ENVIRONMENTAL-PRODUCT DECLARATION as per ISO 14025 and EN 15804+A2 Owner of the Declaration dormakaba International Holding GmbH Publisher Institut Bauen und Umwelt e.V. (IBU) Programme holder Institut Bauen und Umwelt e.V. (IBU) Declaration number EPD-DOR-20220039-CBA1-EN Issue date 04.05.2022 Valid to 03.05.2027 # Precision 2000 Series dormakaba www.ibu-epd.com | https://epd-online.com # **General Information** #### **Precision 2000 Series** dormakaba Programme holder Owner of the declaration dormakaba International Holding GmbH IBU - Institut Bauen und Umwelt e.V. Hegelplatz 1 DORMA Platz 1 10117 Berlin 58256 Ennepetal Germany Germany **Declaration number** Declared product / declared unit EPD-DOR-20220039-CBA1-EN 1 exit device (1 piece) of the Precision 2000 Series. This declaration is based on the product category rules: Building Hardware products, 01.08.2021 This Environmental Product Declaration refers to a specific exit device (PCR checked and approved by the SVR) manufactured by dormakaba. The production site is located in Indianapolis Issue date The data represents the year 2020. 04.05.2022 The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. Valid to 03.05.2027 The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804 bezeichnet. Verification The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2011 internally X externally Dipl.-Ing Hans Peters (chairman of Institut Bauen und Umwelt e.V.) Dr. Alexander Röder (Managing Director Institut Bauen und Umwelt e.V.) Dr.-Ing. Wolfram Trinius, (Independent verifier) # **Product** #### Product description/Product definition No other exit device offers the level of functionality and dependability as this Grade 1, heavy-duty exit device. Built with fewer components and in various door configurations, the Precision 2000 provides smoother operation with minimal need for maintenance. The Precision 2000's durable construction allows it to withstand high traffic and high use on a regular basis, making it particularly attractive for healthcare and education buildings. These combined benefits give it a longer life span and a lower overall cost of ownership. For the use and application of the product the respective national provisions at the place of use apply. The standards which can be applied are the following: - ANSI/BHMA A156.3 Grade 1 - · ANSI A117.1 Accessibility Code (ADA) compliant - UL/cUL listed - · Florida Building Code compliant for hurricanes - · Miami-Dade County compliant for hurricanes - California State Fire Marshal (California Title 24) compliant - California State Fire Marshal compliant for fire door - · BAA and TAA compliant - · Illinois Accessibility Standard compliant #### **Application** The Precision 2000 Series can be used for following building types: - · Learning and higher education - · Healthcare - Government - · Retail and commercial - Multifamily - · Hospitality #### **Technical Data** The exit device has following technical properties: | PRECISION APEX | 2000 Specifications | | | | | | |-----------------------|---|---|--|--|--|--| | Certifications | BHMA A156.3 Grade 1 Listed
ANSI A117.1 Accessibility Code (ADA)
compilant
UU-U.A. 10C.3-hour Fire Listed
UU-U.A. 305 Listed
Florida Bulafing Code compilant
for humicanes
Massi-Code County compilant
for humicanes
Californa State Fire Marshal
(Californa State Fire Marshal
(Californa Tate 24) compilant | California State Fire Marshal compliant
for fire door
BAA and TAA compliant
Binois Accessibility Standard compliant
ML-STD 810G sections 509.6
Salt Spray, 521.3
long and Freezing Rain, 510.6
Blowing Dust Test | | | | | | Materials | Exit device body: heavy-duty solid brass,
Chassis: investment cast steel, zinc dichro
Chassis cover: stainless steel, brass or bro
Latchbolt: stainless steel, deadlocking, 3/ | omated
nate | | | | | | Door Dimensions | Thickness: 1 3/4" – 2 1/4" standard
Height: 6'8" – 10" (5/40)
Width: 2" – 4" (application dependent) | | | | | | | Strikes | \$300: investment cast stainless steel, black powder coated
\$988: optional strike for use on aluminum door applications
\$458: optional strike for use on mullion applications | | | | | | | Device Types | Wide Rim
Narrow Rim
Concealed Vertical Rod
Narrow Stile Concealed Vertical Rod | Surface Vertical Rod
Wood Door Concealed Vertical Rod
Mortise | | | | | | Electrified Options | C: Pre-Terminated Quick Connect Plug
DE: Delayed Egress
E: Electric Louis, Principal
ELE: Electric Latch Retraction
MLR: Motorized Latch Retraction
IS: Latchboth Monitoring Switch
Q: Wireless Access Management System | TS: Touchbar Monitoring Switch
WTS: Weatherized Touchbar Switch
ALK: Battery Powered Alarm
AUV: Hardwired Alarm
DS: Door Position Switch
WAUV: Weatherized Alarm | | | | | | Trim and Lever Styles | Vandal Resistant Lever-no lever reset reg
Knob Trims
Pull Trims
A, B, C or D lever styles, standard
20 available decorative lever styles | uired | | | | | | Finishes | 605: Polished Brass, Clear Coated
606: Satin Brass, Clear Coated
612: Satin Bronze, Clear Coated
613: Dark Oxidized Satin Bronze
622: Powder Coated Black
625: Polished Chromium Plated | 626W. Satin Chrome, Weatherized
628: Satin Aluminum, Clear Anodized
630: Satin Stainless Steel
690: Dark Bronze
UttraShield™ antimicrobial coating
available except 622 and 690 finishes. | | | | | | Warranties | 5-year mechanical | 1-year electrical | | | | | Please list the Technical Data according to the List in the chapter "Product group specific calculation rules" Example: ## **Technical** Data for Locking Cylinders acc. to the classification in EN 1303: Performance data of the product with respect to its characteristics in accordance with the relevant technical provision which can be applied are mentioned above. #### Base materials/Ancillary materials | Name | Value | Unit | |-----------------|-------|------| | Stainless steel | 43 | % | | Steel | 30 | % | | Brass | 14 | % | | Paper | 6 | % | | Electronics | 5 | % | | Zinc | 2 | % | | Other | <1 | % | The product/s include/s partial articles which contain substances listed in the Candidate List of *REACH* Regulation 1907/2006/EC (date: 17.01.2022) exceeding 0.1 percentage by mass: yes Lead (Pb): 7439-92-1 (CAS-No.) is included in some of the alloys used. The concentration of lead in each individual alloy does not exceed 4.0% (by mass). The Candidate List can be found on the ECHA website address: https://echa.europa.eu/de/home. #### Environment and health during use #### Reference service life The reference service life of the Precision 2000 Series exit device depends on the traffic pattern and degree of usage of the door. These exits are rated to ANSI Grade 1, meaning they are designed to withstand a minimum of 500,000 cycles. However, these exits have been independently tested to surpass 10,000,000 cycles. #### LCA: Calculation rules #### **Declared Unit** The declared unit is 1 piece of the product: Precision 2000 Series. #### **Declared unit** | Name | Value | Unit | |--------------------------|-------|---------------| | Declared unit | 1 | piece/product | | Mass of declared Product | 12.04 | kg | For IBU core EPDs (where clause 3.6 is part of the EPD): for average EPDs, an estimate of the robustness of the LCA values must be made, e.g. concerning variability of the production process, geographical representativeness and the influence of background data and preliminary products compared to the environmental impacts caused by actual production. #### System boundary The type of EPD is: cradle to gate with options, modules C1–C4, and module D (A1–A3 + C + D and additional modules: A4 + A5) #### **Production - Module A1-A3** The product stage includes: - A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes), - A2, transport to the manufacturer, - A3, manufacturing and assembly including provision of all materials, products and energy, as well as waste processing up to the end-of waste state. Construction stage - Modules A4-A5 The construction process stage includes: - A4. transport to the building site: - A5, installation into the building; including provision of all materials, products and energy, as well as waste processing up to the end-of waste state or disposal of final residues during the construction process stage. # End-of-life stage- Modules C1-C4 and D The end-of-life stage includes: - C1, de-construction, demolition: - C2, transport to waste processing; - C3, waste processing for reuse, recovery and/or recycling; - C4, disposal; including provision and all transport, provision of all materials, products and related energy and water use. Module D (Benefits and loads beyond the system boundary) includes: — D, recycling potentials, expressed as net impacts and benefits. ### **Geographic Representativeness** Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Unbekannt #### Comparability Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account. # LCA: Scenarios and additional technical information # Characteristic product properties Information on biogenic carbon The biogenic carbon content quantifies the amount of biogenic carbon in a construction product leaving the factory gate, and it shall be separately declared for the product and for any accompanying packaging. If the total mass of biogenic carbon containing materials is less than 5 % of the total mass of the product and accompanying packaging, the declaration of biogenic carbon content may be omitted. The mass of packaging containing biogenic carbon shall always be declared. Note: 1 kg of biogenic carbon is equivalent to 44/12 kg of CO2. # Information on describing the biogenic Carbon Content at factory gate | Name | Value | Unit | |---|-------|---------| | Biogenic carbon content in product | 0.01 | kg
C | | Biogenic carbon content in accompanying packaging | 0.09 | kg
C | Additional technical information for the declared modules. #### Transport to the building site (A4) | Name | Value | Unit | |---|---------|---------| | Litres of fuel per 1 kg (truck) | 0.00276 | l/100km | | Transport distance (truck) | 4300 | km | | Capacity utilisation (including empty runs) average | 55 | % | | Transport distance (ship) | 27000 | km | #### Installation into the building (A5) | Name | Value | Unit | |---|-------|------| | Output substances following waste treatment on site (packaging) | 0.69 | kg | In case a **reference service life** according to applicable ISO standards is declared then the assumptions and in-use conditions underlying the determined RSL shall be declared. In addition, it shall be stated that the RSL applies for the reference conditions only. The same holds for a service life declared by the manufacturer. Corresponding information related to in-use conditions needs not be provided if a service life taken from the list on service life by BNB is declared. # Operational energy use (B6) | Name | Value | Unit | |-------------------------------------|-------|------| | Electricity consumption for 1 year | 62,41 | kWh | | Power consumpiton "on mode" | 570 | W | | Hours per day in use "on mode" | 0,3 | h | | Power consumption "standby mode" | 0 | W | | Hours per day in use "standby mode" | 23,7 | h | # End of life (C1-C4) C1: The product dismantling from the building is done manually without environmental burden. C2: Transport to waste treatment at end of life is 50km. | Name | Value | Unit | |---------------------------------|-------|------| | Collected separately waste type | 11.3 | kg | | Recycling | 10.7 | kg | | Energy recovery | 0.012 | kg | | Final deposition | 0,609 | kg | # Reuse, recovery and/or recycling potentials (D), relevant scenario information | Name | Value | Unit | |------|-------|------| | | | | Collection rate is 100%. # LCA: Results Disclaimer: **EP-freshwater**: This indicator has been calculated as "kg P eq" as required in the characterization model (EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe; http://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml) DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT) | MODO | LE NOI | INLLL | VAINI) | | | | | | | | | | | | | | |---------------------|-----------|---------------|-------------------------------------|----------|-----|-------------|--------|-------------|---------------|---------------------------|-----------------------|-------------------------------|-----------|------------------|---|--| | PRODUCT STAGE | | | CONST
PROC
STA | CESS | ON | USE STAGE | | | | | ENI | O OF LI | FE STA | ΛGE | BENEFITS
AND LOADS
BEYOND
THE SYSTEM
BOUNDARIE
S | | | Raw material supply | Transport | Manufacturing | Transport from the gate to the site | Assembly | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy
use | Operational water use | De-construction
demolition | Transport | Waste processing | Disposal | Reuse-
Recovery-
Recycling-
potential | | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1 | C2 | C3 | C4 | D | | X | Х | Х | Х | Х | MND | MND | MNR | MNR | MNR | Х | MND | Х | Х | Х | Х | Х | | RESULTS OF T | HE LCA - EN | IVIRONME | NTAL IMPA | CT accordii | ng to EN 15 | 804+A2: 1 | exit device | | | | |----------------|-------------------------------------|-----------|-----------|-------------|-------------|-----------|-------------|----------|----------|-----------| | Parameter | Unit | A1-A3 | A4 | A5 | В6 | C1 | C2 | C3 | C4 | D | | GWP-total | kg CO ₂ eq | 5.15E+01 | 1.97E+00 | 9.89E-01 | 1.75E+02 | 0 | 4.9E-02 | 3.2E-02 | 9E-03 | -2.77E+01 | | GWP-fossil | kg CO ₂ eq | 5.25E+01 | 1.9E+00 | 2.5E-02 | 1.75E+02 | 0 | 4.7E-02 | 3.2E-02 | 9E-03 | -2.78E+01 | | GWP-biogenic | kg CO ₂ eq | -1.03E+00 | 7E-02 | 9.64E-01 | 3.8E-02 | 0 | 2E-03 | 7.39E-07 | 3.16E-05 | 1.09E-01 | | GWP-luluc | kg CO ₂ eq | 7.61E-02 | 4.4E-05 | 1.63E-05 | 5.3E-02 | 0 | 1.12E-06 | 1.79E-06 | 2.66E-05 | -4.6E-02 | | ODP | kg CFC11 eq | 2.29E-11 | 1.97E-16 | 1.78E-16 | 6.17E-13 | 0 | 4.98E-18 | 1.6E-17 | 3.42E-17 | -3.41E-13 | | AP | mol H ⁺ eq | 2.83E-01 | 1.6E-02 | 2.77E-04 | 2.84E-01 | 0 | 4.73E-05 | 5.65E-06 | 6.62E-05 | -1.14E-01 | | EP-freshwater | kg P eq | 8.49E-05 | 4.12E-07 | 3.49E-08 | 9.57E-05 | 0 | 1.01E-08 | 2.55E-09 | 1.59E-08 | -2.43E-05 | | EP-marine | kg N eq | 4.5E-02 | 4E-03 | 1E-04 | 6.1E-02 | 0 | 1.5E-05 | 1.27E-06 | 1.71E-05 | -1.8E-02 | | EP-terrestrial | mol N eq | 4.79E-01 | 4.7E-02 | 1E-03 | 6.52E-01 | 0 | 1.67E-04 | 2.57E-05 | 1.87E-04 | -1.96E-01 | | POCP | kg NMVOC
eq | 1.33E-01 | 1.2E-02 | 2.65E-04 | 1.73E-01 | 0 | 4.25E-05 | 3.52E-06 | 5.16E-05 | -5.6E-02 | | ADPE | kg Sb eq | 3.13E-03 | 5.54E-08 | 2.82E-09 | 3.49E-05 | 0 | 1.42E-09 | 2.19E-10 | 8.29E-10 | -8.62E-04 | | ADPF | MJ | 6.58E+02 | 2.62E+01 | 3.12E-01 | 2.84E+03 | 0 | 6.7E-01 | 1.5E-02 | 1.21E-01 | -3.25E+02 | | WDP | m ³ world eq
deprived | 1.51E+01 | 4E-03 | 1.23E-01 | 3.39E+01 | 0 | 9.25E-05 | 3E-03 | 9.68E-04 | -9.89E+00 | GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential) | RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 exit device | | | | | | | | | | | | |--|----------------|----------|----------|-----------|----------|----|----------|-----------|----------|-----------|--| | Parameter | Unit | A1-A3 | A4 | A5 | B6 | C1 | C2 | C3 | C4 | D | | | PERE | MJ | 1.36E+02 | 8.3E-02 | 8.43E+00 | 4.49E+02 | 0 | 2E-03 | 3.6E-01 | 1.6E-02 | -5.92E+01 | | | PERM | MJ | 8.73E+00 | 0 | -8.37E+00 | 0 | 0 | 0 | -3.56E-01 | 0 | 0 | | | PERT | MJ | 1.45E+02 | 8.3E-02 | 5.7E-02 | 4.49E+02 | 0 | 2E-03 | 4E-03 | 1.6E-02 | -5.92E+01 | | | PENRE | MJ | 6.59E+02 | 2.62E+01 | 3.12E-01 | 2.84E+03 | 0 | 6.7E-01 | 3.7E-01 | 1.21E-01 | -3.26E+02 | | | PENRM | MJ | 3.55E-01 | 0 | 0 | 0 | 0 | 0 | -3.55E-01 | 0 | 0 | | | PENRT | MJ | 6.59E+02 | 2.62E+01 | 3.12E-01 | 2.84E+03 | 0 | 6.7E-01 | 1.5E-02 | 1.21E-01 | -3.26E+02 | | | SM | kg | 5.53E+00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RSF | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | NRSF | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | FW | m ³ | 5.46E-01 | 1.5E-04 | 3E-03 | 1.04E+00 | 0 | 3.79E-06 | 7.76E-05 | 3.06E-05 | -3.84E-01 | | PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water | RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2:
1 exit device | | | | | | | | | | | | |---|------|----------|----------|----------|----------|----|----------|----------|----------|-----------|--| | Parameter | Unit | A1-A3 | A4 | A5 | В6 | C1 | C2 | C3 | C4 | D | | | HWD | kg | 3.04E-06 | 2.55E-09 | 4.6E-10 | 1.09E-06 | 0 | 6.5E-11 | 5.61E-11 | 1.85E-09 | -4.77E-06 | | | NHWD | kg | 4.09E+00 | 3E-03 | 3.1E-02 | 8.81E-01 | 0 | 6.85E-05 | 3E-03 | 6.09E-01 | -1.84E+00 | | | RWD | kg | 1.31E-02 | 2.83E-05 | 1.64E-05 | 2.53E-01 | 0 | 7.19E-07 | 5.46E-07 | 1.38E-06 | -2E-03 | | | CRU | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |-----|----|---|---|----------|---|---|---|----------|---|---| | MFR | kg | 0 | 0 | 0 | 0 | 0 | 0 | 1.07E+01 | 0 | 0 | | MER | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | EEE | MJ | 0 | 0 | 1.5E+00 | 0 | 0 | 0 | 0 | 0 | 0 | | EET | MJ | 0 | 0 | 2.71E+00 | 0 | 0 | 0 | 0 | 0 | 0 | HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy # RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: | 1 OAL GOVICO | | | | | | | | | | | |--------------|-------------------|----------|----------|----------|----------|----|----------|----------|----------|-----------| | Parameter | Unit | A1-A3 | A4 | A5 | B6 | C1 | C2 | C3 | C4 | D | | РМ | Disease incidence | 4.31E-06 | 2.56E-07 | 1.53E-09 | 2.54E-06 | 0 | 2.48E-10 | 7.21E-11 | 8.2E-10 | -2.25E-06 | | IR | kBq U235 eq | 1.49E+00 | 4E-03 | 3E-03 | 2.09E+01 | 0 | 1.03E-04 | 4.92E-05 | 1.42E-04 | -2.1E-01 | | ETP-fw | CTUe | 3.35E+02 | 1.85E+01 | 1.48E-01 | 8.46E+02 | 0 | 4.75E-01 | 6E-03 | 6.9E-02 | -1.52E+02 | | HTP-c | CTUh | 7.39E-06 | 3.49E-10 | 7.84E-12 | 1.82E-08 | 0 | 8.93E-12 | 4.78E-13 | 1.03E-11 | -4.39E-08 | | HTP-nc | CTUh | 1E-06 | 1.52E-08 | 3.4E-10 | 6.88E-07 | 0 | 3.82E-10 | 4.84E-11 | 1.13E-09 | 2.05E-07 | | SQP | SQP | 2.48E+02 | 6.8E-02 | 8.3E-02 | 2.59E+02 | 0 | 2E-03 | 4E-03 | 2.5E-02 | -4.01E+01 | PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator. # References #### **Standards** #### EN 15804 EN 15804:2012+A1 2013, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products. # EN 15804 EN 15804:2012+A2:2019+AC:2021, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products. #### ISO 14025 EN ISO 14025:2011, Environmental labels and declarations — Type III environmental declarations — Principles and procedures. #### **Further References** ### Title of the software/database Title of the software/database. Addition to the title, version. Place: Publisher, Date of publication [Access on access date]. #### **IBU 2021** Institut Bauen und Umwelt e.V.: General Instructions for the EPD programme of Institut Bauen und Umwelt e.V., Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021 www.ibu-epd.com #### ANSI/BHMA A156.3 ANSI/BHMA A156.3-2014: AMERICAN NATIONAL STANDARD FOR EXIT DEVICES. # ANSI A117.1 ANSI A117.1-2017: Accessible and Usable Buildings. #### EN 15804 #### ΕN 15804:2019+A2, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products. #### REACH Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Regulation (EC) No 1907/2006. # Further References #### **BAA** Buy American Act, https://www.gao.gov/products/105519. ### **California State Fire Marshal** https://osfm.fire.ca.gov/. # Florida Building Code https://floridabuilding.org/c/default.aspx. #### **IBU** Institut Bauen und Umwelt e.V.: General Instructions for the EPDs programme of Institut Bauen und Umwelt e.V. Version 2.0., Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com. #### documentation GaBi life cycle inventory data documentation (https://www.gabi-software.com/support/gabi/gabidatabase- 2020-lci-documentation/). # LCA-tool dormakaba LCA-tool, IBU-DOR-202104-LT1-EN. Developed by Sphera Solutions GmbH #### Miami-Dade County Code https://www.miamidade.gov/cob/ordinances-enacted-by-bcc.asp. #### **PCR Part A** #### Illinois Accessibility Code https://www2.illinois.gov/cdb/business/codes/IllinoisAccessibilityCode/PagesRtexfaurterassputs on the Project Re-port PCR – Part A: Calculation Rules for the Life Cycle Assessment according to EN 15804+A2:2019, Version 1.0, 2020, Institut Bauen und Umwelt e.V., www.ibu-epd.com. # GaBi Sphera Solutions GmbH Gabi Software System and Database for Life Cycle Engineering 1992-2020 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen ### **PCR Part B** PCR - Part B: Requirements on the EPD for Building Hardware product, version 1.2, Institut Bauen und Umwelt e.V., www.ibu-epd.com, 2017. #### TAA Trade Agreements Act, https://vsc.gsa.gov/administration/compDetails.cfm. ### GaBi ts # UL Underwriters Laboratories, https://www.ul.com/. # ULC Underwriters Laboratories of Canada, https://canada.ul.com/. #### **Publisher** Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com ### Programme holder Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com # **Author of the Life Cycle Assessment** Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Germany +49 711 341817-0 info@sphera.com www.sphera.com #### **Owner of the Declaration** dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com