving 
scenarios are more complex than typically explored in RL research. 
 
We propose to first define a set of high-uncertainty driving scenarios where analytical controllers 
face challenges and collect expert’s behavior from our driving records. Then we will explore 
principles of state-of-the-art IL algorithms while adapting them to high-dimensional probabilistic 
BEV state spaces and realistic actuation space in driving to enable end-to-end training. 
Why do we care? 
The decision process in driving is complicated enough, so that manual design becomes quickly 
infeasible. Although deep reinforcement learning enjoyed great success recently, directly 
applying them to driving scenarios is limited, since defining cost function over complicated state 
space is non-trivial. 
 
Toyota has accumulated high-quality driving logs that record expert’s driving examples in 
complex urban scenarios. We aim to use this raw behavioral experience to learn optimal 
control policy. A unique advantage of Toyota is that we will soon have access to large scale 
driving record, which will potentially bring unbounded improvement on our autonomous 

mailto:Dennis.Park@tri.global
mailto:Adrian.Gaidon@tri.global


controller. 
 
A key part of the problem is defining the state and action space that are compatible with existing 
perception system, at the same time amenable to probabilistic reasoning involved in IL. The 
form of demonstration is flexible, from the full trajectory of atomic action and sensor input to a 
pair of first / last BEV representations. 

8.8 SCALING UP PREDICTION AND PLANNING 
TRI Researcher: Guy Rosman, Stephen McGill, Jonathan DeCastro 
Email Address: Guy.Rosman@tri.global,  Stephen.McGill@tri.global, 

Jonathan.Decastro@tri.global  
TRI Thrust:  Driving  
 
1 Background 
Given the requirements of a Guardian system, and the need to understand risky behaviors on 
the road for both the driver and ado-vehicles, we are looking for prediction that will scale to 
multiple agents, to longer horizons, and rare events. Impact to TRI: We must predict road agent 
behavior robustly; modeling failure likelihoods, handling diverse scenarios, reasoning about 
multiple agents, and identifying rare events. Addressing these aspects across the large scale of 
Toyota fleet data will provide major safety gains in new applications. 
 
2 Aims 
In this large-scale effort, we want to address several questions that arise in planning and 
modeling of road agents:  

• Scaling up prediction - Mining the prediction data and learning in heavily biased 
datasets, which metrics, which costs hierarchical, multi-scenario reuse of learned rules. 

• Prediction and planning - confidence and impact on planning, how to quantify the 
impact of prediction on a plan execution? 

• Explainable prediction - Can we mine explainable behaviors, including their use for 
verification and online use with confidence, from observed data at a large scale? In TRI 
we are interested to see how, as we get more data, we can get a finer granularity of 
understanding and prediction of road user behaviors. 

• Prediction conditional on the ego car - what is a good representation to learn from data 
the conditional distribution of the ado-vehicles given ego-car actions that can be either 
human, or planner-based? 

 
3 Technical Problem Definition 
With these different aspects of prediction and planning, we are looking to extend current results 
in several directions: 

• Approaches for prediction with lower error at longer prediction horizons – beyond 5 
seconds, towards events full intersection negotiation length, > 10 seconds. Proposals 
should include milestones of accuracy and horizon, possibly with new metrics for 
prediction given its multicriteria nature (horizon, error, coverage of cases, etc). 

• Efficient ways to integrate prediction of multiple agents into shared autonomy plans and 
autonomous planners. Demonstrations include reasoning about plans in complex 
interactions such as multi-agent intersection navigation on a long horizon. This includes 
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confidence measures for predictions as part of a way to mitigate the effects of errors in 
prediction. 

• Extracting road agents prediction that cover what humans interpret as maneuvers and 
multi-agent interactions on the road. Detecting the patterns in the data in terms of multi-
agent interactions, and reasoning about them efficiently. 

• Efficiently represent other road agents’ future prediction given the ego-vehicle’s 
behavior, in a way that can be learned from arbitrary datasets (e.g. not a full 
autonomous driving stack), but is useful for planning. 

• Approaches of covering rare events in the predictions and gauging their risk. Proposals 
should provide milestones for measuring the effectiveness of risk estimation and level of 
uncertainty in prediction. 

 
4 Data, Platforms, Deliverables 
In order to handle both the control, reactive part of the problem, and the large-scale data aspect, 
we will test multiple data sources and platforms. Data sources include driving data from both 
external and TRI sources, DataFromSky annotated data or similar large-scale data. Deliverables 
with specific APIs and benchmarks can include prediction benchmarks, or planning. Overall, 
milestones should include both existing and future datasources, and demonstration of 
robustness, sample efficiency, and other properties in a reproducible manner. For the reactive 
part, CARLA (or other simulators) and RC cars (or similar robots) can be used for risky or 
multi-agent events. 

8.9 PLANNING AND LANGUAGE 
TRI Researcher: Guy Rosman 
Email Address: Guy.Rosman@tri.global  
TRI Thrust:  Driving 
 
1 Background 
In both the robotics and autonomous driving domains, we are looking for planning and 
prediction algorithms that integrate with human understanding of tasks and plans. This is 
relevant both when we want to understand when people do on the road, at the maneuver and 
interactions level, and when we want robotics at the home to scale up in their set of objects and 
tasks. We are looking for approach to learn the association of language and tasks, to understand 
when our vocabulary is limited or inappropriate to describe the tasks. 
 
2 Impact to TRI  
For automated driving, we want to use the language as a tool to reason about more complex 
interactions, as planning / RL is assumed to allow better understanding of long-term, complex, 
interactions. For home robotics, having approaches that naturally can scale robots’ vocabulary 
of tasks and objects can be crucial as we scale to new deployment in arbitrary settings. 
 
3 Aims 
The project would explore approaches that connect language and planning., We are looking for 
approaches to connect language, planning, and prediction, in both the driving and robotics 
domain including but not limited to methods that – 

• Explain plans with language, express planner rollouts via language or query them. 
• Plan according to common language directions. 
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• Explain failure cases and critical events, near-accidents and accidents. 
• Demonstrate how planning with language scales automatically to more diverse actions 

and objects, possibly with mixed-supervision learning. 
 
4 Technical Problem Definition 
Measurable capabilities of these systems should explore these directions, extending the state of 
the art in several directions – 

• Demonstrating planning and prediction based on language commands and descriptions, 
showing these approaches scale to large datasets with many tasks and state, and that 
learning can be done in a sample-efficient way. 

• Demonstrate how planners and predictions based on a language can obtain good 
coverage of multi-agent interactions. 

• Demonstrate how planners can describe failure modes for plans and/or execution; 
Demonstrate predictors that can identify possible risky events as trained with a handful 
of such cases in the dataset. 

• Demonstrate extension of plans beyond current limitation of language-based planning, 
for example to include full paragraphs, reasoning about different modifiers to the plans, 
or extension to more complete, in-the-wild scenarios. 

 
5 Data, Platforms, Deliverables 
In order to handle both the control, reactive part of the problem, and the large-scale data aspect, 
we encourage to test on multiple data sources and platforms. Data sources include driving data 
from both external and TRI sources, DataFromSky annotated data or similar large-scale data. 
For critical events, proposals can include mining of different sources for accidents data. For 
robotics demonstration, both simulation, passive datasets, and demonstrations on real robots 
are encouraged. For the reactive part in driving, CARLA (or other simulators) and RC cars (or 
similar robots) can be used for risky or multi-agent events. As part of the projects, a deliverable 
with a clear API is encouraged to showcase some of these approaches’ capabilities. 

8.10 EVENT-BASED VISUAL PERCEPTION FOR NAVIGATION 
TRI Researcher: Hanme Kim 
Email Address: Hanme.Kim@tri.global  
TRI Thrust:  Driving 
 
Rapid status update of nearby dynamic agents in our autonomous driving scenarios is highly 
critical to plan and control our autonomous vehicles (AVs) fast and reliable enough not to 
cause/get involved with any accident, especially in our Guardian mode. The current update 
rate is however limited by the measurement rate of our sensors (e.g. LiDAR and camera, 
typically 10-30Hz). We therefore rely on motion models (e.g. constant velocity model) to predict 
how tracked objects could move from one sensor measurement to the next during so-called the 
blind time interval (e.g. 33~100ms). Such motion prediction cannot be always correct, and it gets 
worse at a higher speed (e.g. while we predict an agent moves straight, it could actually make a 
sudden turn). 

To overcome this challenge, we propose to utilize an event camera, a paradigm shift in visual 
sensing. Unlike a standard camera, which generates video by regularly and synchronously 
opening its shutter to expose all pixels and capture frames, the event camera has no shutter. Its 
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pixels are independent elements which continuously monitor the intensity of light reaching 
them, and send out asynchronous reports (“events”) only when the intensity changes by a 
threshold amount. By encoding only brightness changes, it offers the potential to transmit the 
information in a standard video but at vastly reduced bitrate, and with huge added advantages 
of very high dynamic range and temporal resolution. Moreover, since Samsung has started 
mass production of their Dynamic Vision Sensor, the price of the cameras has gone down 10-
fold. 

The main idea is therefore that we track and match dynamic objects in autonomous driving 
scenarios using the almost continuous stream of events from the event camera (possibly fuse 
with other sensor measurements). We expect that our perception to be more robust and efficient 
by reducing the motion uncertainty between measurements (e.g. increase the accuracy of the 
motion prediction, require a smaller search region, etc) and updated at a much higher rate (e.g. 
1000Hz), and eventually enable us to plan and control our AVs in a way that avoids any 
potential accident. But it has proven very challenging to use this novel sensor in most computer 
vision problems, because it is not possible to apply well established computer vision techniques, 
which require synchronous intensity information, to its fundamentally different visual 
measurements. 

8.11 LOW COST STATE AND FRICTION ESTIMATION FOR VARIOUS 
DYNAMIC REGIMES 

TRI Researcher: Jeff Walls, Carrie Bobier-Tiu, Manuel Ahumada 
Email Address: Jeff.Walls@tri.global,  Carrie.Bobier-Tiu@tri.global, 

Manuel.Ahumada@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 
We are looking to develop new capabilities for low cost friction and vehicle state estimation. We 
are interested in exploring methods for estimation in various driving regimes, from low speed 
(or stopped) and low dynamic excitation to limit handling maneuvers. 
 
Why do we care? 
TRI’s approach to autonomous driving lies in two systems: Chauffeur, a level 4 or 5 
autonomous vehicle; and Guardian, a vehicle with a driver in the loop, but full or partial usage 
of the autonomous sensor suite and algorithm stack to provide enhanced safety features. One of 
the underlying concepts behind both Guardian and Chauffeur is that these systems must be at 
least as good as the best human drivers. This means being able to handle the vehicle in a large 
set of maneuvers including up to the vehicle’s handling limits (e.g., aggressive lane-changes, 
driving on low friction surfaces, etc). Accurate methods for real-time state and friction 
estimation is critically important for this task. 
 
In order to push the capabilities of advanced ADAS systems, and to allow the Guardian and 
Chauffeur systems to function in a variety of operating conditions, it is crucial to develop low 
cost and effective means of estimating the vehicle’s capabilities under its present, and 
potentially future, operating regime. 
 
Technical problem statement 
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If we consider a simple vehicle dynamics model used in ADAS systems, the bike model, we can 
capture a large portion of the vehicle’s nominal behavior using 3 states: longitudinal velocity, 
lateral velocity (or sideslip), and yaw rate. With the addition of a nonlinear tire model (Fiala or 
Pacejka, for example), the limit behavior of the vehicle is also well-captured through the 
definition of unstable equilibrium points. 
In order to use these models effectively in a system like Guardian, some quantities that are not 
directly measurable with low-cost sensors need to be estimated for peak performance. For 
example, estimation of lateral velocity or sideslip is key to understanding the lateral stability 
limits of the vehicle. Similarly, estimation of tire-road friction defines the limitations of the tire  
capabilities through the friction circle, but the quantity is historically difficult to estimate 
accurately until the limits are approached through high levels of state excitation. On the 
opposite spectrum, it is often difficult to estimate even longitudinal velocity at very low speeds 
due to wheel speed encoder limitations. 
 
We are looking for novel and cost-sensitive approaches to solve these type of estimation 
problems in regimes that are typically difficult to achieve good results. Expanding our 
estimation performance over a high range of operating conditions will allow Toyota’s Guardian 
and Chauffeur systems to provide higher quality safety. 

8.12 3D REGISTRATION OF HETEROGENEOUS DATA 
TRI Researcher: Jeff Walls 
Email Address: Jeff.Walls@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 
Consider the age-old problem of registering two sets of corresponding data–computing the 
rigid body transformation between sensor coordinate frames associated with each data set. The 
data sets may take many different forms including low-level points (e.g., 2D pixel location or 3D 
lidar point clouds) or even higher-level geometric primitives (e.g., lines produced as the output 
of a feature detection process). We would like to consider generalizable methods to register 
corresponding heterogeneous data sets, i.e., each data set is produced from a different sensing 
modality (e.g., register 2D image data with 3D point cloud). 
 
Why do we care? 
Localization (estimating pose with respect to some map) is a core competency for TRI’s self 
driving vehicle effort. The localization problem boils down to computing a rigid body 
transformation between online perception data and a map. Maps may be represented in a 
variety of ways: point cloud, sparse features (e.g., lane lines), etc. Moreover, vehicles may be 
instrumented in different ways, e.g., camera, LIDAR, etc. To enable all vehicles to reliably 
localize within a map, we require the ability to register sets of heterogeneous data. 
 
Technical problem statement 
Core technical challenges include: 

• Developing robust registration techniques that can generalize to heterogeneous data 
representations. 

• Represent uncertainty of computed registration. 
• Meeting real-time requirements. 
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8.13 INTRODUCING ASSISTIVE TECHNOLOGIES TO DRIVERS: 
ESTABLISHING TRUST WITH EMOTIONAL UNDERSTANDING 

TRI Researcher: John Gideon 
Email Address: John.Gideon@tri.global  
TRI Thrust:  Driving 
 
Background & motivation 
As more assistive technologies are incorporated into our vehicles, it becomes increasingly 
necessary to establish trust between the car and driver. One way to accomplish this is by 
creating a conversation between the vehicle and the driver, using dialogue systems (e.g. 
Amazon’s Alexa). To build trust, this conversation should continuously make vehicle intentions 
clear, as well as ensure that driver preferences and comfort are 
accommodated 1. 
 
This is especially important for drivers using assistive technologies for the first time, such as 
lane keeping and automatic cruise control. A bad initial impression can lead to the driver 
permanently deactivating a feature that could otherwise greatly improve safety. Furthermore, 
without fully understanding a feature’s limits, this can result in unnecessary risk-taking by 
drivers seeking to find these limits themselves. However, different training strategies are 
needed to allow individuals to learn at their own pace. Furthermore, as people become more 
familiar with these features, the vehicle should adjust to their preferences. 
 
In order to best facilitate this process and foster trust, an understanding of driver emotion is 
key2. For example, frustration could indicate that the training process should be altered or the 
feature parameters (e.g. braking distance) should be changed. Alternatively, happiness could 
indicate satisfaction with the feature, suggesting that similar techniques could be used for other 
interactions. By improving these initial impressions, we can increase the perceived value of 
assistive technologies and increase adoption3. 
 
Goals 
The goals of this project are: 

1. To collect a dataset of drivers being introduced to new assistive features using a variety 
of (sometimes frustrating) training strategies. Recordings of teenagers learning to drive, 
as well as older drivers would be of particular interest. 

2. To improve a dialogue system to better recognize and respond to driver emotions when 
using assistive technologies. We aim to demonstrate that such a system increases interest 
in activating safety features versus those introduced with minimal prior training. 

3. To facilitate future development of driver understanding and assistive technologies. 
Emotional events could trigger naturalistic data collection and improve the diversity of 
our models. 

 
Technical problem statement 
This project will need to address the following: 

• Which modalities (video, audio, speech content) are most useful to estimate emotion and 
the effectiveness of the current training method? 

• How can we isolate driver audio from other passengers and background noise? Can this 
separation and automatic speech recognition be improved with lip reading? 
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• How should the system incorporate information about the context of emotional events, 
including unusual braking patterns and distractions in the environment? 

• How does the expression of emotion under simulated driving conditions differ from the 
real-world? What is the best method of combining these different sources of data? 

• What is the importance of diversity in the initial (relatively small) training set? What 
methods of subject personalization over time can be used to improve model 
performance? 

• How can we mitigate alarm fatigue and ensure that the dialogue system itself is not 
deactivated? 

 

1Bobbie D. Seppelt, Int J Hum Comput Stud., 2019. 
2Jeamin Koo et al., IJIDeM, 2015. 
3Min Kyung Lee, Big Data & Society, 2018. 

8.14 SPECIFICATION LANGUAGES FOR DATA-GROUNDED SCENARIO 
SYNTHESIS 

TRI Researcher: Jonathan DeCastro 
Email Address: Jonathan.DeCastro@tri.global  
TRI Thrust:  Driving 
 
What are we trying to do, and why? 

Improving the testing process for autonomous vehicles (AV) requires new techniques for 
automatically constructing scenarios aligned with reality.  Approaches that involve manual 
scenario generation from a basic set of requirements or directly from log data are limited by the 
subjective biases, and moreover do not scale.  Furthermore, it is difficult to achieve the right 
abstraction of a scenario containing what is essential for testing from a corpus of data without 
over-fitting to data or generalizing away important features. 

A virtuous cycle of simulation-enabled development will entail a data-driven approach, where 
the user has only to worry about the testing requirements where it is easy to introduce 
variations on scenarios with minimal cognitive overhead, while being able to take cues from a 
large corpus of data.  Such approaches will allow users to construct scenarios that have 
introspection on the realism or other metrics that data can provide, will allow creation of data-
grounded testing strategies, and will provide an implicit certificate or benchmark that remains 
invariant to the state of the AV system development.  

Technical problem statement 

TRI is interested in ideas and solutions that enable modelling and creation of realistic scenarios 
in a way that is intelligently informed by large corpuses of naturalistic driving data.  
Specifically, we seek: 

• Approaches that strengthen the connection between ‘data’ and ‘data-driven’ agent 
models and scenario instantiations with an aim to improve characterization, coverage 
and robustness of such models.  This will allow for closing the simulation-to-reality gap 
using reasonable scenario abstractions over data and allow introspection of causal 
factors for simulation runs that violate some specification. 
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• Use of formal languages or domain-specific languages with the expressive power to 
synthesize scenarios, requirements, and evaluators declaratively (i.e. able to specify the 
“what” without the “how”). 

Such data-driven scenario descriptions will offer: 1) a concrete set of tests and probabilistic 
analyses to apply to an AV system and 2) implicit certificates for the AV system that are backed 
up by real-world data, with human-interpretable abstractions. 

Proposals are sought that address the temporal aspects of parameterizable, data-driven agent 
models.  The awardee will interact closely with TRI researchers to develop the software tools, 
use appropriate data sources, and integrate within TRI’s testing infrastructure. 

8.15 MAP COMPRESSION: PRUNING FACTOR GRAPHS WHILE 
MAINTAINING LOCALIZATION PERFORMANCE AND ANNOTATIONS 

TRI Researcher: Karl Rosaen 
Email Address: Karl.Rosaen@tri.global  
TRI Thrust:  Driving 
 
The SLAM team maintains maps in the form of factor graphs of vehicle poses and landmarks, 
built from sensor data collected by driving logs. Landmarks facilitate localization. Both the 
vehicle poses and landmarks serve as the basis for human annotation of the rules of the road 
which are published to the planner while driving to make safe and feasible driving decisions. 

We are working on scaling up our map system to cover the world and be able to benefit from 
the sensor data of a growing fleet, allowing us to cover a wider area and update it frequently. 
One key challenge introduced by the increased volume of data is continuously improving the 
map while avoiding having its size grow with every new driving episode. We wish to preserve 
localization performance for any trajectory within the map and maintain consistent annotations. 

While some heuristics come to mind such as automatically removing graph nodes tied to sensor 
data older than a fixed window and transferring annotations to newer graph nodes, we’d like to 
explore more rigorous approaches to graph reduction through removal or other means without 
sacrificing localization performance. What if sensor data from a year ago is still the best 
coverage of lane lines in a particular region? What if newer data has nothing to add? We would 
like to explore these questions and based on the results deploy the insights into a large-scale 
mapping system. 

8.16 SPECIFICATION-DRIVEN INTELLIGENT TESTING 
TRI Researcher: Nikos Arechiga 
Email Address: Nikos.Arechiga@tri.global  
TRI Thrust:  Driving 
 
Design processes for safety-critical systems have traditionally relied on manually generated 
tests. Human engineers with insight into the functionality of the system craft test cases that will 
exercise behaviors that are believed to maximally stress the design. However, this type of 
insight-driven testing is unlikely to scale to advanced autonomous systems. The sheer scale and 
complexity of these systems means that it is difficult to gain good coverage of the system 
design. Furthermore, test cases that seem difficult to a human may be trivial to an autonomous 
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system and vice versa. The goal of this initiative is to develop techniques to automatically 
generate test cases that stress the autonomy stack and provide good confidence of coverage. 

8.17 COMPOSITIONAL AND DECOMPOSITIONAL REASONING 
TRI Researcher: Nikos Arechiga 
Email Address: Nikos.Arechiga@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 

This initiative seeks to develop technologies capable of (1) automatically reasoning about 
system components and specifications to find contradictions, (2) checking conformance with 
higher-level specifications, and (3) suggesting modifications to interface specifications that 
would repair inconsistencies. 

Why do we care? 

Development of advanced autonomous systems requires separation of responsibilities across 
multiple engineering teams. At integration time, there is a risk that teams make inconsistent 
assumptions, or that the integrated system does not satisfy high-level safety and correctness 
specifications. 

Technical Problem Statement 

Specifications for system components may be given in a variety of different forms, including 
formal logic, UML diagrams, and domain-specific languages. The goal of this project is to 
develop a reasoning engine that can parse a set of such specifications and reason 
compositionally and de-compositionally in the following sense. 

1. Are the interface components between specifications consistent, or do they incur 
contradictions? 

2. Do the interface specifications ensure that high-level system requirements are met? 

3. If high-level requirements are not met, can the system suggest modifications of the 
interface requirements? 

8.18 ASSURANCE FOR PEREPTION COMPONENTS 
TRI Researcher: Nikos Arechiga, Sudeep Pillai, Wadim Kehl 
Email Address: Nikos.Arechiga@tri.global, Sudeep.Pillai@tri.global, 

Wadim.Kehl@tri.global  
TRI Thrust:  Driving 
 
Perception components are a key part of autonomous functionality. However, ML techniques 
are inherently unpredictable because they rely on implicit, statistical specifications, and lack the 
mathematical framework to provide guarantees on safety and correctness. Commercial 
autonomous systems, however, require predictable behavior and strong assurance. The goal of 
this initiative is to develop an assurance strategy based for perception systems which is based 
on partial specifications for perception systems. These partial specifications include things like 
model assertions, logical scaffolds, uncertainty modeling, and model calibration. These partial 
specifications will enable (1) reasoning about the responsibilities that the perception system 
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must satisfy for assurance purposes, (2) guide the testing strategy of these systems and help 
prioritize directions for improvement, and (3) serve as runtime checks to detect abnormal 
conditions and violations of critical assumptions. 

8.19 USE THE FORCE: MULTI-AXIAL HAPTIC SYNTHESIS FOR DRIVER-
VEHICLE STEERING AUTOMATION 

TRI Researcher: Selina Pan 
Email Address: Selina.Pan@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 
Develop a grip force sensing and shape-changing steering wheel to serve as an intuitive means 
of communication between a human driver and an automated driving system. 
 
Why do we care? 
Clear and intuitive communication must be established to support driver/automation 
interactions, especially during control transitions when authority is shifted from one agent to 
the other. Each agent should be aware of the other's control actions and the current delegation 
of control authority (which agent has more control at a given time). Visual, audio, and limited 
haptic modalities have been explored in current ADAS systems; however, given the physical 
contact between a human driver’s hands and the steering wheel, the third modality has huge 
potential for serving as the most intuitive means of communication in a system like Guardian. 
 
Technical problem statement 
This project would explore the use of a finite and possibly varying automation impedance to 
facilitate control sharing and to facilitate transitions of control authority, as appropriate to the 
driving situation. In part, this human/automation control sharing paradigm is inspired by 
human/human haptic communication. Two humans manipulating an object cooperatively can 
read the other's control actions by comparing haptically monitored force or motion responses to 
expected responses even while pushing and pulling on an object. They can also read the other's 
control authority by monitoring mechanical impedance (the relationship between force and 
motion), even through the object. However, two cooperating humans will typically supplement 
their pushing and pulling with other communication channels, often leading to significant 
improvements in performance on the shared task. In this spirit, this project posits that a grip-
force sensing and shape-changing steering wheel can set up an additional communication 
channel between the human driver and automation system that will significantly improve 
shared driving performance. 
 
This project will use haptic communication in the axis of grip to communicate control authority 
and thereby to make the transitions of control authority between the human driver and the 
automation system smoother and more intuitive. Thus this modality would communicate 
information that is redundant with the impedance in the steering axis. The idea is rooted in the 
observation that human drivers increase their grip on the steering wheel either when they want 
to take over control of the vehicle or when they are surprised by something that they encounter 
on the road. To ensure safe and comfortable driving, a well-designed automation system would 
1) sense the grip force applied by the driver, 2) understand the traffic situation and decide 
whether to override or acquiesce to the human control action, and 3) inform the driver of its 
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decision. The communication aspects can be addressed by a shape-changing steering wheel 
with pressure or grip force sensing. A driver squeezing the steering wheel to request greater 
control authority who feels the steering wheel expand in response will immediately know that 
their takeover request was denied. On the other hand, if the steering wheel deflates under an 
increase in grip, the driver will immediately know that the takeover request was granted and 
that they are now in control. Likewise, transitions can be initiated and communicated by the 
automation system with shape changes. Further, at the same time shape change is produced by 
driving fluid mass in or out of bladders on the steering wheel, pressure changes can be used to 
measure the grip force applied by the driver. Advantageously, this two-way communication 
channel in the axis of grip is orthogonal to the two-way communication taking place in the axis 
of control (steering). The existence of an independent communication channel in an orthogonal 
axis supports simultaneous negotiation of control authority and execution of control action. 

8.20 NEURO-ADAPTIVE OBSERVERS FOR SIMULTANEOUS PARAMETER AND 
STATE ESTIMATION IN TIRE AND VEHICLE MODELS 

TRI Researcher: Selina Pan 
Email Address: Selina.Pan@tri.global  
TRI Thrust:  Driving 
 
What do you want to try to do? 
The overall objectives of this proposal are to develop a vehicle and tire model consisting of a 
combination of physically meaningful differential equations and adaptive machine-learning-
based neural networks, to develop associated hierarchical algorithms for estimation of both 
slip/force variables as well as tire model parameters, and to validate the complete model and 
estimation system using data from CARSIM and from limited real vehicle experimental 
measurements. 
 
Why do we care? 
Tracking of snow and ice profiles on roads will be required in order to roll out Guardian or 
Chauffeur systems. This project will also have applications in autonomous driving on winter 
roads, since lane markers can be completely invisible on snow covered roads. 
 
Technical problem statement: 
This project will use a modeling approach consisting of a combination of physically meaningful 
differential equations and adaptive deep-learning-based neural networks to represent vehicle 
dynamics and tire models. In particular, well-understood phenomena such as force balances, 
mechanical motion per Newton’s laws, aerodynamic drag, rolling resistance, and combined 
acceleration terms for lateral and roll accelerations will be modeled using analytical differential 
equations. Tire models for both lateral and longitudinal forces, and the friction circle will be 
modeled using neural networks whose weights can be initially obtained using training via 
backpropagation. In addition to initial training, model parameters for the neural networks and a 
subset of parameters for the physically meaningful differential equations will also be updated 
automatically online during regular vehicle use, based on a hierarchical estimation system and 
based on the type of vehicle maneuver being executed by the vehicle. The project will include 
development of a rigorous neuro-adaptive observer that enables estimation of states and model 
parameters. The algorithm will be reconfigurable, with the available measurements determining 
the set of parameters that can be updated online. A hierarchical architecture will enable slip, 
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force and friction coefficients to be updated quickly in real-time. Tire model parameters will be 
updated on a slower time scale using significantly larger sets of data which allows assumptions 
on average friction coefficient values and use of repetitive windows of similar data sets. The 
overall activities in the project will include development of the architecture for the combined 
modeling approach, development of the rigorous neuro-adaptive estimation algorithms for 
both parameter and state estimation, and multi-stage validation of the complete model and 
estimation system using data from CARSIM and from limited real vehicle experimental data 
available in the PI’s lab. 
 
A number of tire-road friction coefficient estimation algorithms have been developed by several 
researchers in literature, in addition to algorithms for estimation of slip angle, slip ratio and tire 
forces. However, these algorithms are largely based on analytical tire models and their known 
parameter values. The work proposed in this project is potentially ground-breaking in that it 
utilizes data-based tire models and further uses hierarchical estimation which updates not only 
state variables and tire- road friction coefficients, but also tire model parameters over longer 
time periods. Further, the tire-road friction coefficient estimates with the new approach will 
work more reliably over a wider range of operating slip conditions. This project will enable 
further refinement of the developed theory and application to a commercially useful real-world 
intelligent vehicle application. 

8.21 PROTECTING BICYCLISTS WITH MODERN TECHNOLOGY 
TRI Researcher: Selina Pan 
Email Address: Selina.Pan@tri.global  
TRI Thrust:  Driving 
 
What do you want to try to do? 
Leverage sensor systems developed for smart bicycles into combined bicycle-vehicle testing for 
mixed-traffic scenarios, with wider applications to heterogeneous road users. 
 
Why do we care? 
Over 48,000 bicyclist injuries and approximately 700 bicyclist fatalities due to crashes with cars 
are reported annually. With emerging autonomous vehicle technology, we have the 
opportunity to actively focus on bicyclist-vehicle interactions and technology. These 
interactions also have wider use cases extended to motorcycles, scooters, hoverboards, and 
future mixed-use road spaces in evolving city centers. 
 
Technical problem statement:  
Protecting a bicycle from potential car-bicycle crashes requires addressing a number of difficult 
challenges. Only inexpensive sensors can be utilized on the bicycle. Sensors on autonomous cars 
typically cost many thousands, or even tens of thousands of dollars, and utilize more electrical 
and computational power. The system proposed for use in this project, on the other hand, is 
aimed at a market price below $500 and is suitable for a cost-sensitive bicyclist. The technology 
needs to operate in complex traffic scenarios as well. The sensing and estimation algorithms on 
the bicycle need to track trajectories of vehicles on local urban roads where traffic scenarios are 
more complex than on highways. Riding on local roads involves traffic intersections with many 
left-turning, right-turning, and cross-traffic vehicles, all of which need to be tracked. Finally, the 
collision prevention system needs to be useful on today’s roads. It cannot rely on all cars being 
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autonomous, all cars having wireless connectivity, or other futuristic assumptions which may 
take many years/decades to bear fruit. 
 
There exist prototypes that have been developed for smart bicycles which address all of the 
above challenges and functions effectively on today’s roads. The instrumentation on these 
bicycles include a single-beam laser sensor, a custom triad sonar unit and a low-density LiDAR 
sensor. Unique solutions include active rotational control of the single-beam laser sensor to 
continuously track moving cars behind the bicycle, algorithms to reliably identify vehicles from 
other objects, and novel estimation algorithms to accurately track lateral and longitudinal 
positions of cars. On-board speakers are used to create a custom audio “horn” to alert car 
drivers to the presence of the bicycle. The audio alert presentation is designed to minimize the 
trade-offs between low reaction time and unnecessarily intrusive disturbances to the bicycle 
rider and to nearby motorists. 
 
There are many different directions that TRI can go with this project, depending on its needs 
and the university PI. Primary objectives can be, but are not limited to: 

a) Field testing using smart bicycle technologies that rely on user study data gleaned from 
bicyclist volunteers with significant daily urban commutes. Extensive analysis of bicycle 
data recorded during these commutes can be used in snippet testing for our driving 
stack. 

b) Focused analysis of traffic intersections (or other such road cases) for specific cities 
targeted for Toyota technology rollout, or extrapolated to cost-sensitive applications in 
developing countries, can serve as test cases for our driving stack. 

c) Results from smart bicycle prototypes can be used for other agents that share the road, 
including motorcyclists, scooters, e-bikes, etc. Cities and campuses are starting to see 
increased popularity of these multiple forms of travel. Automated vehicles or vehicles 
with highly advanced driver assistance systems must be able to react appropriately to 
these agents sharing space with them. 

d) Bicycle-vehicle communication can be explored using these sensor technologies. 
e) Some of the smart bicycle technology uses laser sensors on rotationally controlled 

stepper motor platforms. This can be used for finding lateral position in the lane on 
snow covered roads. Current camera technology cannot find lateral position when the 
road is snow-covered. This could be in conjunction with another friction estimation 
project. This proposal is more open-ended due to the forward-thinking nature of the 
technology involved; however, I believe this is an important area and a platform of 
which TRI could take great advantage in many different directions. 

8.22 DATA-DRIVEN MODELING OF DRIVER ATTENTION AND SITUATIONAL 
AWARENESS 

TRI Researcher: Simon Stent, Guy Rosman, Luke Fletcher 
Email Address: Simon.Stent@tri.global , Guy.Rosman@tri.global, Luke.Fletcher@tri.global  
TRI Thrust:  Driving 
 
Background & motivation 

In a survey of 5,471 light vehicle crashes between 2005-7, the National Highway Traffic Safety 
Administration (National Motor Vehicle Crash Causation Survey, 2008) found that inadequate 
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driver situational awareness (driver recognition error, caused primarily by insufficient 
surveillance, internal and external distraction and inattention) was a critical reason in over a 
third of cases. The statistics are dated, but considering the growth in smart-phone usage since 
2007, they are unlikely to be any less significant today. 

For Advanced Driver Assistance Systems (ADAS) to help alleviate this class of problem, it will 
be important to be able to build and maintain models of driver situational awareness. Such 
models will allow vehicles to respond in a more timely manner in certain scenarios (e.g. by 
being more assertive if drivers are observed to be unaware of perceived risks in the 
environment). Beyond ADAS, in Level 2 and 3 automated driving, modeling a driver’s 
awareness will be equally important to safely negotiate exchanges in control. 

This project is concerned with fusing and advancing recent developments in two separate 
research fields: mechanistic models of driver situational awareness from human vision and 
psychology (e.g. [1]), and data-driven models of task-conditioned human attention from 
computer vision (e.g. [2]). We will take advantage of the relatively recent availability of high 
precision eye trackers and advances in scene representation provided by deep learning to 
develop and evaluate data-driven models of driver attention and awareness. 

Goals 

The anticipated goals of this project are to: 

1. create two or more large-scale benchmark datasets of gaze behavior in driving scenes 
(in-sim and on-road, potentially including closed course testing), to extend existing TRI 
efforts 

2. develop data-driven, mechanistically-grounded predictive models of overt attention and 
awareness, for both idealized drivers and individual drivers 

3. analyze model performance on specific scenarios of driver recognition error gathered 
from naturalistic driving data and closed course testing. 

Technical problem statement 

Technical problems of relevance to this project are: 

• can we learn a joint model of driving scene, task and minimal set of what a safe driver 
should attend to or be aware of? How much variation in inattentive behavior exists 
across individuals, particularly with respect to high risk scenarios? 

• given a driver’s noisy registered gaze in a scene, how can we estimate what they are 
aware of? Can overt attention be used acausally as a proxy for awareness for high-risk 
objects? 

• how can we validate an awareness model fairly? What percentage of accidents caused 
by driver recognition error might be mitigated with better models of attention and 
awareness? 

References 

[1] B. A. Wolfe, B. Sawyer, and R. Rosenholtz. Toward a mechanistic understanding of situation 
awareness in driving. In revision, Human Factors. 1 



[2] Y. Huang, M. Cai, Z. Li, and Y. Sato. Predicting gaze in egocentric video by learning task-
dependent attention transition. In Proceedings of the European Conference on Computer Vision 
(ECCV), pages 754–769, 2018. 

8.23 DATASETS AND HIGH-FIDELITY MODELS FOR IN-CABIN BEHAVIOR 
UNDERSTANDING 

TRI Researcher: Simon Stent 
Email Address: Simon.Stent@tri.global  
TRI Thrust:  Driving 
 
Background & motivation 

Over the coming decade, driver and cabin-facing cameras will become increasingly 
commonplace in new privately-owned vehicles. The trend will be driven partly by our desire to 
communicate by video while on the move, fueled by faster cellular connections, lower-cost 
hardware and increasing vehicle automation. More importantly, it will also be driven by the 
many applications in safety (e.g. Euro NCAP1), security and user experience that can be 
unlocked by applying modern computer vision to in-cabin video. Such applications include: 
detecting driver inattention or drowsiness; estimating driver takeover readiness; left-child 
detection; seatbelt detection and adaptive airbag deployment; identity verification; emotional 
state estimation to match cabin settings/vehicle behavior to mood; audio-visual speech 
separation and recognition; and unconstrained gesture recognition. 

Unlike outward-facing vehicular sensing, which has seen an explosion in large-scale academic 
datasets and simulators over the past decade that have helped to foster progress in perception, 
prediction and planning (e.g. KITTI, Cityscapes, Argoverse, nuScenes, CARLA), as of today, 
there is much less open research being conducted for training and evaluating driver and 
passenger behavioral understanding (with a few exceptions2). This is partly due to the various 
difficulties of collecting diverse, large-scale and publishable driver-facing data. Since driver 
error is estimated to be the critical reason in over 90% of road accidents3, building such datasets 
to enable better understanding of drivers and their passengers is of high social importance. 

Goals 

The anticipated goals of this project are to: 

1. create a hardware setup for efficiently acquiring large-scale, multi-view video data of 
humans 

2. use (1) to generate diverse, domain-specific datasets of drivers and passengers in 
vehicles, with implicit annotation provided by synchronized and calibrated RGB and 
NIR video streams 

3. use (2) to study both domain-specific and more generalized models for human 
behavioral coding and understanding, particularly using more constrained sensor 
setups (e.g. dense 3D pose estimation or action recognition under heavy occlusion from 
one or two cameras) 

4. demonstrate the generalization of (2-3) by application to TRI-owned large-scale 
naturalistic driving datasets, enabling behavioral analysis.  
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To help maximize impact, members of the TRI-AD (Advanced Development) Driver and 
Passenger Monitoring team will also be involved in the project. 

Technical problem statement 

This project will face several technical challenges: 

• how to adapt pre-existing multi-camera setups such as Panoptic Studio4, to target the 
idiosyncrasies of the in-cabin environment? (e.g. high occlusions, constrained camera 
positions, wider-angle cameras making calibration and registration challenging, 
extreme lighting and shadows) 

• how to develop models which efficiently acquire invariance to viewpoint? How to 
best combine information from multiple viewpoints? How to create efficient multi-
task models to feed the wide range of downstream applications? 

• how important is diversity in the subject pool for generalization? What inductive 
biases might allow better generalization with fewer training subjects? How does 
synthetic data compare? 

• for a given task, what is the best trade off between camera placement and 
performance when it comes to deployment in commercial vehicles? 

1 Euro NCAP 2025 Roadmap 
2 For example, driveandact.com, ICCV 2019 
3 National Motor Vehicle Crash Causation Survey, 2008 
4  http://domedb.perception.cs.cmu.edu/ 

8.24 HIGH-SPEED GAZE CONTROLLERS FOR EFFICIENT HIGH-RESOLUTION 
SCENE UNDERSTANDING 

TRI Researcher: Simon Stent, Velin Dimitrov 
Email Address: Simon.Stent@tri.global, Velin.Dimitrov@tri.global  
TRI Thrust:  Driving 
 

Background & motivation 

Considering that humans are only capable of “20/20” vision within a ∼1.5◦ cone of our visual 
fields (in photopic illumination conditions, i.e. daylight), our visual systems are incredibly 
efficient at resolving the relevant details of our surroundings. With the benefit of peripheral 
vision, powerful attention mechanisms, working memory and finely tuned ocular motor 
control, we use our vision to solve all sorts of tasks which require wide-angle, fine spatial 
understanding, from safely changing lanes while driving fast along a highway to social 
interactions around a dinner table. 

In robotics, elegant practical approaches for using one or two cameras to achieve a similar 
degree of spatial coverage are rare. Brute force solutions are the norm: use a high-resolution 
camera and move the robot to move the camera, or don’t move the robot and add more 
cameras. The former is often slow or infeasible: cars should not have to turn left to see left. For 
this reason, Tesla’s “full self-driving” setup consists of eight external cameras, with the highest 
focal camera (i.e. longest range) having a horizontal field of view of ∼35◦ over 1280 pixels - 
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slightly lower acuity than 20/20 human vision. The MobilEye EyeQ5 chip, to be launched in 
2020, will enable processing of “more than sixteen multi-mega-pixel cameras.” While clever 
engineering makes such solutions viable, fixed multi-camera setups will always be constrained 
by the trade-off between resolution and coverage: the higher the resolution needed in any 
particular area, the lower the overall spatial coverage of the system (without adding more 
cameras). Tesla’s current setup is unlikely to be able to resolve the gaze and facial expressions of 
all three other drivers at a 4-way intersection.  

Recently, attempts have been made towards more elegant solutions, using systems of mirrors 
and optics to steer otherwise static cameras (e.g. [1, 2]). Such systems, if made to work more 
practically, could vastly reduce the number of cameras required to acquire superhuman visual 
acuity and angular range. 

Goals 

The expected goals of this project are: 

1. design and fabricate a working mirror-based saccading camera system, taking into account 
the pros and cons of existing approaches 

2. develop methodologies to optimize camera control for specific tasks, using a wide-angle 
camera to inform glance strategies and bind together saccading camera inputs. Motivating tasks 
include: monitoring fixed points in space under robot motion (e.g. for long-range obstacle 
avoidance on curved highways), improving trajectory prediction during social driving 
interactions, or finding a book on a large bookshelf 

3. investigate the practical viability of such a system for applications in household robotics and 
driving. 

Technical problem statement 

Many interesting technical challenges are anticipated for this project. Hardware and design 
challenges include: how to make a practical controller which meets desirable constraints of form 
factor, saccade speed and precision, angular range, and supported camera focal length? How 
can the system rapidly accommodate varying intensity levels or scene depths in different 
regions of the visual field? Software challenges include: how can saccade strategies be learned 
through self-supervision for a particular task? How can information from the saccading camera 
be efficiently bound to information from the wide-angle camera? 

References 

[1] K. Okumura, H. Oku, and M. Ishikawa. High-speed gaze controller for millisecond-order 
pan/tilt camera. In 2011 IEEE International Conference on Robotics and Automation, pages 
6186–6191. IEEE, 2011. 1 

[2] K. Iida and H. Oku. Saccade mirror 3: High-speed gaze controller with ultra-wide gaze 
control range using triple rotational mirrors. In 2016 IEEE International Conference on Robotics 
and Automation (ICRA), pages 624–629. IEEE, 2016. 1 

8.25 INFERRING AWARENESS, MOTIVATION, AND INTENT FROM IMAGES 
AND VIDEO 

TRI Researcher: Simon Stent 
Email Address: Simon.Stent@tri.global  
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TRI Thrust:  Driving 
 

Background & motivation 
Humans are remarkably adept at inferring the awareness, motivation and intent (Awareness: is 
X aware of Y ? Intent: what does X want to do next? Motivation: why does X want to do it?) of 
other agents, even when observing highly abstract stimuli such as the Heider-Simmel Illusion. 
This cognitive capability is present early in infant development: from a very young age we 
understand that others around us have mental states like goals and beliefs, and this 
understanding strongly constrains our own learning and predictions. 
The ability to reason from the perspective of other agents is important for any intelligent 
machine, such as a household robot or an autonomous vehicle, to predict – and therefore safely 
interact with – the physical, human world. However, there is no straightforward method to 
instill such ability in a general sense. while modern-day object trackers are increasingly able to 
capture and predict complex kinematics (i.e. motion), they cannot yet adequately leverage 
visual and temporal context to infer the awareness, motivation or intent of agents (i.e. causes for 
motion), which limits their capacity to truly generalize. No machine can draw the same rich 
narrative from observing the Heider-Simmel Illusion as a toddler. Kinematics alone may be 
sufficient for prediction in the vast majority of autonomous driving, but in the long tail of 
driving, there are likely to be many scenarios which are better predicted by models equipped 
with stronger psychological intuition [1, 2]. 
 
Goals 
This project aims to study methods for interpreting the awareness, motivation and intent of 
agents from observations of their behavior and other context in images and video. While the 
ultimate goal is to develop autonomous “theory-of-mind” frameworks, the initial objective is 
more pragmatic: to investigate supervised methods through which machines can better 
leverage visual cues that improve behavioral prediction. This may touch on work from 
numerous sub-fields, such as gaze prediction, emotion and gesture recognition, and motion 
analysis. Expected project goals include:  

1. generate several large-scale datasets of images and short video clips, where subjects in 
the scene are annotated with expectations of awareness, motivation and intent. One 
dataset should be abstract, synthetic and highly specifiable, to allow controlled, toy 
problem analyses. Further dataset(s) may progress to more general and diverse 
scenarios (e.g. movie sequences or specific driving or robotics applications such as 
pedestrian and vehicle interactions) 

2. develop supervised methods for prediction in (1), incorporating spatial and temporal 
context and evaluating the importance of different visual cues 

3. demonstrate the benefit of (2) in a real application, such as predicting the likelihood of 
pedestrians to cross or vehicles to go at an intersection 

4. for toy data at least, compare supervised methods from (2) to existing “theory-of-mind” 
frameworks, particularly with respect to generalization. 

 
Technical problem statement 
Key technical questions to address are: 

• the annotation task is very open-ended. How can we create a sensible ontology which is 
both rich enough to be interesting and useful, abstract enough to be generalizable, and 
simple enough to be feasible to annotate? 



• how can estimates of awareness, intent and motivation for various agents in a scene be 
optimally used to predict future outcomes? 

• is it possible to create supervised models or “theory-of-mind” models which can 
generalize better across datasets, to the point of anthropomorphizing abstract unseen 
video stimuli? 

 
References 
[1] R. Brooks. The big problem with self-driving cars is people. IEEE Spectrum, 2017. 1 
[2] B.M. Lake, T.D. Ullman, J.B. Tenenbaum, and S.J. Gershman. Building machines that learn 
and think like people. Behavioral and brain sciences, 40, 2017. 1 

8.26 CERTIFIED SAFETY FOR SELF-DRIVING CARS 
TRI Researcher: Soonho Kong 
Email Address: Soonho.Kong@tri.global  
TRI Thrust:  Driving 
 
What do you want to try to do? 
The goal of this project is to explore and develop software components in autonomous driving 
that generate “evidence for safety (Certificates)” in addition to the main computational output. 
The generated evidence is used to check if the computational output is consistent and safe with 
respect to its input. When a certificate check fails, the system should have a mitigation plan to 
handle the anomaly. 
The checking process should be fast and straightforward to implement. This exploits the 
computational asymmetry between finding a solution, which usually involves a search 
procedure, and checking the solution (usually in O(n)). As a result, the size of the trust 
computing base remains small, which provides high assurance. 
The requirement for a component to provide consistent evidence can make the system more 
robust and secure. To have a compromised component output a malicious result, an attacker 
needs to do extra work to forge corresponding evidence for the result. 
 
Why do we care? 
Safety is in our mission statement. We are developing the technology to build a car that is 
incapable of causing a crash, regardless of the skill or condition of the driver. Toyota Guardian 
is our approach to this goal. This system oversees the driving environment to mitigate and 
avoid predicted crashes. However, a natural question follows: "Who is guarding the guardian?". 
We need an answer for this. 
Neither formal verification nor testing is good enough to solve the problem. Formally verifying 
all components is not realistic: 1) there are known scalability issues in formal methods 
techniques, 2) for machine learning components, we do not have formal specifications. Testing 
is the strategy that we rely on in our development. However, this is not a complete technique. It 
can be used to show the presence of bugs, but never to show their absence. 
 
Technical problem statement 
Given a software component, we formalize it as a mathematical function, f(X) = Y where X is 
an input to this component and Y is the output of the component. 

• Extend f to fc such that f c(X) = (Y , C) where C is a certificate which is a proof 
establishing the consistency between f , X , and Y . 
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• Design and implement a proof system and Checker(C, X, Y ) . Formally verify that the 
checker meets a requirement. 

• Demonstrate an autonomous-driving system with certified components in perception, 
planning, and control stacks. 

8.27 AI-BASED PLANNING AND CONTROL OF FUTURE MOBILITY SYSTEMS 
FROM THEORY TO DEPLOYMENTS 

TRI Researcher: Stephen Hughes, Masanori Yamato 
Email Address: Soonho.Kong@tri.global, Masori.Yamato@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 
We want to harness research advances in the field of AI to design tools that enable optimal 
planning and control of future mobility systems. By future mobility systems we mean the 
growing ecosystem of mobility options of shared, specific-purpose, autonomously capable 
vehicles to provide on-demand mobility services. Specifically, we are interested in AI-based 
tools to (1) co-optimize the design of a vehicle (e.g., its capacity, range, level of autonomy, etc.) 
with the mobility service that such a vehicle will deliver (e.g., last-mile, point-to-point, shared, 
etc.), (2) intelligently plan the operations for such systems (e.g., in terms of charging 
infrastructure needs), (3) devise real-time control algorithms to manage such systems in the 
broader context of an optimized transportation network (e.g., accounting for public transport), 
(4) implement part of this research by partnering with Toyota-managed mobility systems (e.g., 
Ha:Mo) and business partners such as Grab. 
 
Why do we care? 
TRI and Toyota are increasingly investing in AV-related technologies and new forms of 
mobility (such as micro-mobility vehicles, autonomous shuttles, etc.), thus this research is 
particularly timely. Specifically, this research will be critical to (1) inform stakeholders on how 
to best deploy future mobility modes within the transportation network, (2) inform the 
trajectory for technology development for AVs (e.g., if we knew that the “killer app” for AVs 
are slow-moving autonomous shuttles, this would constrain the requirements for the 
development of an AV autonomy stack), and (3) provide state-of-the-art tools to manage large-
scale on-demand vehicles fleets. 
 
Technical problem statement 
The problem of planning and controlling large-scale on-demand vehicle fleets combines 
features of networked control, optimization, transportation options, and decision making under 
uncertainty. We plan to leverage the wealth of optimization-based techniques we have 
developed in the past three years with our Stanford collaborators, along with new advances in 
AI techniques such as RL, neural network models for forecasting, and data-driven control to 
tackle such a challenging problem with a fresh perspective. Specifically, this project will entail 
novel advances in terms of (1) RL techniques for large-scale fleet optimization; (2) meta-learning 
models for accurate forecasting; (3) data-driven modeling along with optimization-based 
techniques to reason about interactions among mobility operators and with other 
infrastructures such as the power network, and (4) co-design techniques for the optimal 
planning of future mobility systems. We anticipate that these research efforts will provide key 
advancements to the field and will continue to produce award-winning scientific publications 
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as in the past three years. Also, along with the Stanford collaborators, we will infuse some of 
these techniques into real systems. In the past, we deployed a first-of-its-kind optimization-
based controller for vehicle rebalancing within the Toyota Ha:Mo system. Currently, we are 
working with Grab on deploying real-time routing algorithms to best integrate a fleet of fully-
controlled vehicles within the current fleet of ride-hailing vehicles. In the future, we plan to seek 
additional opportunities for technology infusion by leveraging the growing set of partnerships 
that Toyota is establishing in the mobility space.  

8.28 COORDINATED ACTIVE SENSING AMONG VEHICLES AT JUNCTIONS 
TRI Researcher: Stephen McGill 
Email Address: Stephen.McGill@tri.global  
TRI Thrust:  Driving 
 
Goal 
Vehicles that enter a junction inherently share information asymmetries due to their varying 
sensor viewpoints, and vehicles may not have enough information to make safe decisions when 
navigating junctions. Recently, Vehicle-to-Vehicle/Infrastructure techniques have attempted to 
improve vehicle safety by sharing information, leveraging research on optimal communication 
techniques. However, these communication techniques have not yet considered the ability for 
vehicles/infrastructure to change their behavior (as in autonomous vehicles) in order to 
exchange more useful information. This proposal seeks efforts to characterize scenarios that will 
benefit from active sensing approaches among vehicles and infrastructure and asks for 
algorithms that implement active sensing in these scenarios. 
 
Motivation 
Toyota sells millions of vehicles a year, and many of them approach junctions (intersections, 
merges, roundabouts, etc.) at the same time. However, there is no way to leverage this ad-hoc 
multiagent system to improve safety. TRI, through its Guardian lens, seeks to make the 
uncrashable car. Along the way, TRI must ensure that a Toyota does not cause another Toyota 
to crash. This proposal will move TRI and TMC closer to its Guardian objectives by identifying, 
in a principled manner, scenarios in which V2V/V2X methods can reduce risk and 
embodiments that perform this risk reduction. 
 
Context 
Research during University 1.0 led to development of a risk assessment algorithm that operates 
at junctions, without sharing information. This work is being transferred to TRI and TMC 
vehicles, highlighting the value of risk measures at junctions. There is still work to do in 
supporting semi-autonomous path planning, vehicular communication and enhanced risk 
metrics at junctions. At present, TRI fleet vehicles communicate with infrastructure in California 
and Ann Arbor, but TRI vehicles do not communicate amongst each other; therefore, this 
proposal highlights a huge opportunity for research, development and technology transfer to 
TMC. 
 
Technical Problem Statement 
 Real world deployments of V2V/V2X methods must provide clear improvements against 
baseline systems. This proposal seeks technical accomplishments that consider: 
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• Formal characterization of scenarios that do and do not benefit from active sensing 
methods, and by what metric. 

• Theoretical metrics and bounds on information gain and risk reduction 
• Closed course evaluation among multiple TRI vehicles, with performance metrics 

(Working with TRI PoC) 
• Semi-autonomous action sets to improve safety and information exchange 
• Adversarial behavior and approaches to mitigate them 

 

8.29 TOYOTA MINIATURE VEHICLE PROVING GROUND 
TRI Researcher: Stephen McGill 
Email Address: Stephen.McGill@tri.global  
TRI Thrust:  Driving 
 
Goal 
We propose a pipeline to characterize challenging driving scenarios and to prove out novel 
algorithms for modeling and acting in noisy environments and unpredictable agents. University 
research enters this pipeline, strongly impacting TRI/TMC fleet deployment. Pipeline stages 
include simulation, miniature vehicle demonstrations and dataset generation, aiding in transfer 
to TRI and TRI-AD. 
 
Motivation 
TRI improves road safety by bringing novel and proven technologies to Toyota vehicles. To 
prove new algorithms, TRI leverages its Test Engineering group to emulate challenging 
interactions safely in closed course environments. However, safely testing challenging 
interactions at scale in a closed course remains difficult due to requirements of manpower, 
space and coordination of multiple vehicles. Novel core autonomous vehicle technologies are 
driven, increasingly, by datasets, benchmarks and shared reference code. However, principled 
experimentation of the integration of core technologies continues to lag due to the 
aforementioned platform and environment constraints when testing field robotics systems. This 
proposal addresses issues in experimentation and evaluation by enabling a lower barrier to 
entry via standardized multi-robot closed-loop benchmarks. 
 
Context 
Research on small scale cars during University 1.0 led directly to technology transfer of a risk 
assessment algorithm that is on the path to market deployment within TRI-AD. Additionally, 
TRI sponsored the CARLA challenge, showcasing University research in a common simulated 
environment. TRI shall build on these results to facilitate additional successful deployments. 
We will rapidly assess University research on a common and safe platform, via a set of 
physically embodied vehicles and environments. 
Feedback from partners during University 1.0 highlighted the need for real world datasets from 
the TRI fleet in order to validate and motivate research. After selecting promising algorithms 
from those showcased in simulation and on small scale cars, TRI will work with partners to 
collect and to share TRI vehicle data relevant to those algorithms. 
 
Technical Problem Statement 
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When making safe decisions in the real world, autonomous driving algorithms require 
robustness in the presence of noisy measurements and unpredictable agents. 

• We seek proposals on designing challenging urban environments and defining 
objectives and performance metrics for an autonomous vehicle in the environment. 
Environment design includes road topology, object placements, road agent behavior and 
task definitions. Designs must provide fidelity with respect to the real world in order to 
ensure reliable domain transfer from simulation and miniaturization to full scale 
environments. Environments should be implemented first in CARLA and then with 
mini-vehicles. Performance metrics must separate immature and promising approaches, 
thereby providing value for TRI and TMC. For instance, the recent CARLA challenge 
required autonomous vehicles to navigate a roundabout and provided success criteria 
that included the time within the roundabout and accident fault assignment. 

• We seek proposals on autonomous vehicle technologies that aid in navigating urban 
environments, tackling the concepts of “stay on the road,” “don’t hit things” and “don’t 
get hit.” Technologies should operate on both perfect information/actuation, as well as 
onboard perception/actuation. Algorithms should be implemented first in CARLA and 
then with mini-vehicles. 

• We seek proposals that provide both environments and autonomy algorithms to tackle 
these environments. 

• We seek competition among partners, where teams attempt to outperform each other on 
common metrics in the challenging environments. TRI seeks to amalgamate 
complementary technologies from many of its partners, leveraging unique strengths and 
performance of each partner. 

 

8.30 CONTEXTUAL ADAPTATION WITH RISK MEASURES FOR ENHANCED 
NAVIGATION UNDER INFORMATION DEGRADATION 

TRI Researcher: Velin Dimitrov 
Email Address: Velin.Dimitrov@tri.global  
TRI Thrust:  Driving 
 
What do you want to try to do? 

We want to advance the capabilities of TRI’s Guardian technology through the development of 
novel methods and tools to achieve safe, reliable, and adaptive navigation and decision-making 
under information degradation, both intrinsic and extrinsic to the vehicle. The future of 
Guardian depends heavily on a robust method to quantify and act on risk associated with 
decisions. The key barrier to successful deployment of Guardian on production vehicles is the 
development of adaptive behaviors based on contextual information. Navigation and control of 
autonomous vehicle can be enhanced in real-world environments with imperfect information 
by allowing adaptation based on quantifiable risk metrics. These metrics can be learned over 
time and are based on the contextual information from the operating environment around the 
vehicle, in addition to the underlying vehicle capabilities. The problem breaks down into two 
key areas which should be the focus of solicited projects. How do we quantify risk as a metric in 
a robust and repeatable manner and how do we utilize those risk metrics to their fullest extent 
to make faster, better, and safer decisions in the autonomous or semi-autonomous operation of 
vehicles? 
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Why do we care? 

Long term, Guardian technology is positioned to enable two modalities of vehicle operation: a 
shared human-autonomy mode and hierarchical full multi-autonomy mode. We anticipate the 
immediate focus will be on the former to bring enhanced safety behaviors to production 
vehicles following in the footsteps of capabilities similar to automatic emergency braking (AEB). 
In addition, Guardian is expected to evolve over the next decade, monitoring and intervening 
on behalf of other higher-level controllers. Whether Toyota or Toyota-partner deployed, these 
controllers will likely be developed in a multi-layered hierarchical structure to enable robust, 
intelligent, and safe vehicle operation. The basis of these interventions will ultimately be 
decided by Guardian’s understanding of risks and the sources of those risks, irrespective of 
human or autonomous origin.  

Technical Problem Statement 

The problem is complex and requires a holistic approach utilizing concepts from artificial 
intelligence, model-based design, and traditional controls approaches. Experts in one singular 
domain are unlikely to come to scalable solutions that exhibit the robustness and reliability 
inherently needed for commercialization. Successful characterization of risk and risk-based 
autonomy has already been demonstrated in wide-ranging domains such as high frequency 
trading and robotic manipulation. A similar result in the field of automated driving could lead 
to comparable significant advancement of the state of the art. Proposals to address the identified 
problem will need to address the following technical problems: 

• How are the sources of risk in autonomous and semi-autonomous systems quantified in 
a deterministic manner, when some elements of the system may be non-deterministic? 

• How can the evolution of risk be modeled and learned to enable long-term autonomy 
and navigation of a constantly changing environment? 

• Once quantified, how can the risk be controlled or at least mitigated so the vehicle 
operates in the desired manner, but also optimizes for safety and reliability? 

• How does risk cascade in a system controlled by multiple levels and layers of 
controllers, of both autonomous and human nature? 

8.31 DESIGN OF RESILIENT MOTION PLANNING FOR TOYOTA GUARDIAN 
SYSTEMS WITH APPLICATION TO COLLISION AVOIDANCE UNDER 
UNCERTAINTY 

TRI Researcher: Vishnu Desaraju 
Email Address: Vishnu.Desaraju@tri.global  
TRI Thrust:  Driving 
 
The goal of this project is to develop trajectory planning and/or control methodologies 
that will allow Guardian systems to improve collision avoidance capabilities in a way that 
is safe and reliable, even in the presence of various sources of uncertainty. 
Uncertainty may stem from a variety of sources including variations in vehicle dynamics, 
environmental conditions, and imperfect sensing. While uncertainty poses key 
challenges for Chauffeur systems as well, Guardian systems must be particularly robust 
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to in order to ensure a safe operating envelope for the human driver without 
overconstraining the driver’s actions. This project will primarily focus on a subset of this 
safe operating envelope relating to challenging collision avoidance scenarios, e.g., 
involving highway speeds, evasive maneuvers that excite the nonlinearities of the 
vehicle dynamics, or requiring combinations of steering, braking, and accelerating to 
both avoid the collision and stabilize the vehicle afterwards. 
 
This project will ideally achieve the following objectives: 

● Analyze and identify the sources of uncertainty with the greatest impact on the vehicle’s 
ability to safely avoid collisions 
•  Identify and develop techniques for estimating, learning, bounding, adapting to, or 

otherwise mitigating the effects of these uncertainties 
• Develop a nonlinear trajectory planning/control algorithm that leverages these 

uncertainty mitigation techniques while accounting for the vehicle dynamics and 
stability requirements for safe collision avoidance 

• Quantify the resiliency of the developed algorithm, e.g., in terms of convergence rates, 
bounds, operating ranges 

• Translate the proposed techniques to computationally efficient implementations and 
empirically validate the techniques in different challenging collision avoidance 
scenarios, both at the university and in the TRI Planning and Control architecture 

 
The main value to TRI stems from the fact that uncertainty mitigation will be one of the 
key factors in expanding the range of scenarios in which Guardian can reliably assist or 
intervene. So this project aims to provide an analysis of these uncertainty effects, as 
well as algorithms that are tailored to addressing these effects. The final objective also 
has a natural tech transfer aspect to it, which will facilitate TRI’s in-house evaluation and 
potential deployment of these techniques. 
 

8.32 ADAPTIVE SHARED AUTONOMY BASED ON OPERATOR INTENT FOR 
ENHANCED PERFORMANCE WITH TOYOTA GUARDIAN 

TRI Researcher: Vishnu Desaraju 
Email Address: Vishnu.Desaraju@tri.global  
TRI Thrust:  Driving 
 
The goal of this project is to develop an adaptive shared autonomy framework that 
leverages formalized models of operator intent to inform near-term motion planning and 
decision making, thereby improving the performance of Guardian systems. 
There are two key components to this project that go beyond just formulating a 
human-in-the-loop architecture. The first is to develop models of operator intent that not 
only enable inference and prediction but also provide guarantees and strong 
correctness properties. This could include bound guarantees on uncertainty, measures 
of model accuracy relative to the underlying distributions, or model fidelity and 
convergence properties for different operators/levels of operator proficiency. The 
second component is to use these models to infer operator intent and integrate this 
information into a finite horizon decision making or motion planning algorithm as part of 
a shared autonomy framework. This integration aims to demonstrate the practical utility 
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of these models to enhance the human-in-the-loop system as measured, for example, in 
terms of improving performance and safety or reducing the magnitude of autonomy 
actions needed to keep the vehicle within a safe operating envelope. 
 
This project will ideally achieve the following objectives: 

• Develop a representation for near-term operator intent that enables inference of the 
underlying distribution and prediction of future operator actions 

• Perform a rigorous analysis of the proposed intent model to establish its key properties 
and guarantees 

• Develop finite horizon decision making/motion planning algorithms that leverage these 
models to improve shared control with a human operator 

• Translate the proposed techniques to computationally efficient implementations and 
demonstrate performance with different operators and scenarios, both at the university 
and in TRI’s Planning and Control architecture 

• Quantify via empirical evaluation the key properties of these techniques, their 
adaptation performance, and their implications for statistically safe behavior 

 
The main value to TRI stems from the development of operator intent models with 
formal guarantees, as leveraging these models will increase confidence that Guardian is 
strictly aiding and enhancing the human operator’s performance. The last two objectives 
also have key tech transfer aspects that will facilitate TRI’s in-house evaluation and 
potential deployment of these techniques. 
 

8.33 MULTI-SENSORY AND MULTI-MODAL FUTURE PREDICTIONS FOR 
AUTONOMOUS DRIVING 

TRI Researcher: Wadim Kehl 
Email Address: Wadim.Kehl@tri.global  
TRI Thrust:  Driving 
 
Typical CNNs are over-confident in their predictions. Moreover, these networks tend to 
approximate the conditional averages of the target data resulting in over-smooth predictions.  
These undesired properties render the immediate outputs of those networks unsuitable for the 
quantification of calibrated uncertainty.  
 
The literature contains approaches to this problem including Mixture Density Networks, 
tailored Winner Takes All (WTA), Relaxed-WTA, and Evolving-WTA (EWTA).  These 
approaches generally consider only low dimensional posterior with the assumption of a 
Euclidean space.  TRI seeks approaches with the multi-dimensional, non-Euclidean and highly 
non-convex posteriors that govern our real world. 

8.34 AUGMENTING CONTINUOUS HIGH DEFINITION MAP UPDATES WITH 
HUMAN INTELLIGENCE 

TRI Researcher: Xipeng Wang 
Email Address: Xipeng.Wang@tri.global  
TRI Thrust:  Driving 
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One-sentence Summary 
Leverage crowdsourced human intelligence to facilitate continuous update of HD maps. 
 
Background 
HD maps are a key requirement for building Chauffeur and Guardian technologies. HD maps 
represent the world to centimeter resolution with sematic information. In our driving stack, HD 
maps contain two layers. One is a geometric map layer, which fuses data from sensors such as 
lidar, camera, GPS, IMU, etc. The other layer is a semantic map layer, which represents the road 
network topology and includes attributes like lane boundaries, crosswalks, and traffic lights.. 
Building HD maps is framed as an optimization problem shown in the following equation: find 
the map that is most consistent with the set of observations, where f is the sensor model, X is the 
world model, Z is the observation, and g is the cost function model. 

X = argmax g(f(X), Z) X 
 
Optimization is required here is because the perception is not perfect. The most challenging 
problem in mapping is data association (e.g. Is this stop sign the one you saw yesterday?). 
Bayes’ theorem tells us the more information we get, the better map we can build. But this is 
under the assumption that we know the characteristics of sensor models, in other words, the 
noise level of your perception system. Because we have a better understanding of the sensor 
models, such as GPS, IMU, ranging, building SLAM Map is nearly an automated process. 
 
What do we want to do? 
We would like to build accurate continental scale maps with continuous updates. Two 
fundamental approaches to solve this problem: improving perception system and improving 
human intervention process. In this proposal, we mainly focus on the idea of improving human 
intervention. More specifically, the things we would like to achieve are: 

• Leverage crowdsourcing to perform human intervention so that we can perform large 
scale mapping. 

• Leverage human intelligence to validate and improve the quality of maps. 
• Leverage online crowdsourcing to perform continuous online update of maps. 

 
Why do we care? 
Both Chauffeur and Guardian technology requires maps. Considering using maps as a sensor, 
the better map we can get, the safer technology we can provide. There are hundreds of million 
Toyota cars on the road every day across the world. If Toyota wants to provide Chauffeur and 
Guardian technology to all customers, we need to think about how to provide continental scale 
maps with high quality. 
 
What are the key technical challenges? 

• Leverage crowdsourcing to perform human intervention so that we can perform large 
scale mapping. 

o How can build tools for people with zero CS/SLAM/robotics knowledge? 
• Leverage human intelligence to validate and improve the quality of maps. 

o How can perform minimal human interventions to achieve the best 
performance? 

• Leverage online crowdsourcing to perform continuous online update of maps. 



o Comparing machines with humans for perception tasks (e.g. detecting map 
changes), machines can do a large amount of work but with lower quality. How 
can we combine the advantages of both humans and machines to provide 
accurate continuous map update to map customers? 

 

8.35 LEARN DESCRIPTORS FOR OBJECT-LEVEL FEATURES 
TRI Researcher: Xipeng Wang 
Email Address: Xipeng.Wang@tri.global  
TRI Thrust:  Driving 
 
One-sentence Summary 
Learn feature descriptors for high level structural features that encodes geometric relations in 
the sensor view to improve data association. 
Background 
HD maps are a key requirement for building Chauffeur and Guardian technologies. HD maps 
represent the world to centimeter resolution with sematic information. In our driving stack, HD 
maps contain two layers. One is a geometric map layer, which fuses data from sensors such as 
lidar, camera, GPS, IMU, etc. The other layer is a semantic map layer, which represents the road 
network topology and includes attributes like lane boundaries, crosswalks, and traffic lights.. 
Building HD maps is framed as an optimization problem shown in the following equation: find 
the map that is most consistent with the set of observations, where f is the sensor model, X is the 
world model, Z is the observation, and g is the cost function model. 

X = argmax g(f(X), Z) X 
Optimization is required here is because the perception is not perfect. The most challenging 
problem in mapping is data association (e.g. Is this stop sign the one you saw yesterday?). 
Bayes’ theorem tells us the more information we get, the better map we can build. But this is 
under the assumption that we know the characteristics of sensor models, in other words, the 
noise level of your perception system. Because we have a better understanding of the sensor 
models, such as GPS, IMU, ranging, building SLAM Map is nearly an automated 
Process. 
 
What do we want to do? 
We would like to build accurate continental scale maps with continuous updates. Two 
fundamental approaches to solve this problem: improving perception system and improving 
human intervention process. In this proposal, we mainly focus on the idea of improving 
perception system. More specifically, the things we would like to achieve are: 

• Build a perception system that can provide high precision/recall semantic labels using 
multimodal sensing, e.g., camera or lidar. 

• Generate descriptors for high level semantic labels such as poles, signs, etc. 
 
Why do we care? 
Both Chauffeur and Guardian technology requires maps. Considering using maps as a sensor, 
the better map we can get, the safer technology we can provide. There are hundreds of millions 
of Toyota cars on the road every day across the world. If Toyota wants to provide Chauffeur 
and Guardian technology to all customers, we need to think about how to provide continental 
scale maps with high quality. 
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What are the key technical challenges? 
• Build a perception system that can provide high precision/recall semantic labels using 

multimodal sensing, e.g., camera or lidar. 
o Push the state-of-the-art performance with real time performance. 

• Generate descriptors for high level semantic labels such as poles, signs, etc. 
o Majority perception systems for SLAM learn descriptors only for keypoints. But 

these low-level keypoint features are not stable under different light conditions. 
Hence, we choose high level structural features such as pole, signs, etc. The key 
challenge here is to learn descriptors for these high-level features that encode 
spatial relations among them. 

8.36 DATA-DRIVEN SCENARIO GENERATION WITH HETEROGENEOUS 
ROAD USERS 

TRI Researcher: Jonathan DeCastro 
Email Address: Jonathan.DeCastro@tri.global  
TRI Thrust:  Driving 
 
What are we trying to do, and why? 
Understanding the risks of autonomous vehicle (AV) decisions will require leveraging large-
scale, naturalistic data for all types of road users.  Such data will be useful for constructing 
multi-agent prediction models, including those of vehicles, pedestrians, bicyclists, and 
motorcycles (i.e. vulnerable road users), as well as understanding critical scenarios for safety .  
The nature of the interactions and severity of interactions are complex and the heterogeneity of 
the risks involved in AV failure are especially important when analyzing AV safety.   
 
Large-scale naturalistic driving data is important for several reasons.  First, a viable safety case 
for AVs will require testing the AV in a manner guided by statistics of the population of road 
users (all possible configurations and parameterizations of agents within some statistical 
bound).  Due to the vastness of the possible scenarios an AV could encounter, a sufficiently-rich 
data source will contain corner cases that can direct testing in a principled way.  Second, a rich 
data source is useful for constructing predictive models for evaluating risk in online decision-
making. 
 
To date, studies have been made to better understand pedestrian-vehicle interactions, while 
extracting the critical factors involved in features and identifying representative corner-cases.  
Many of these rely on manual annotation of corner cases, which is limiting from the standpoint 
of both scalability and objectivity.  Independent of corner cases, works have also focused on 
data-driven modeling of road user behaviors.  There has also been much work in inference and 
prediction of road users, as have simulation-driven approaches, via Monte Carlo techniques 
including importance sampling and cross-entropy.  In forming a viable testing strategy, it is 
required to understand risk from naturalistic datasets involving all possible road user types in 
order to make use of the techniques both for simulation and agent predictions for AV decisions. 
 
Technical problem statement 
We seek proposals that allow for leveraging statistically-significant data sources involving 
interactions between homogenous and heterogenous road users, including vulnerable road users, 
to allow for 1) automated analysis for creating an objective testing strategy that includes corner 
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cases and statistical coverage guarantees, and 2) training generative agent models for pedestrians, 
bicycles, and motorcycles.  The focus of the effort will include the following elements: 

• Learning metrics from large-scale data sources to allow for deciding a set of representative 
scenarios for achieving test coverage and profiling the space of possible scenarios from 
common events to corner cases, and everything in between. 

• Working with TRI to construct probabilistic generative models for predicting agent 
trajectories for the dual purpose of agent prediction and building a data- and 
requirements-driven testing strategy.  The data source will be used to characterize and 
construct statistical guarantees for these models.  

8.37 CAUSAL MULTI-AGENT PREDICTION 
TRI Researcher: Kuan Lee, Adrien Gaidon 
Email Address: Kuan.Lee@tri.global, Adrien.Gaidon@tri.global  
TRI Thrust:  Driving 
 
What do you want to try to do? 
Our goal in this project is to develop a multi-agent framework for ado vehicle trajectory 
prediction that can dynamically model and forecast vehicle interactions in a probabilistic, 
causal, and scene-aware fashion. We would like to explore a key missing component in the 
current state of the art: how to leverage observed and forecasted interactions to reduce 
uncertainty by reasoning about cause and effect via feedback loops across perception, 
prediction, and planning models.  
 
Why do we care? 
Prediction is an open research problem on the critical path to autonomy. Autonomous driving 
indeed requires reasoning about the uncertain future behavior of agents in a variety of driving 
situations. In multi-agent settings, each agent’s behavior affects the behavior of others. 
Motivated by people’s ability to reason in these settings, a multi-agent trajectory prediction is 
needed to forecast multi-agent interactions from observations extracted from cameras and 
LIDAR. Furthermore, because intents are not observable in general, this modeling and 
reasoning is probabilistic in nature. Careful reasoning is required to explore dynamically the 
best trade-offs between risk seeking (e.g., willing to pay a high cost in probability of collision) vs 
risk averse (often resulting in drastically reduced driving abilities compared to good human 
drivers). 
 
Technical problem statement 
Trajectory prediction is one of the major research areas in autonomous driving. Many existing 
works have proposed multi-agent prediction approaches/frameworks [1-3] that learn a 
probabilistic forecasting model for ado agents’ trajectory prediction, where path history and 
environment cues (either dynamic or static) are usually leveraged as a prior in the framework. 
Recently, goal-conditioned methods [1,2] get more and more attention since they not only 
encode past information but also refer to the goal/destination in the future.  
 
On the other hand, to precisely predict trajectory in the future, probabilistically modeling 
interactions between multi-agents (including ego and ago agents) is essential. To this end, social 
cues are typically used to capture agents’ trajectories towards their inferred goals while 
avoiding collisions. Many studies applied RNN to model trajectory prediction with social cues 
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[4-7]. Several works [5-7] based on adversarial learning were recently proposed to model agent-
to-agent interactions in a GAN framework. Moreover, Graph Networks [1] and attention 
mechanisms are also a promising direction to address such agent-to-agent relationship. 
 
We would like to investigate a compositional multi-agent scene-aware framework for trajectory 
prediction based on causal inference and uncertainty modeling. Moreover, we would like to 
explore the capability of causal inference in goal-conditioned prediction, and how it benefits 
path planning and decision making in autonomous driving applications.  
 
[1] B. Ivanovic and M. Pavone. The Trajectron: Probabilistic Multi-Agent Trajectory Modeling 
with Dynamic Spatiotemporal Graphs. ICCV 2019. 
[2] N. Rhinehart, R. McAllister, K. Kitani and S. Levine. PRECOG: PREdiction Conditioned on 
Goals in Visual Multi-Agent Settings. ICCV 2019. 
[3] Y. Tang and R. Salakhutdinov. Multiple Futures Prediction. NeurIPS 2019. 
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8.38 SEMI-SUPERVISED LEARNING TOWARDS ROBUST 3D DETECTION AND 
TRACKING 

TRI Researcher: Jie Li, Kuan Lee, Rares Ambrus 
Email Address: Jie.Li@tri.global, Kuan.Lee@tri.global, Rares.Ambrus@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 

Our goal in this project is to explore and develop object detection algorithms that work better 
with downstream tracking modules through better uncertainty estimation. In addition, we 
would like to deploy a better semi-supervised object detection learning framework by 
extending supervision from labeled frames to neighboring un-labeled frames with tracking in 
the loop. 

Desired output of this project would include but are not limited to the following: 

• A 3-D based object detection and tracking framework that generate better tracking 
results with high efficiency, ideally in real-time. 

• A semi-supervised pipeline that could make use of unlabeled frames in a dataset to learn 
a better object detection and/or tracking algorithm beyond supervision. 

Why do we care? 
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Object detection and tracking are key modules in both autonomous driving and indoor robotic 
platforms under development in TRI. While baseline solutions exists, heuristic approaches are 
currently employed to provide object detection uncertainty in location measurements, e.g. a 
diagonal constant matrix. A positional uncertainty aware object detection and tracking system 
will provide better uncertainty propagation to the tracker resulting in more reliable tracking 
and uncertainty estimation, and therefore, will increase the robustness of our systems of both 
autonomous driving and robotics. 

On the other hand, the resulting better tracking result of the above mentioned framework can 
help generate more training data in unlabeled frames to the object detection, resulting in a more 
scalable solution to leverage Toyota’s data advantage. 

Technical problem statement 

Current state-of-the-art object detectors can provide a proxy of epistemic and semantic 
uncertainty of a detection, c.f. object detection score and semantic label distribution, but no 
uncertainty is provided on the spatial aspect or object localization. On the other hand, a lot of 
widely used tracking system builds its state and uncertainty estimation on physical locations. 
Thus, when a tracking system receive a detection measurement from detector, an uncertainty 
over the location is essential. Most conventional systems use a fixed empirical matrix to model 
the detection uncertainty, resulting sub-optimal tracking results. This gap between two 
connected modules has recently draw more attention. More researchers are looking into this 
connection from the aspect of metrics, object detection, and tracking. One of our ongoing 
projects with Stanford is also looking at this problem, from the tracking side, and propose a 
filtering-based algorithm that won the 1st place of nuScenes Tracking Challenge in NeurIPs 
2020. 

In the area of data bootstrapping and learning beyond supervision, more recent work has also 
been proposed to improve the object detection algorithm, leveraging tracking algorithms in 
propagating key frame labels or building up temporal constraints between labeled and 
unlabeled frames. 

Thus, proposing a better solution to fill the gap between the object detection output and the 
tracking algorithm input is a two-bird-with-one-stone effort. We are looking to improve the 
overall performance of a detection-tracking system while also making use of more data than the 
labeled ones. 

8.39 PEDESTRIAN AND CROWD BEHAVIOR UNDERSTANDING 
TRI Researcher: Kuan Lee, Adrien Gaidon 
Email Address: Kuan.Lee@tri.global, Adrien.Gaidon@tri.global  
TRI Thrust:  Driving 
 

What do you want to do? 

The bottleneck in deep learning is the dependence on a large amount of manual annotations. 
Labeling at scale is prohibitively costly for behavior understanding, especially in crowded 
scenes. Annotators indeed need to look at the entire data and all pedestrians to detect and label 
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events of interest without any false negatives or false positives. Our goal in this project is to 
develop a pedestrian and crowd action recognition system that can maximally leverage 
unlabeled data (self-supervised learning) or with as few manual labels as possible (semi-
supervised learning). 

Why do we care? 

Recognizing and predicting actions of traffic participants, especially Vulnerable Road Users 
(VRUs), is a fundamental capability in Automated Driving and ADAS systems. According to 
the 2017 crash report by NHTSA, pedestrian fatalities in US urban areas increased by 46 percent 
since 2008. According to the NTSB report on the 2018 Uber ATG fatal crash, one of the causes 
for the crash is the inability of the Automated Driving system to model the behavior 
(appearance, motion, pose, intent, and context) of Elaine Herzberg, leading to the tragic 
accident. This evidence and the current progress in the research community highlights that even 
state-of-the-art Computer Vision and ML systems still fall short from basic safety requirements. 
As these techniques improve with data, the best strategy to solve this issue is by scaling up 
training sets (e.g., in order to see more jaywalkers), but this is limited by the need for manual 
inspection and labeling of all the data, hence the current insufficient amount of data used to 
develop this technology. Furthermore, the difficulty in modeling dynamic causal interactions 
between agents and their environments (as in the case of Elaine Herzberg) requires new models 
and learning algorithms. 

Technical problem statement 

In order to scale up training data, one needs to identify the right set of inductive biases that can 
replace large scale manual labeling. TRI is interested in two key problems in this space: 

1) semi-supervised video captioning of driving scenes, i.e. associating rich textual 
descriptions to snippets of driving logs, by leveraging their inherent structure as 
inductive bias (e.g., rules of the road, driver demonstrations, attention mechanisms); 

2) self-supervised action recognition using spatio-temporal graph networks to dynamically 
model (and forecast) rich interactions in traffic scenes (potentially crowded). 

8.40 LEARNING TRANSPARENT HRI 
TRI Researcher: Guy Rosman 
Email Address: Guy.Rosman@tri.global  
TRI Thrust:  Driving 
 

Background 

In both the Guardian system and more general applications in robotics, there’s a need for 
systems that interact with humans in a self-explainable way. While a standard approach to UI 
design involves hard-coding of the interface and deployment after testing, we expect the 
capabilities of these systems to adapt on the go, and the pattern of interaction with the user to 
be more complex, meriting novel approaches that allow these systems to adapt their interface as 
a computational problem. Impact to TRI: As we extend the capabilities of our vehicle stack, we 
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need a way for machines to better align with the human driver, and make themselves as easily 
understood as possible. Proposals should explore computational approaches towards this goal, 
resulting in more natural paradigms for car interface upgrades. 

Aims 

The aim of this project is to explore novel approaches for UX design that define the interaction 
problem in terms of planning goals, or a joint computational model, and demonstrate ability to 
adapt to the users and create a low-cognitive-load, easily usable, HAI. Projects under this 
proposal should demonstrate the approach for either or both the driving and robotics domains. 

Technical Problem Definition 

In the driving domain, projects should define the interaction between the car and the human 
and reason about risk and human comfort/satisfaction in a quantitative, computable, way. They 
should allow for multiple ways of shared autonomy /dialogue systems, and optimize the 
approach taken by the car UI and actions on the road. The system should demonstrate ability to 
perform multiple types of shared autonomous interactions, and reason about their joint utility 
under the model. The project should demonstrate in experiments the system’s ability to choose 
interaction modes, define metrics of optimality for the problem, and demonstrate the system’s 
capability to adapt to different users and/or temporal changes. Standard approaches during the 
experiments should be used to validate the user reaction to the system and the computational 
model. In the robotics domain, experiments should validate system’s capability to adapt the 
mode of interaction between a human and an assistive robot in a variety of scenarios, including 
both real demonstrations and simulated interactions. 

Data, Platforms, Deliverables 

The proposal should define specific deliverables, including APIs and a basic implementation in 
one of the domains. In simulated experiments, there should be a repeatable benchmark to 
compare results against reasonable baselines. For driving, CARLA or other simulators can be 
used as a benchmark to demonstrate shared autonomy and warnings systems. For the robotics 
domains, simulation environments should include standard environments and simulators, to be 
specified in the proposals. 

8.41 LEARNED REPRESENTATIONS FOR 3D OBJECT DETECTION 
TRI Researcher: Rares Ambrus 
Email Address: Rares.Ambrus@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 
The aim of this project is to push the boundaries of 3D object detection in the case of imperfect 
data, and learn representations that can model and identify the underlying surface with increased 
robustness. Specifically we would like to develop representations that are robust to missing data 
(e.g. black cars or rain), sparse(r) data (e.g. a 4-beam lidar vs a 64-beam lidar), different sensing 
modalities (e.g. Velodyne vs Luminar vs depth-from-images). Additionally, we would like to 
close the loop between sensing and detection, i.e. our representations should not only be robust 
to imperfect data but ideally also be able to feedback and correct the raw data itself (e.g. depth 
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completion). Finally, by better modeling the underlying structure, we will also enable knowledge 
transfer between domains (indoor, outdoor, night, day, different cities) or across sensors (lidar, 
depth-from-images, radar). 
 
Why do we care? 
3D object detection from Lidar data has seen significant progress in recent years both at the 
fundamental level: points as unordered sets, uneven sampling, part decomposition, finding 
correspondences; as well as at the implementation level (real-time lidar detector). Our aim in this 
project is to further improve upon the state-of-the-art and tackle situations (i) where our sensors 
perform poorly (e.g. when dealing with reflective surfaces or during rain), (ii) when only sparse 
data is available and (iii) when different sensing modalities are available. The methods developed 
will also expand our understanding of what is needed for successful 3D object detection in 
challenging situations, as well as how to leverage experience from other domains (e.g. indoor) or 
sensors (e.g. sparse to dense lidar) to improve performance.  
 
Technical Problem Statement 
In order to increase the robustness and applicability of current 3D object detectors, TRI is 
interested in: 

• Increasing the robustness of current detectors in challenging situations (e.g. rain), when 
the noise characteristics perform differently that under nominal conditions 

• Developing  approaches for dealing with sparse data (e.g. a 4-beam lidar vs a 64-beam 
lidar)  

• Leveraging cross-domain and cross-sensor data to bootstrap learning and improve 
performance.  

8.42 PRACTICAL DEEP LEARNING THEORY FOR GENERALIZATION IN THE 
LONG TAIL 

TRI Researcher: Adrien Gaidon, Nikos Arechiga 
Email Address: Adrien.Gaidon@tri.global, Nikos.Arechiga@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 

• Develop theoretical understanding of Deep Learning generalization under real-world 
data distributions, in particular in the long tail regime (i.e. few frequent cases, many rare 
cases). 

• Derive practical algorithms from the theory to improve empirical generalization 
performance in real-world datasets (imbalanced, biased, noisy, etc). 

Why do we care? 
Understanding generalization is currently one of the main pursuits in Machine Learning, because 
previous mathematical tools are not explaining observed behavior of modern deep neural 
networks (cf. Ben Recht's work, best paper at ICLR'17, and NeurIPS'19 best paper award on the 
inadequacy of uniform convergence as a tool to understand generalization). This is a big problem 
in safety critical applications like Automated Driving or Robotics, where currently there is no 
guarantee that a deep net will perform as expected after deployment, even in the same 
environment as the training one, especially on rare events. Getting a more solid understanding 
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(under real-world assumptions) will enable to lessen the better on physical and statistical testing, 
which are the biggest bottleneck to deploying ML models at scale for automated driving. 
Furthermore, improving theoretical understanding typically results in new practical algorithms 
and breakthroughs (cf. our NeurIPS'19 paper with Tengyu Ma at Stanford 
https://papers.nips.cc/paper/8435-learning-imbalanced-datasets-with-label-distribution-
aware-margin-loss). In addition, theoretical understanding of generalization performance under 
real-world data distributions will also enable better uncertainty modeling, especially to 
characterize when a model is "out of domain" and hence should not be trusted. Finally, 
understanding generalization is key to developing data-efficient ML algorithms that can reduce 
the cost of collecting human labels and improve the prediction accuracy of TRI products. Vision 
models on autonomous cars have to generalize quickly to rare events (e.g., animal crossing or 
children running on the road to catch a ball) and new environments (e.g., a small town in rural 
areas) without much human supervision. Understanding the rare events is critical for safety 
features on the cars, especially for scalable self- or semi-supervised models. 
 
Technical problem statement 
We aim to develop principled large-scale ML algorithms that can a) train faster and generalize 
better, b) generalize better in the heavy tail of the data including in noisy or partially labeled 
scenarios, and c) transfer to new domains with fewer labeled examples. 

8.43 SCALABLE SELF-SUPERVISED LEARNING FOR 3D SCENE 
UNDERSTANDING 

TRI Researcher: Vitor Guizilini,Adrien Gaidon, Rares Ambrus 
Email Address: Vitor.Guizilini@tri.global, Adrien.Gaidon@tri.global, 

Rares.Ambrus@tri.global  
TRI Thrust:  Driving 
 
Technical problem statement 
Self-supervised learning is key for scalability, since it allows models to be trained with raw input 
data, without the need for ground-truth information of any kind. This is achieved by introducing 
priors that are inherent to the input data itself, and by learning to produce models capable of 
operating under these constraints the task at hand is solved as a by-product. This is the case with 
monocular depth estimation, where a single image is used as input and a depth map is generated 
as output. Even though this is an inherently ambiguous and ill-posed problem (the same image 
could have infinite possible depth maps), recent progresses in deep learning have shown that it 
is possible to recover accurate depth information from single images with unprecedented levels 
of details. 
 
Furthermore, new developments are rapidly surfacing, and cameras are becoming a viable 
alternative to more expensive and power-consuming LiDAR sensors. Decreasing this gap, by 
leveraging the unique and attractive properties of monocular imagery (i.e. ubiquity, portability, 
ease of access, high frame-rate, high resolution, etc.) will be key in bridging the gap between 
camera and LiDAR information. One of these unique and attractive properties, ubiquity, enables 
training at massive scale, using information from any visual sensor, however most models 
currently available in the literature are developed with a single camera sensor in mind, and 
trained using information from that single sensor. Once training is done, the learned features are 
transferred via fine-tuning on different camera configurations, but this comes at the expense of 
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"forgetting" the old configuration. Recent works have started to introspect what is actually being 
learned inside depth networks, and there is a strong geometric prior embedded in the network 
(which is to be expected, since the self-supervision uses strong geometric cues in the training 
stage). This geometric prior includes parameters such as camera intrinsics/extrinsics, which 
cannot be easily transferred between different datasets. A few works, e.g. Angelova et al., aim to 
learn from video sequences without such information, by also learning the camera intrinsics, 
however we believe this is not the case in most real applications, where the intrinsics is actually 
known, but it changes between frames. 
 
What do you want to do? 
Our goal with this project is to increase the scalability of TRI's in-house self-supervised learning 
algorithms, particularly for monocular depth estimation. This will be done with the development 
of camera-agnostic algorithms, that are capable of producing accurate depth estimates regardless 
of which camera configuration is being used. The generation of such algorithms will have the 
following effects: 

• Take scalability to the next level, allowing not only training on massive amounts of data 
from a single camera configuration (i.e. intrinsics + extrinsics) but on data from any 
vehicle in any condition. 

• Enable 360 monocular depth estimation with the same model. The alternative right now 
is to learn individual models for each camera, which is very costly memory-wise, since 
all models have to be stored at the same time, and decreases the amount of data 
available for each model to learn from. 

• Leverage our large amounts of unlabeled data, which will play a crucial role in the first 
stages of the project, since in a virtual environment it is possible to easily modify and 
benchmark the performance of various algorithms for different camera configurations. 

• Camera-agnostic algorithms can also be seen as a form of domain adaptation (a 
geometric one), and overcoming that challenge could be one more step towards training 
in one scenario and testing in another (i.e. virtual vs real or United States vs Japan). 

Why do we care? 
Toyota is currently investing heavily in 3D object detection algorithms for autonomous driving. 
While these will be initially LiDAR-based, there is interest in extending these algorithms to also 
be vision-based, due to economic factors, inherent limitations in LiDAR (i.e. poor environment 
conditions, such as rain), Toyota's current data advantage (short and mid-term) lying in massive 
amounts of monocular video data (e.g., from tens of millions of cars with TSS3), and to enable 
robust sensor fusion. Depth estimation is the key component required to lift 2D images to 3D, 
and therefore any improvements in depth estimation will translate to better 3D representations 
of the environment, that will in turn lead to better vision-based 3D object detection results. Within 
depth estimation, TRI has chosen self-supervised monocular learning because it can leverage all 
the data it collects at training time, and has shown in recent published work that increasing the 
amount of training data indeed leads to better models, to the point where self-supervision is on-
par with fully supervised methods, even though it operates on a much more challenging scenario. 
In order to continue in this direction and further increase scalability, camera-agnostic algorithms 
are a natural choice, since they would: 

• Truly allow the use of all available video sequences (TRI or otherwise), regardless of 
vehicle and relative position. 



• Enable 360 training and inference, which would make the resulting vision-based 
pointclouds closer to the LiDAR configuration. 

• Lead to high-quality publications in top scientific venues, since this is a very sought-
after topic with competitive leaderboards that are used to communicate scientific and 
technical leadership. 

8.44 LEARNING SCENE GRAPHS FOR COMPOSITIONAL VISUAL REASONING 
TRI Researcher: Adrien Gaidon, Rares Ambrus, Kuan Lee 
Email Address: Adrien.Gaidon@tri.global, Rares.Ambrus@tri.global, Kuan.Lee@tri.global  
TRI Thrust:  Driving 
 
What do you want to try to do? 
The aim of this project is to combine scene graph representations with deep learning methods to 
improve visual reasoning. Scene Graphs represent scenes as directed graphs, where nodes are 
objects and edges give relationships between objects. Graph convolutional networks represent a 
new class of operations that pass information along graph edges. We need methods that can 
predict and reason over scene graph representations over large scale (potentially novel and 
unmapped) environments for fast adaptation. Using this symbolic representation, we can model 
state transitions (e.g. planning prediction or planning), reason about realism (e.g. does it make 
sense that we have detected a car floating above the ground?), as well as generate synthetic data 
given a particular symbolic representation of the environment (e.g. generate realistic images 
containing two cars at an intersection). 
 
Why do we care? 
For safe and smooth navigation while driving, humans take important and intuitive decisions. 
These decisions are the result of sequences of actions and interactions with others in the scene. 
Human drivers perceive the scene and anticipate the driving conditions so that they can make 
decisions for next steps. However, machine vision is only a single (faulty) component and it 
requires higher complexity of visual reasoning for proper scene-level analysis. For autonomous 
driving applications, accurate scene analysis benefits not only perception, but also all further 
downstream tasks such as planning and control. Finally, a structured representation enables 
causal reasoning, principled uncertainty propagation, and faster adaptation to new scenarios and 
environments by leveraging higher order perceptual abstractions and their relations. 
 
Technical problem statement 
Given the large amounts of data collected by TRI, we are interested in learning symbolic 
representations that are structured and probabilistic, allowing us to reason under uncertainty 
about scenes at a high level that is interpretable. Leveraging these representations, we aim to (i) 
validate current models about the environment online; (ii) decompose dense scene 
representations (e.g. images or point clouds) into a key set of actors and interactions which would 
facilitate prediction and planning; (iii) generate synthetic scenes that can be used to validate our 
models. 
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8.45 SELF-SUPERVISED COMPOSITIONAL REPRESENTATION LEARNING OF 
VIDEOS 

TRI Researcher: Adrien Gaidon 
Email Address: Adrien.Gaidon@tri.global  
TRI Thrust:  Driving 
 
What do you want to try to do? 
Despite the large progress in many areas of computer vision due to adoption of deep learning, 
applying these techniques in the wild remains a challenge. One of the main hurdles is the fact 
that deep learning approaches are data-hungry, and the distribution of concepts in the world is 
inherently long-tailed. That is, only a few categories are frequent, and the others are increasingly 
rare. This problem is especially severe in the domain of videos, where the data is more expensive 
to obtain, and the distributions are even more skewed. We propose to address this issue by 
learning compositional video representations that don’t treat video as uniform spatio-temporal 
volumes of pixels, but instead represent them as in a highly-semantic space of objects and 
interactions. 
 
Why do we care? 
The problem of recognizing rare scenarios in videos is central to the domain of self-driving 
vehicles. Indeed, most of the road scenarios can be easily handled by existing solutions, it’s the 
0.01% percent of rare events, such as never before seen object appearing on the road, or 
unexpected maneuvers of other agents, which prevent the broad adoption of these systems. And 
it’s precisely the rare nature of these events that does not allow simply collecting large amounts 
of training data for them. It is thus crucial to develop novel representations that are capable of 
generalization to unseen examples in videos from a few or no examples. 
 
Technical problem statement 
Existing video representations naively extend deep architectures for image recognition to the 
video domain by treating videos as spatio-temporal volumes of pixels. This approach naturally 
requires large amounts of training data for representation learning, since it has to discover all the 
important information for understanding videos, from notions of object and categories to the 
types of interactions between them, from scratch. We propose to instead directly model videos as 
combinations of objects and interactions, learned on existing images and video datasets. This 
would greatly reduce the hypothesis space for recognizing higher-level semantic concepts in 
videos, thus increasing generalization abilities of the model. 
 
Some of the most relevant papers that are publicly available: 

• http://openaccess.thecvf.com/content_ICCV_2019/papers/Tokmakov_Learning_Com
positional_Representations_for_Few-Shot_Recognition_ICCV_2019_paper.pdf 

• http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_A_Structured_Mod
el_for_Action_Detection_CVPR_2019_paper.pdf 

• http://openaccess.thecvf.com/content_ICCVW_2019/papers/HVU/Dave_Towards_Se
gmenting_Anything_That_Moves_ICCVW_2019_paper.pdf 

• http://openaccess.thecvf.com/content_ICCV_2019/papers/Wang_Meta-
Learning_to_Detect_Rare_Objects_ICCV_2019_paper.pdf 
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8.46 INTERACTION-AWARE CONTROL FOR CARS THAT ANTICIPATE AND 
EXPLAIN COMPLEX ENVIRONMENTS 

TRI Researcher: Adrien Gaidon, Guy Rosman, Allan Raventos 
Email Address: Adrien.Gaidon@tri.global, Guy.Rosman@tri.global, 

Allan.Raventos@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 
Estimate, from large scale demonstrations, human-robot interaction models that can robustly 
predict and explain human actions and reactions to automated cars in challenging driving 
scenarios. 
 
Why do we care? 
An essential component for interaction with autonomous cars is learning a predictive model of 
human behavior through collected data. However, today’s techniques usually learn human 
models that are trained on a small collected dataset hence are not guaranteed to be accurate in all 
scenarios. Ideally, the decision-making capabilities of autonomous agents must be robust to 
potential flaws in the learned human model in order to guarantee successful objective completion. 
 
Technical problem statement 
Typically, the problem of modeling human driving behavior is addressed as an inverse 
reinforcement learning (IRL) problem. However, these techniques are developed based on the 
assumption of collecting expert trajectories and are prone to challenging scenarios not present in 
the training data. In this proposal, we first plan to study the robustness of these learned models, 
generate other structures and models that explain the novel scenarios, and then automatically 
generate test cases that find these novel scenarios. There are three key research directions: 

• robustness analysis of learned human models; 
• explainable modeling of human driving behavior in complex scenarios; 
• generating scenarios with risky learned human models. 

8.47 PHYSICAL AND FUNCTIONAL INDUCTIVE BIASES FOR VISUAL 
REPRESENTATION LEARNING 

TRI Researcher: Adrien Gaidon, Wadim Kehl 
Email Address: Adrien.Gaidon@tri.global, Wadim.Kehl@tri.global  
TRI Thrust:  Driving 
 
What do you want to do? 
Driving scenarios are rich and diverse, yet follow very rigorous assumptions about the general 
scene layout in terms of environment and physical actors. We want to leverage inductive biases 
rooted in physics and geometry to allow us to extrapolate structured prior knowledge to unseen 
scenarios. From this, our goal is to factorize the scene into separable, parametric entities such as 
cars, drivable surface, people, vegetation and man-made structures such as lane markings, poles 
and buildings. 
 
Why do we care? 
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Supervised learning via manual labeling does not scale to large amounts of data. In order to 
leverage petabytes of raw sensory data, we must instead find ways to inject into the learning 
process information about the world that we know to hold true in generality such as gravity, 
object permanence, or the physics of light travel. This is required to perform automatic scene 
analysis/decomposition that would enable mining for rare events/scenarios, as well as 
promising paths towards resynthesizing novel scenes (e.g. American roads with Japanese cars) 
to create rich simulation from our data or check for robustness of our ML models. Furthermore, 
such decompositions could be used for HD map building, congestion and traffic flow analysis 
etc. 
 
Technical problem statement 
Provided with many driving logs that include sensory information, we would like to find the 
physical and functional inductive biases (i.e. priors or regularizers) that can help learning in a 
self- or semi-supervised setting. 
 

8.48 EFFICIENT PERCEPTION FROM VIDEOS AT SCALE FOR AUTONOMOUS 
DRIVING 

TRI Researcher: Sudeep Pillai, Quincy Chen, Chao Fang Allan Raventos  
Email Address: sudeep.pillai@tri.global, quincy.chen@tri.global, chao.fang@tri.global, 

allan.raventos@tri.global 
Thrust:  Driving 
 
What do you want to try to do? 
Automated vehicle fleets today typically collect PBs of data on a weekly basis, and are expected 
to significantly grow in the upcoming years. While typical autonomous vehicle platforms collect 
data from multiple sensors (LiDAR, Radar, Camera, CAN bus, GPS/INS etc), video data 
accounts for more than 50% of the total data collected in these systems. In order for Toyota to 
truly take advantage of its “Data Advantage,” we need to be able to build and leverage efficient 
tools for video processing in order to query and learn from our autonomous vehicle fleets in a 
scalable manner. More specifically, we would like to build tools for efficient computation, 
indexing and querying of content in videos collected by autonomous vehicle fleets. 
  
Why do we care? 
A unique advantage of Toyota as #1 automobile manufacturer is that we will soon have access 
to “Toyota-scale” sensory data that is order-of-magnitude larger than what our competitors 
have. This, however, imposes a unique challenge as well: As the fleet size grows, the volume of 
video data that needs to be processed will be challenging and especially expensive. In order to 
truly take advantage of the value of data collected by the Toyota fleet, we need to develop 
effective mechanisms to query video content in a large-scale fleet setting, and leverage this to 
efficiently learn from diverse scenarios/experience.  

8.49 PROGRAMMATICALLY BUILDING AND MANAGING TRAINING DATA 
FOR AUTONOMOUS DRIVING 

TRI Researcher: Sudeep Pillai, Allan Raventos, Quincy Chen, Chao Fang, Adrien Gaidon, 
Dennis Park 
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Email Address: sudeep.pillai@tri.global, allan.raventos@tri.global, quincy.chen@tri.global, 
chao.fang@tri.global, adrien.gaidon@tri.global, dennis.park@tri.global  

Thrust:  Driving 
 
What do you want to try to do? 
Automated driving solutions have mostly resorted to supervised learning as their primary 
mode for training of ML models for robust perception. As a consequence, the autonomous 
vehicle industry has been focused on amassing large volumes of labeled data to have a 
competitive edge in the deep-learning era. At TRI, we realize the need to go beyond supervised 
learning for automated driving, especially in computer vision problems that are seeing great 
progress with strong supervision today.  
 
The goal of this project is to identify and establish fundamentally novel methods to collecting, 
curating and managing training data for autonomous driving, specifically in order to motivate 
scientific efforts in semi-supervised, weakly-supervised and self-supervised learning. We 
believe that it is impractical for every sample collected by the fleet of Toyota vehicles to be 
labeled, especially due to the expensive labeling and growing compute costs. We envision that 
modern machine learning techniques will play an integral role in the programmatic generation 
and curation of autonomous driving training datasets that allow us to rapidly learn at scale 
from fleets of vehicles collecting experience.    
 
Why do we care? 
A unique advantage of Toyota as #1 automobile manufacturer is that we will soon have access 
to “Toyota-scale” sensory data that is order-of-magnitude larger than what our competitors 
have. This, however, imposes a unique challenge as well: manually labeling such data will 
quickly become infeasible. Therefore, developing new techniques in programmatically 
generating driving datasets to afford semi-supervised and weakly-supervised learning in a 
scalable manner will be critical for the success of Toyota’s autonomous driving efforts. 

8.50 BRIDGING PERCEPTION AND CONTROL WITH UNCERTAINTY 
MODELING 

TRI Researcher: Adrien Gaidon, Guy Rosman, Vitor Guizilini, Allan Raventos, Avinash 
Balachandran 
Email Address: Adrien.Gaidon@tri.global, Guy.Rosman@tri.global, 

Vitor.Guizilini@tri.global, Allan.Raventos@tri.global, 
Avinash.Balachandran@tri.global 

TRI Thrust:  Driving 

What do you want to do? 

Our goal with this project is to make progress towards learning from demonstrations how to 
optimize end-to-end a typical modular automated driving stack following the "3 P 
decomposition": perception, prediction, and planning. In contrast to end-to-end deep 
sensorimotor policies (e.g., pixels to steering), a modular architecture is more interpretable, 
testable, and robust, but its implementation typically results in an engineered system that is 
hard to tune in a data-driven way. A particularly important challenge is making the whole 
architecture probabilistic, i.e. learning how to model and propagate uncertainty from the input 
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sensory information all the way to the output controls via passing through all intermediate 
modules (that alter the uncertainty in complex non-linear ways). 

Why do we care? 

Uncertainty estimation is a key aspect of decision-making. A model should be aware of its own 
limitations, be it due to the lack of training data, architectural shortcomings or unforeseen 
circumstances, and the ability to determine how much its own predictions should be trusted is 
highly valuable, as the basis for sensor fusion, planning and control. The introduction of 
uncertainty in deep learning, particularly in a fully differentiable way, is an open research 
problem. While classical methods (i.e. Gaussian Processes, Kalman Filters) have solid statistical 
foundations, large-scale learning via deep neural networks still lacks this capability, despite 
their overwhelming success in addressing a multitude of different tasks. The development of 
uncertainty-aware deep models would bridge the gap between perception and planning and 
control. 

Furthermore, TRI has a suite of sensors capable of performing similar tasks (i.e. localization via 
mapping and perception, depth estimation via LiDAR and monocular imagery), and the 
introduction of uncertainty estimates would also allow principled fusion between different 
modalities, including redundancy and complementing each sensor's shortcomings. 
Additionally, such systems would enable improving the whole system with data, without 
having to optimize intermediate surrogate objectives that might be a poor proxy for the desired 
behavior of the system. 

Technical problem statement 

Our overarching goal here is to bridge the gap between perception and control with a learning 
algorithm that scales with data (in particular demonstrations). Handling constraints, modeling 
uncertainty end-to-end, causality, and generalization are key concerns that are hard to integrate 
in current methods. 

8.51 INTERACTION-AWARE CONTROL FOR CARS THAT ANTICIPATE AND 
EXPLAIN COMPLEX ENVIRONMENTS 

TRI Researcher: Adrien Gaidon, Guy Rosman, Allan Raventos 
Email Address: Adrien.Gaidon@tri.global, Guy.Rosman@tri.global, 
Allan.Raventos@tri.global 
TRI Thrust:  Driving 
 
What do you want to do? 
Estimate, from large scale demonstrations, human-robot interaction models that can robustly 
predict and explain human actions and reactions to automated cars in challenging driving 
scenarios. 
 
Why do we care? 
An essential component for interaction with autonomous cars is learning a predictive model of 
human behavior through collected data. However, today’s techniques usually learn human 
models that are trained on a small collected dataset hence are not guaranteed to be accurate in 
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all scenarios. Ideally, the decision-making capabilities of autonomous agents must be robust to 
potential flaws in the learned human model in order to guarantee successful objective 
completion. 
 
Technical problem statement 
Typically, the problem of modeling human driving behavior is addressed as an inverse 
reinforcement learning (IRL) problem. However, these techniques are developed based on the 
assumption of collecting expert trajectories and are prone to challenging scenarios not present 
in the training data. In this proposal, we first plan to study the robustness of these learned 
models, generate other structures and models that explain the novel scenarios, and then 
automatically generate test cases that find these novel scenarios. There are three key research 
directions: 

• robustness analysis of learned human models; 
• explainable modeling of human driving behavior in complex scenarios; 
• generating scenarios with risky learned human models. 

8.52 META-LEARNING AND INVERSE REINFORCEMENT LEARNING FROM 
LARGE SCALE DEMONSTRATIONS 

TRI Researcher: Adrien Gaidon, Dennis Park 
Email Address: Adrien.Gaidon@tri.global, Dennis.Park@tri.global  
TRI Thrust:  Driving 
 
What do you want to try to do? 
Develop robust meta-learning algorithms (including meta inverse reinforcement learning) to 
leverage large scale driving demonstrations to quickly adapt models of a modular automated 
driving stack (perception, prediction, planning) to new environments or new driving tasks (e.g., 
changes in the ontology, new driving maneuvers). 
 
Why do we care? 
Learning good features or cost functions is key to the performance of ML models. This typically 
requires a lot of data for each task at hand. Meta-learning is a nascent set of techniques showing 
great promise towards learning general models that can be quickly adapted with little 
additional data, hence making adaptation cost effective. 
 
Technical problem statement 
Meta-learning for perception and prediction: learning to quickly learn to detect new object 
categories (few shots learning), predict new types of behaviors or specialize prediction models 
for finer-grained agent categories (i.e. conditioning on finer-grained semantics). 
Meta-IRL for planning: learning general cost functions that can be quickly specialized for 
specialized maneuvers (e.g., zip-merges, unprotected left turns, etc). 
 

8.53 TOWARDS LARGE SCALE EFFICIENT AND ROBUST MACHINE 
LEARNING SYSTEMS 

TRI Researcher: Chao Fang, Quincy Chen 
Email Address: Chao.Fang@tri.global, Quincy.Chen@tri.global  
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TRI Thrust:  Driving 

What do you want to do? 

Our goal of this project is to develop a large-scale ML training system which can leverage Peta 
size of data and scalable to thousands of GPUs. Typically model learning with large system 
trade off accuracy with speed. To this end, we propose two different directions to solve the 
problem: 1) design a good optimizer that could scale the model training without significantly 
losing accuracy, and 2) Optimized ML models that are more scalable to be trained with large 
training system. Desired deliverables of this project would include but are not limited to the 
following: 

• New optimizers for large batch training.  
• Auto learning-rate tuning. 
• ML models optimized for large scale training. 

Why do we care? 

The amount of data to training data scale very fast for machine learning models particularly for 
Autonomous Vehicle applications. Training such models in a short time required a large ML 
system that could take advantage of the massive parallel computing. 

Research in this domain provide a solid base for scaling up any machine learning models. It will 
fundamentally increase the capability of model to production for Toyota. 

Technical problem statement 

Neural networks have achieved great success in improving various computer vision tasks. 
However, these models are large in size, difficult to train, and slow in inference. Furthermore, it 
has been reported that these models are not robust to small perturbation – even though a near-
perfect performance can be achieved on training data, it is often the case that the prediction will 
drop to chance level under small input perturbation. In this proposal, we aim to improve the 
training and inference speed of large machine learning models, and propose ways to make 
machine learning models more robust. We will apply the developed algorithms to several 
computer vision tasks, including image recognition, detection, 3D reconstruction and scene 
understanding models. 

1 Efficient Large-scale Training 

The past several years have seen tremendous growth in both the volume of data and the size of 
models. For example, a driving data-set in Toyota scale could soon reach multi-millions of 
images and hundreds of thousands of scenes. Progressed in self-supervised training also 
making large dataset more accessible to ML models. As a result, the long training time of Deep 
Neural Networks (DNNs) has become a bottleneck for Machine Learning (ML) researchers and 
developers. For example, it takes 29 hours to finish 90-epoch ImageNet/ResNet-50 training on 
eight P100 GPUs, and 81 hours to finish BERT pre-training on 16 v3 TPU chips. To speed up the 
training pipeline, we plan to investigate the following research topics: 



• New optimizers for large batch training. Although companies are willing to speed up 
training using tens or hundreds of GPUs, the current SGD-based optimizers fail to fully 
utilize those computation resources since they usually converge to suboptimal solution 
under large batch size. Taking ResNet training on ImageNet as an example, when scaling 
the SGD batch size to 64K, the test accuracy of con-verged solution will drop from 76% to 
66%. Thus a new optimizer is required for efficient training with multiple GPUs. Our 
previous works showed that a layer-wise step size is crucial for large batch train-ing. The 
proposed LARS algorithm can successfully train ResNet on ImageNet within 15 minutes 
[11], and the proposed LAMB algorithm (a variation of Adam) can train BERT in 76 
minutes [12]. These algorithms have been used to achieve state-of-the-art models in large-
scale. However, the performance of LARS and LAMB will still degrade when the batch 
size reaches certain level, so in the future we plan to develop better optimizers for large 
batch training. One idea is that the layer-wise LR for LARS and LABM are actually related 
to second order information, so in the future we will study how to formally utilize second 
order information for optimizing large-scale neural networks. Of course, full second or-
der information will be too slow to use but we plan to exploit partial second order 
information, such as (layer-wise) Barzilai-Borwein learning rate or using sub-sampled 
Gauss-Newton or Fisher information matrix to approximate the second order 
information, in order to develop better optimization algorithms for large batch training. 

Furthermore, currently most of the large batch training experiments are conducted on 
ImageNet classification data. We will investigate large-batch training methods for other 
computer vision models, including detection models for images and videos. 
Furthermore, we will investigate large-batch training for model distillation and 
architecture search. 

• Auto learning-rate tuning.  In addition to the update rule, it has been observed that the 
performance of training highly depends on learning-rate scheduling. In addition to the 
standard decaying schedule, many other techniques have been designed including the 
warm-up scheduling and the cyclic scheduling [8]. In practice, a significant amount of 
engineering efforts have been spending on learning rate tuning. We propose to study a 
new family of automatic learning rate tuning procedure to remove human in the 
training loop. The main idea is to formulate learning rate scheduling as another learning 
problem and apply techniques such as reinforcement learning or Monte-Carlo Tree 
Search (MCTS) to automatically find a good scheduling that leads to superior 
generalization error. 

2 Efficient inference and on-device computing 

Currently, many complex and deep models cannot be deployed on real world systems due to 
their large model size and slow inference speed. Our second goal is to resolve these problems. 
More specifically, we consider the following directions: 

• Fast inference with large output space.  For models with large output space, such as multi-
class prediction with tens of thousands of labels or other structural prediction tasks, the 
bottleneck of inference time is usually on the final layer of neural network. This mainly 
involves the operation of Maximum Inner Product Search (MIPS) – given a query vector 



v, find the vector from a large database that has maximum inner product with v. To deal 
with this, our group has proposed state-of-the-art algorithms [13]. To further improve the 
speed of this part, we propose two novel future directions. First, notice that previous MIPS 
algorithms are focusing on improving the worst-case performance under any given query, 
while in practice queries are usually semantic features extracted from input images 
instead of arbitrary vectors. Based on this insight, we will develop faster algorithms by 
exploiting data distribution. For instance, our recent work [1] has shown that in NLP 
applications, the semantic features often follow clustering structure, and by exploiting this 
structure our algorithm achieves significant speedup over existing methods. We will thus 
study how to extend this to various of computer vision tasks. 

• Architecture search for efficient structure. We also plan to develop efficient Neural 
Architecture Search (NAS) algorithms and apply them to get better network structure 
with smaller size and faster inference speed. Existing algorithms such as DARTS [5] 
constructs a differentiable search space and then optimizes it by gradient descent. 
However, DARTS is still slow as it updates an ensemble of all operations and keeps only 
one after convergence. Besides, DARTS can converge to inferior architectures due to the 
strong correlation among operations. We will investigate how to make NAS more 
efficient and convergence to better solution. To improve the efficiency of NAS, we 
propose to sparsify the operations such that for each edge in the computation graph, 
only one or few operations need to be computed in forward and backward 
computations. This will require novel formulations with sparse regularization and new 
solvers for solving this. Furthermore, to make NAS converges to a better architecture 
instead of stuck at local minimums, we propose a new framework to combine Bayesian 
optimization with existing iterative solvers (such as DARTS) to get improved solution 
without much more effort. 

3 Improving the robustness of machine learning models 

Although neural networks have achieved remarkable performance, it has been shown recently 
that a small adversarial or non-adversarial perturbation can easily lead to significantly 
degraded performance of state-of-the-art models. This finding indicates lacking of robustness of 
machine learning models and creates safety concerns in many real world applications, such as 
aircraft control systems and self-driving cars, and leads to the following questions: How to 
characterize the robustness of machine learning models? and how to make them more robust 

To answer the first question, we plan to develop algorithms to formally verify the robustness of 
machine learning models. This has been identified as an important task for safety-critical 
systems, such as aircraft control systems [4, 3]. Mathematically, a verification algorithm aims to 
provably characterize the prediction function of a network within some specified region of the 
input space. For example, within a prescribed region of the input one may wish to provide 
simple (e.g., affine) upper and lower bounds of the network output. However, due to the 
complicated interactions of the nonlinearities in deep networks it is often NP-hard to compute 
these piecewise regions and corresponding linear/affine bounds exactly. To tackle this problem, 
several recent algorithms have been proposed [2, 7, 10] (including some seminal works from our 
group [9, 14]), obtain an approximate solution by relaxing the non-linearities in the network. 
Unfortunately, the bounds computed by current approaches are often not tight enough for real 
applications, and furthermore, current methods are exclusively focusing on feedforward ReLU 



networks and have difficulties extending to more general network structures such as residual 
links and attention layers. We thus propose to tackle these problems to enable neural network 
verification for general network structures and perturbation models. 

For the second question, making neural networks more robust has become one of the most 
important research topics in machine learning. Currently there are two successful ways for 
defense: adversarial training and randomization. Adversarial training aims to minimize the 
robust error of neural network instead of clean error, where the robust error can be computed 
by either adversarial attack or verification. Randomization improves the robustness through 
smoothing out the prediction in a neighborhood. Some of our previous works have explored 
both of these techniques [6, 15], and we will develop several algorithms to improve over 
existing approaches, including stratified adversarial training (learn better weighting for each 
sample in adversarial training), random smoothing with learned optimal distribution, and 
designing robust architectures. Furthermore, we will investigate how to distill the knowledge 
learned by non-robust networks into robust structures (such as decision trees) which will 
improve both robustness and inference speed. 
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9 TOPICS:  ROBOTICS 

9.1 DISTRIBUTIONAL ROBUSTNESS FOR OPEN-WORLD MANIPULATION 
TRI Researcher: Russ Tedrake, Hongkai Dai, Andres Valenzuela 
Email Address: Russ.Tedrake@tri.global, Hongkai.Dai@tri.global, 

Andres.Valenzuela@tri.global  
TRI Thrust:  Robotics 
 
TRI has been developing advanced manipulation capabilities for tasks requiring complex 
perception, planning, and control.  One example of this that we have made public is a robot 
loading the dishwasher.  We are interested in proposals that can address the fundamentally 
hard problems in making these systems robust.  Let us say that we have run some number of 
experiments in the lab and we have run many more experiments in simulation… what can we 
say about the expected performance if we go to deploy the system in a new environment?  How 
do we provide test coverage for every possible kitchen? 
 
“Trustworthy AI” and “verification of machine learning components” are hot topics in research 
today.  We are seeking proposals that address the particular challenges that become central in 
manipulation, and also the specific opportunities are enabled by the technology already under-
development at TRI. 
 
Some of the challenges central to manipulation include: 

• Rich contact interactions with the environment.  Unlike, e.g. the challenge of modeling 
other drivers for verifying autonomous driving, the rules of the game here are relatively 
known, but they are complicated (non-smooth mechanics, rich uncertainty models). 

• Complex building blocks.  Advanced manipulation systems today have deep networks 
for perception, sophisticated task-level planners (discrete) as well as sample-based or 
optimization-based motion planners (continuous), and low-level feedback controllers.  

• Distributions over environments.  How do we produce meaningful distributions?  How 
accurate do they need to be?  Is generalization theory and/or naive domain 
randomization sufficient to instill confidence?  What are the critical sources of 
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randomness/variability that must be included to establish robust performance in 
reality? 

 
There are also many opportunities.  TRI has developed a mature manipulation toolchain and 
has made many of the components available as open-source code.  We have a state-of-the-art 
dynamics engine that is capable of accurately simulating contact-rich interaction, and it is 
written in a framework that was built to support rigorous design and analysis (all state and all 
random variables are declared specifically; most components support autodiff and even 
symbolic analysis; our mathematical programming interface already supports interfacing with 
advanced optimization and SMT solvers).  We also have infrastructure for extensive hardware 
testing. 
 
We are particularly interested in proposals that can leverage and/or extend these open-source 
tools.  In addition to novel research ideas and publications, we encourage research that can be 
published as open-source code; we believe that this helps to build the community and also 
improves TRI’s ability to leverage your ideas and results.  

9.2 REAL-WORLD MANIPULATION 
TRI Researcher: Calder Phillips-Grafflin, Naveen Kuppuswamy, Russ Tedrake 
Email Address: Calder.Phillips-Grafflin@tri.global, naveen.kuppuswamy@tri.global, 

Russ.Tedrake@tri.global  
TRI Thrust:  Robotics 
The robotic systems developed at TRI incorporate state-of-the-art techniques in perception, 
planning, sensing, and simulation to perform limited domestic tasks with some level of 
robustness; our robot loading the dishwasher is one example. In each of these areas, applying 
our systems to new real-world tasks will require capabilities that are either insufficiently robust, 
underexplored, or as-yet unavailable.  

TRI would like to support research that tackles some of the most pressing challenges in real-
world manipulation for the home.  Topics of interest include: 

• Manipulating deformable items, such as clothing, food, and other household objects 

• Strategies that address high item variety and variance, where objects to be manipulated 
are not only too varied to be modelled a priori, but also variance between items of a 
given class or type is high enough to thwart existing approaches (ex. scan + model 
cleanup) 

• Highly cluttered environments, where clutter must be perceived and manipulated to 
accomplish the intended task 

• Uncertain or never-seen-before environments, where an existing model of the 
environment is unavailable or useless and the robot must develop its own model (both 
metric and semantic) of the environment and reason over its uncertain or unknown 
surroundings 

• Highly dexterous behaviors, such as in-hand manipulation or manipulating objects with 
complex dynamics 
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• Highly complex tasks, where task complexity and the need for robustness means that 
behaviors cannot be authored or taught by expert users but must be planned or 
synthesized automatically and must handle unexpected behavior during execution 

• Fault-tolerance and robustness, which requires that the limitations and corner cases of 
complex manipulation systems can be discovered automatically and improved 

• Fleet-wide lifelong learning, where multiple robots can learn from each others’ mistakes 
and grow in capability and robustness over time 

• Safe and efficient physical interaction with humans or cooperative human-robot tasks 

TRI is interested in proposals for new collaborations in which we can collaborate closely, 
sharing code and data and domain experience -- TRI’s manipulation effort can provide code 
maturity and a scale of hardware and software testing that is hard to match at a university.  We 
would like to find ways to test your ideas in our hardware benchmarks/experiments.   

Specifically, the tasks we seek to handle involve the following challenges: 

• Deformable items, such as clothing, food, and other household objects 

• Difficult-to-perceive items (such as glassware or liquids) and environments (highly 
reflective surfaces, variable lighting, or outdoors) 

• High item variety and variance, where objects to be manipulated are not only too varied 
to be modelled a priori, but also variance between items of a given class or type is high 
enough to thwart existing approaches (ex. scan + model cleanup) 

• Highly cluttered environments, where clutter must be perceived and manipulated to 
accomplish the intended task 

• Uncertain or never-seen-before environments, where an existing model of the 
environment is unavailable or useless and the robot must develop its own model of the 
environment and reason over its uncertain or unknown surroundings 

• Highly dexterous behaviors, such as in-hand manipulation or manipulating objects with 
complex dynamics 

• Highly complex tasks, where task complexity and the need for robustness means that 
behaviors cannot be authored or taught by expert users but must be planned or 
synthesized automatically and must handle unexpected behavior during execution 

• Fault-tolerance and robustness, which requires that the limitations and corner cases of 
complex manipulation systems can be discovered automatically and improved 

• Fleet-wide lifelong learning, where multiple robots can learn from each other’s mistakes 
and grow in capability and robustness over time 

• Safe and efficient physical interaction with humans or cooperative human-robot tasks 

9.3 ADVANCED PERCEPTION FOR HOME ROBOTS 
TRI Researcher: Duy-Nguyen Ta, Kunimatsu Hashimoto, Siyuan Feng 
Email Address: Duy@tri.global, Kunimatsu.Hashimoto@tri.global, 

Siyuan.Feng@tri.global  
TRI Thrust:  Robotics 
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TRI is interested in developing advanced manipulation capabilities for tasks requiring complex 
perception, planning, and control; our robot loading the dishwasher is one example.  Despite 
recent progress in object-based perception for manipulation, both in known-model and 
unknown-model (category-level) cases, current state-of-the-art robotic systems fall short of 
dealing with the complexity of perception in the home environment.  TRI is interested in 
advanced research on scalable approaches to robot perception that can support robot 
manipulation in the home. 

What information is required from a perception system in order to support manipulation in a 
home environment?  Tasks like loading the dishwasher require enough semantic information to 
understand which rack to use in the washer, enough geometric information to know how to 
grasp the object, avoid collisions with the sink, and place it in the rack, but also enough 
understanding of the object to get the orientation in the rack correct.  How can we efficiently 
acquire these types of understanding for novel objects (perhaps with very minimal supervision 
from a human)?  Can we develop strategies that work for difficult-to-perceive items (such as 
glassware or liquids) and environments (highly reflective surfaces, variable lighting, or 
outdoors)?  Can we help robots understand the hierarchical semantics of object parts to enable 
more intelligent planning? Can we transfer structured knowledge from one class of objects to a 
novel class, instead of retraining from scratch?  Can the perception system reliably 
communicate its confidence or uncertainty about its current predictions in a format that can be 
consumed by downstream components in the manipulation stack?  Can we reliably track and 
predict the future of things that dynamically change over time under different control policies 
(such as deformable objects) to find the optimal policy that achieves the goal? How do we 
efficiently test / establish confidence in the system to the level of maturity that we would be 
willing to deploy it in a consumer’s home?  

TRI is interested in proposals for new collaborations with academic partners who can explore 
fundamentally new approaches to this difficult problem.  We are interested in models where we 
can collaborate closely, sharing code and data and domain experience -- TRI’s manipulation 
effort can provide code maturity and a scale of hardware and software testing that is hard to 
match at a university.  We would like to find ways to test your ideas in our hardware 
benchmarks/experiments.   

9.4 DEXTEROUS ROBOT HANDS 
TRI Researcher: Alex Alspach, Naveen Kuppuswamy, Avinash Uttamchandani 
Email Address: Alex.Alspach@tri.global, Naveen.Kuppuswamy@tri.global, 

Avinash.Uttamchandani@tri.global  
TRI Thrust:  Robotics 
 

At TRI, manipulation researchers have so far mostly stuck with parallel, off-the-shelf industrial 
grippers due to their reliability and toughness. We’ve been working around their limitations 
thus far, but as tasks and grasps become more complex, we realize the potential of having more 
sensing and dexterity at the end effector. We welcome proposals for research and development 
of a robust and dexterous robot hand with integrated high-fidelity sensing, designed for real-
world, everyday tasks. 
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Form and function - A parallel jaw gripper can be cleverly employed to perform dexterous tasks 
like rooting through a cluttered sink. Most researchers here at TRI have performed the 
entertaining experiment of wielding a parallel gripper for a day to see what it takes to complete 
everyday tasks with our robot’s limited end effector. One can get quite a bit done, but tasks take 
longer and stable grasps take effort.  

With dexterity a combination of hardware and software capabilities, we imagine a cohesive 
codesign of gripper topology, sensors and control, focusing on reliability/uptime, robust ability 
to manipulate human-made objects, features and tools (e.g. spatula, mug handle, scissors), 
ability to fit into tight spaces (e.g. cluttered sink, back of a well-stocked cabinet), dexterity (e.g. 
hand positioning via wrist, in-hand manipulation), and demonstrated capability for in-home 
manipulation tasks. 

Capabilities of interest include and are not limited to: 

• Robust manipulation of household objects in household situations 

• Motion/force transparent actuation 

• Torque/force controllability 

• Integrated tactile sensing 

• Normal and shear force estimation 

• Vibration and slip sensing 

• High-fidelity proprioception 

• In-hand pose estimation 

• Passive and active compliance and jamming 

• In-hand manipulation of smaller objects 

• Tying and other precision manipulation tasks 

• 5000+ hour uptime 

• Reliability and repairability 

• 10+kg payload 

• Ability to use human tools and spaces 

• Actuated, flexible wrists 

• A standard and extensible data bus (e.g. Ethernet, Ethercat) that allows for the hand to 
be used with a variety of robot arms. 

• Modularity between end effectors/fingers to allow for different configurations for 
different tasks 

9.5 ADVANCED SIMULATION CAPABILITIES FOR HOME ROBOTS 
TRI Researcher: Russ Tedrake, Michael Sherman, Alejandro Castro 
Email Address: Russ.Tedrake@tri.global, Sherm@tri.global, Alejandro.Castro@tri.global  
TRI Thrust:  Robotics 
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TRI has been developing advanced manipulation capabilities for tasks requiring complex 
perception, planning, and control.  One example of this that we have made public is a robot 
loading the dishwasher.  The development of these results has made extensive use of 
simulation; we have invested heavily in robust simulation of the complex mechanics of rigid 
and nearly rigid contact (c.f. [1]), on simulated perception for training our computer vision 
components, and on advanced algorithms using simulations to quantify and improve 
robustness.  But there are many aspects of the problem of robot manipulation for the home that 
we cannot yet capture in simulation.   
 
We welcome proposals for improving the scope of simulation-based design and analysis for 
home robots.  Relevant ideas include: 

• Content generation.  Even for (nearly) rigid objects, how do we capture the diversity of 
objects/scenes that we might find in the home?  What fidelity do these models need to 
have (public datasets typically do not include sufficient information to use models for 
both physical simulation and rendering)?  Often we use artists to “touch up” our art 
assets -- is there a way to automate this pipeline to dramatically improve its throughput?  
Must we solve the inverse rendering problem, or do you have specific proposals for 
avoiding it?  Can a robot equipped for manipulation tasks in the home autonomously 
generate new art assets for simulation (e.g. without bespoke scanning equipment)?  Do 
we need accurate material properties (e.g., BRDFs and friction coefficients), or can we 
overcome this with sufficient domain randomization?  

• Simulating non-rigid objects in the home, including soft, potentially thin deformable 
objects, (cloth/laundry, lettuce leaves, ..), liquids, noodles, plush toys, etc.  These models 
need not run at real-time to have value, but there is significant value in 
fast/approximate models which are sufficiently faithful to physics for robot software 
design and are also robust enough to withstand rigorous testing (e.g. with Monte-Carlo 
methods). 

• Simulation models that are more amenable to optimization / analysis.  Examples 
include a differentiable renderer that can capture the fidelity which we now better 
understand is required for sim2real transfer of perception, or even a symbolic rendering 
pipeline for formal analysis. 

 
We are specifically interested in integrating your best ideas for advanced simulation capabilities 
into our open-source dynamics engine, Drake (http://drake.mit.edu), and in building the open-
source community around Drake with expert users. 
 
[1] Ryan Elandt, Evan Drumwright, Michael Sherman, Andy Ruina. A pressure field model for 
fast, robust approximation of net contact force and moment between nominally rigid 
objects.  https://arxiv.org/abs/1904.11433 

9.6 COMBINING MECHANICS AND CONTROL WITH MACHINE LEARNING 
FOR MOBILE MANIPULATION 

TRI Researcher: Krishna Shankar 
Email Address: Krishna.Shankar@tri.global  
TRI Thrust:  Robotics 
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Technical Problem Statement 
How can we leverage machine-learning to combine classical techniques in mobile-manipulation 
to perform complex tasks in real environments? 
 
Why do we care 
We have a thorough understanding of mobile-manipulation in a classical sense. On the other 
hand, there is a small but growing field of work on using machine-learning for one-off mobile-
manipulation tasks end-to-end tasks. This newer work shows promise, but lacks the rigor, 
thoroughness or generality of prior work. We are looking for university partners to investigate 
the ‘glue’ between classical theory and modern learning approaches, with the belief that it is 
development in this interface that will allow us to build safe, useful and reliable mobile-
manipulation systems capable of helping us do everyday tasks in human environments. 
 
What do we want to do 
Combine learning with existing theory in the following areas: 

• Grasp/Cage Generation 
• Optimal task/trajectory planning for complex, contact rich manipulation 
• Whole-body task sequencing and planning 
• Task Planning with guarantees 
• Perception-based manipulation and control 
• Safe, efficient reinforcement-learning and adaptive control 
• Mechanism/Actuator design to enable novel mobile manipulation capabilities 

9.7 SPEECH, LANGUAGE, AND DIALOG WITH ROBOTS 
TRI Researcher: Thomas Kollar 
Email Address: Thomas.Kolar@tri.global 
TRI Thrust:  Robotics 
 
The fleet learning team aims to significantly advance the state of the art in mobile manipulation 
technology by demonstrating the technical feasibility of a general purpose mobile manipulation 
robot that dramatically improves the quality of life when performing household tasks. For 
robots to be able to work collaboratively with humans, they must be able to be controlled and 
commanded in a flexible and natural way and be able to respond to events in their 
environment. 
 
There are two primary goals of the fleet learning team that enable flexible and natural human-
robot interaction. The first goal is to develop the capability to interact with the robot via speech. 
A second goal is to develop the capability to detect events in audio. In addition, we would like 
robots to be able to learn how to perform tasks given natural language instructions, to respond 
to physically grounded questions, and to be able to generate natural language descriptions of 
their state. In support of these goals, we are looking for University 2.0 partners in the following 
areas: 

• Grounded speech and language understanding, such as connecting natural 
language commands and questions to complex task graphs, environment states, 
robot actions, and robot plans. 



• Dialog systems for physically grounded interactions, including anaphora 
resolution, semantic parsing, named entity resolution and intent recognition. 
End-to-end learning for grounded dialog systems. 

• Multi-modal teaching of objects, attributes, relations and tasks via speech 
interaction, natural language, gestures and other modalities. 

• Visual question answering - Enabling robots to answer questions about their 
current state or the state of the environment. In addition, enabling a robot to 
answer longitudinal questions about their environment (e.g., ”Where are my 
keys?”, ”Who came into the house today?”). 

• Enabling robots to collaboratively work with people in a household to perform a 
task, such as when executing a recipe. 

• Speech and audio event recognition in adverse environments, such as when fan 
noise, joint noise, robot motion, background speech are present. 

• Speaker recognition as a part of robotic tasks. For example, a task could involve 
only working with a specific person to achieve a goal. 

• Enabling robots to ask for input or help when they are uncertain of what action 
to perform. For example, a robot might confirm which object to manipulate when 
there are multiple objects of the same type present, or there are other 
environmental ambiguities. 

• Ontologies and representations for grounded natural language commands; 
semantic parsing of these representations. 

• The ability to describe robot and environment states with natural language. 
• End-to-end models that couple speech, natural language processing, dialog, and 

vision. 

9.8 LEVERAGING SIMULATION TO LEARN MANIPULATION BEHAVIORS IN 
HOME ENVIRONMENTS 

 
Toyota Research Institute (TRI) is focused on enabling mobile robots to provide in assistive care 
for the elderly. In order to do this, a robot must be capable of performing robust manipulation 
behaviors in unstructured home environments. One promising avenue to achieving this is 
through the use of simulation, in which a robot can be exposed to a large number of scenarios 
to train on. 
 
Recent results suggest that simulation can lead to quite robust manipulation 
performance in unseen settings. However, more work needs to be done to make simulation 
useful in the home environment. This research call is for addressing three challenges currently 
facing learning from simulation: State Representation, Simulation Quality and Error Detection. 
 
Challenge 1: State Representation 
Traditionally, most robotic manipulation behaviors operate on a 3D representation of the world, 
such as a depth images, point cloud or voxel map. While it has been shown that one can learn 
transferable policies using these representation in simulations, home environments present a 
novel challenge since everyday objects are reflective, shiny or transparent. Thus, 
representations to transfer learned perception form simulation, which require dense 3D 
information, may no longer be viable. We are interested in research to focus on new ways to 
transfer manipulation from simulation that require only spares 3D information. 



 
Challenge 2: Simulation Quality 
Given a reasonable state representation it's still unclear how accurate a simulator needs to be 
for learned manipulation behaviors to transfer. Since, there is an inherent trade-off between 
between having high quality simulation and the level of data diversity that can be generated. 
We are interested in better understanding and improving how well techniques like noise 
injection, or domain randomization, can enable robustness with low quality simulation. 
 
Challenge 3: Error Detection 
When learned behaviors are deployed in home setting it's important to understand when they 
are likely to fail, so that damage to the environment can be prevented. If a behavior is a learned 
policy it can be difficult to understand when the estimated parameters are invalid. New 
algorithms for efficiently detecting when the robot encounters an unknown state of the world 
and communicating this uncertainty to a human operator is of high interest to TRI 

9.9 TOWARDS REAL-TIME ROBOT AUTONOMY WITH HARDWARE-
ACCELERATED PARALLEL OPTIMIZATION 

TRI Researcher: Huihua Zhao 
Email Address: Huihua.Zhao@tri.global  
TRI Thrust:  Robotics 
 
Motivated by the increasing needs in autonomous robots, the emerging research focus is to 
significantly advance the computational performance of real-time motion planning of complex 
robotic systems, such as home service robots and autonomous driving. Specifically, this project 
will seek to develop massively parallel optimization algorithms and computing hardware to 
tackle the current computational bottleneck in the real-time trajectory optimization of high 
degree-of-freedom and highly dynamic robots, particularly those whose dynamics have 
dominant effects on planning responsive motions. 
 
Dynamics based motion planning methods can realize more agile behaviors, but the planning 
process requires an excessive amount of time and may not be able to converge reliably, and 
therefore, are only suitable for off-line planning. This has been a significant impediment toward 
applying these approaches to achieve dynamic maneuvers under complex environments or 
emergent scenarios. In a broader view, this is where the full-order dynamics-based approaches 
have had to pay the piper for its admissibility of highly dynamic behaviors. New approaches 
and platforms are needed to be explored and developed to solve these challenges in complex 
problems such as highly articulated legged and home service robotics. Despite recent 
achievements in the parallel computation, the motion planning problems are still too complex 
to fit on an efficient embedded platform to achieve real-time performance due to the large size 
and irregularities of the parallel threads in these optimization problems. 
 
To facilitate hardware parallelization, a rigorous mathematical framework of parallel 
computing structure for robot trajectory optimization problems will be formulated. By 
exploiting the structures of the optimization algorithms and the patterns of the numerical 
computation, we will create a new motion planning processor (MPP) architecture for this class 
of problems. We will design MPP hardware prototypes to demonstrate higher performance and 
better efficiency than what is available with commodity hardware. An MPP compiler will be 

mailto:Huihua.Zhao@tri.global


developed in conjunction with the MPP hardware to enable the seamless translation from a 
motion planning algorithm to an MPP hardware. The MPP hardware prototype will be capable 
of performing real-time dynamic motion planning for complex robotics systems, such as home 
service robots, and speeding up the whole-body dynamics-based motion planning by two 
orders of magnitude compared to the current state-of-the-art approaches, while taking a 
fraction of the size, weight, and power. Moreover, the proposed optimization algorithms and 
computing architectures can be broadly applicable to other robotic platforms. 

10 TOPICS:  MACHINE ASSISTED COGNITION (MAC) 
TRI Researcher: Fran Bell 
Email Address: Fran.Bell@tri.global  
TRI Thrust:  MAC 
 
TRI recently created a new research thrust on Machine Assisted Cognition (MAC), adding to 
the research thrusts on Automated Driving, Home Robotics, and Accelerated Materials Design 
and Discovery.  TRI is in the process of hiring a group of researchers and establishing a new 
research agenda.  The specific goals for the year ahead will not be settled until the leadership of 
the group has been hired.   
 
The goal of the MAC program is to develop and demonstrate computational aids to amplify 
and augment human cognitive abilities.  By computational aids we mean AI-powered software 
systems that directly assist users with tasks requiring careful, deliberate thought.  Cognitive 
abilities of interest include prediction, judgment, and decision making and exclude memory 
and search.  By “amplify and augment” we mean not to imitate or replace human abilities; 
instead, the goal is to leverage and extend them. 
 
Technical objectives of the MAC program include the following: 

1. Increase quality of predictions, judgments, and decisions by (a) Neutralizing biases, (b) 
Ensuring fitness, and (c) Ensuring ethics 

2. Speed up predictions, judgments, and decisions  
3. Scale up to more complex cognitive tasks and larger groups while countering the 

tendency of groups to be risk averse 
 
The MAC approach is interdisciplinary, including both analytical disciplines (computer science, 
statistics, data science) and behavioral disciplines (psychology, cognitive science, behavioral 
economics). 
 
To achieve Technical Objective 1, the MAC program seeks to develop new algorithms for 
human-aware AI, and to demonstrate AI systems that augment human mental capabilities.  
Topics of interest include the following: 

• Model and predict human behavior 
• Detect when the user is vulnerable to a cognitive bias, and “nudge” them toward a 

better outcome 
• Assist the user in recalling past experiences applicable to the user’s current situation 
• Model how people make tradeoffs 
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• Model and predict consumer behavior; for example, in purchasing cars versus trucks or 
in attitudes toward electric vehicles 

• Model how people perform selected cognitive tasks; for example, learning generalized 
value functions 

• Assess user fitness for making predictions, judgments, and decisions; for example, infer 
user state through physiological measurements 

• Given a low state of fitness for optimal performance on cognitive tasks, provide 
feedback to the user on how to improve fitness 

• Reason about the consistency of predictions, judgments, or decisions with ethical 
principles and core values, and provide feedback to the user in cases of inferred ethical 
violations  

• Achieve effective interactions between humans and AI systems by ensuring that the AI 
system design suffers from neither under-trust nor over-trust 

o Identify, quantify and mitigate biases in AI systems to develop trust 
o Develop systems that continuously evolve with evolving environments 
o Demonstrate consistent behavior across a range of augmentation tasks to 

develop predictability 
 
For Technical Objective 2, the MAC program strives to introduce AI representations and 
methods into prediction, judgment, and decision-making. Topics of interest include the 
following: 

• Model-based design that uses data science to accelerate search through a parameter 
space, or that uses learned models of the quality of the outputs of a simulation 

• Accelerate design using generative models that both expand the palette of concepts and 
save time compared to human generation of concepts 

• Accelerate design using predictive models that eliminate unpromising design concepts 
early in the process 

• Retrieve information when the user needs it, even when they have not prompted the 
system explicitly for that information 

• Increase human-machine collaboration speed by developing and surfacing human 
understandable reasoning 

 
For Technical Objective 3, the MAC program aims to enhance problem-solving within mixed 
teams of people and AI systems.  This work will enable a combination of humans and AI 
systems to work together to achieve application goals, where the collaborative interaction takes 
advantage of the complementary nature of humans and AI systems.  An additional research 
goal is to explore issues associated with scaling up the size of teams comprising multiple 
machines and multiple humans. 
 
For all the technical objectives, proposers should feel free to nominate and explore other goals 
during the open discussion period (January 2020) for this solicitation. 
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