ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration dormakaba International Holding GmbH

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-DOR-20210197-CBA2-EN

Issue date 07/10/202

Valid to 06/10/202

Extension module 90 43 dormakaba

www.ibu-epd.com | https://epd-online.com

General Information

dormakaba

Programme holder

IBU – Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-DOR-20210197-CBA2-EN

This declaration is based on the product category rules:

Electronic and physical Access Control Systems, 07.2019 (PCR checked and approved by the SVR)

Man leten

Issue date

07/10/2021

Valid to

06/10/2026

Dipl. Ing. Hans Peters (chairman of Institut Bauen und Umwelt e.V.)

Dr. Alexander Röder

(Managing Director Institut Bauen und Umwelt e.V.))

Extension module 90 43

Owner of the declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany

Declared product / declared unit

1 piece of the product: Extension module 90 43

Scope:

This EPD refers to a specific product manufactured by dormakaba. The production site is located in Villingen-Schwenningen (Germany).

The data represents the year 2019.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

The EPD was created according to the specifications of *EN 15804+A2*. In the following, the standard will be simplified as *EN 15804*.

Verification

The standard *EN 15804* serves as the core PCR Independent verification of the declaration and data according to *ISO 14025:2010*

internally

externally

Dr.-Ing. Wolfram Trinius (Independent verifier)

Product

Product description/Product definition

With the extension module 90 43, the standalone remote reader 91 15 becomes a reader with convenient wireless function. This way, you can program doors from your desk and benefit from the advantages of a wireless access system. It can be used for doors where you wish to change access rights wirelessly. For instance, in a system in which doors have been equipped with battery operated standalone components and have the wireless function. Here you can integrate the entrance door reader into the same network and operate all doors conveniently with the click of a mouse. The extension module connects directly to the remote reader 91 15 without additional wiring effort.

For the placing on the market in the European Union/European Free Trade Association (EU/EFTA) (with the exception of Switzerland) the following legal provisions apply:

- Radio Equipment Directive (RED)
- Restriction of Hazardous Substances (RoHS)
- EN 50581:2012

The CE-marking takes into account the proof of conformity with the respective harmonized standards based on the legal provisions above. For the application and use the respective national provisions apply.

Application

Wireless access control

It provides a wireless access point for almost any door:

- Standalone systems: as a CardLink update point
- External doors and gates
- Automatic doors
- Parking barriers
- Entrance areas
- Motor locks

Technical Data

The extension module 90 43 has the following technical properties:

Name	Value	Unit
Operating Temperature	0 - 50	°C
Operating Humidity	5 - 85	%
Width Dimension	70	mm
Height Dimension	87	mm
Depth Dimension	45	mm
Weight (without packaging)	0,09	kg
Weight (with packaging)	0,145	kg
Power consumption "on mode"	5	W
Power consumption "idle mode"	2	W

Interface

· proprietary in-line bus to host device

Peripherals Interface

Radio Technology: IEEE 802.15.4Frequency band: 2400 to 2485.5

MHz (16 channels)

Power supply

· via proprietary bus from connected host device

Installation

Top hat rails: TH35/(7.5/15)Class of protection: IP20

The product is not harmonised in accordance with the Construction Product Regulations (CPR) but in accordance with other provisions for harmonisation of the EU. Compliance with the European Union Directive and technical specifications:

EN 301489-1 V2.2.0 Draft

- EN 301489-17 V3.2.1 Draft
- EN 300328 V2.1.1
- EN 62311:2008
- EN 62368-1:2014-08

The product is subject to CE marking according to the relevant harmonization legislation.

Base materials/Ancillary materials

The major material compositions of the product are listed below:

Name	Value	Unit
Paper	45	%
Plastics	29	%
Electronics	25	%
Steel	<1	%

The product includes partial articles which contain substances listed in the Candidate List of REACH Regulation 1907/2006/EC (date: 08.07.2021) exceeding 0.1 percentage by mass: no

The Candidate List can be found on the ECHA website address: https:echa.europa.eu/de/home.

Reference service life

The reference service life of the dormakaba extension module 90 43 is estimated to be 12 years. This number is based on the support and service life and is not an estimated lifetime.

LCA: Calculation rules

Declared Unit

The declared unit is 1 piece of the product: Extension module 90 43.

Declared unit

Name	Value	Unit
Declared unit	1	pce.
Conversion factor to 1 kg (kg per declared unit)	6.89	ı
Product weight including packaging	0,145	kg

System boundary

The type of EPD is: cradle to gate with options, modules C1–C4, and module D

(A1–A3 + C + D and additional modules: A4 + A5 + B6)

Production - Module A1-A3

The product stage includes:

- A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes),
- A2, transport to the manufacturer,
- A3, manufacturing and assembly

including provision of all materials, products and energy, as well as waste processing up to the end-of

waste state.

Construction stage - Modules A4-A5

The construction process stage includes:

- A4, transport to the building site;
- A4, transport to the building site, — A5, installation into the building;

including provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction process stage.

Use stage - Module B6

The use stage related to the operation of the building includes:

- B6, operational energy use

End-of-life stage- Modules C1-C4 and D

The end-of-life stage includes:

- C1, de-construction, demolition:
- C2, transport to waste processing;
- C3, waste processing for reuse, recovery and/or recycling;
- C4, disposal;

including provision and all transport, provision of all materials, products and related energy and water use. Module D (Benefits and loads beyond the system boundary) includes:

— D, recycling potentials, expressed as net impacts and benefits.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building

context, respectively the product-specific characteristics of performance, are taken into account.

Background database: GaBi, SP40.

LCA: Scenarios and additional technical information

Characteristic product properties Information on biogenic Carbon

Information on describing the biogenic Carbon Content at factory gate

contonic at inciony gate				
Name	Value	Unit		
Biogenic carbon content in product	0.01	kg C		
Biogenic carbon content in accompanying packaging	0.02	kg C		

The following technical scenario information is required for the declared modules.

Transport to the building site (A4)

Name	Value	Unit								
Litres of fuel per 1 kg	0.00276	l/100km								
Transport distance	750	km								
Capacity utilisation (including empty runs)	51	%								

Installation into the building (A5)

Name	Value	Unit		
Waste Packaging (paper)	0,05	kg		

Reference service life

Name	Value	Unit
Life Span according to the	12	
manufacturer	12	a

Operational energy use (B6) and Operational water use (B7)

The use stage is declared for 12 years.

	,		
Name	Value	Unit	
Energy consumption for 1 year	19,75	kWh	
on mode per day	2	h	
idle mode per day	22	h	
on mode power	5	W	
idle mode power	2	W	
Days per year in use	365	days	

End of life (C1-C4)

C1: The product dismantling from the building is done manually without environmental burden.

Name	Value	Unit
Recycling	0.04	kg
Energy recovery	0.04	kg
Landfilling	0.01	kg
Transportation to Waste Processing Site	50	km

Region for end of life: Global

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Collection rate is 100%.

LCA: Results

Disclaimer:

EP-freshwater: This indicator has been calculated as "kg P eq" as required in the characterization model (EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe; http://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml).

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT DECLARED: MNR = MODULE NOT RELEVANT)

DECL	LANEI	J, IVIIN		ODUL		NELL	A WIN I)								
PRODUCT STAGE			CONST ON PRO	OCESS		USE STAGE					EN	D OF LI	FE STAC		BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES	
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A 1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	Х	ND	ND	MNR	MNR	MNR	Х	ND	Х	Х	Х	Х	Х

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece Extension module 90 43

Core Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ -Eq.]	3.41E+0	1.00E-2	7.60E-2	9.59E+1	0.00E+0	4.64E-4	1.06E-1	1.90E-4	-2.06E-1
GWP-fossil	[kg CO ₂ -Eq.]	3.42E+0	9.00E-3	2.00E-3	9.54E+1	0.00E+0	4.43E-4	1.06E-1	1.89E-4	-2.06E-1
GWP-biogenic	[kg CO ₂ -Eq.]	-1.79E-2	4.23E-4	7.40E-2	3.18E-1	0.00E+0	2.05E-5	2.47E-6	6.45E-7	1.92E-4
GWP-luluc	[kg CO ₂ -Eq.]	5.09E-3	2.18E-7	1.25E-6	1.38E-1	0.00E+0	1.06E-8	5.98E-6	5.44E-7	-2.81E-4
ODP	[kg CFC11-Eq.]	4.72E-10	9.66E-19	1.37E-17	2.10E-12	0.00E+0	4.68E-20	5.34E-17	7.00E-19	-1.19E-15
AP	[mol H+-Eq.]	1.91E-2	9.16E-6	2.12E-5	2.11E-1	0.00E+0	4.44E-7	1.89E-5	1.36E-6	-3.00E-3
EP-freshwater	[kg P-Eq.]	2.57E-5	1.96E-9	2.67E-9	2.55E-4	0.00E+0	9.49E-11	8.52E-9	3.24E-10	-1.83E-7
EP-marine	[kg N-Eq.]	3.05E-3	2.92E-6	7.67E-6	4.70E-2	0.00E+0	1.41E-7	4.25E-6	3.49E-7	-1.98E-4
EP-terrestrial	[mol N-Eq.]	3.64E-2	3.24E-5	9.56E-5	4.92E-1	0.00E+0	1.57E-6	8.58E-5	3.83E-6	-2.00E-3
POCP	[kg NMVOC-Eq.]	1.01E-2	8.24E-6	2.03E-5	1.28E-1	0.00E+0	3.99E-7	1.18E-5	1.06E-6	-6.59E-4
ADPE	[kg Sb-Eq.]	7.31E-4	2.75E-10	2.16E-10	2.76E-5	0.00E+0	1.33E-11	7.32E-10	1.70E-11	-1.15E-4
ADPF	[MJ]	4.14E+1	1.30E-1	2.40E-2	1.68E+3	0.00E+0	6.00E-3	4.90E-2	2.00E-3	-2.80E+0
WDP	[m³ world-Eq deprived]	8.53E-1	1.79E-5	9.00E-3	2.08E+1	0.00E+0	8.69E-7	1.10E-2	1.98E-5	-7.40E-2

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Caption Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece Extension module 90 43

Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
PERE	[MJ]	1.21E+1	4.09E-4	6.46E-1	7.43E+2	0.00E+0	1.98E-5	1.62E-1	3.25E-4	-4.41E-1
PERM	[MJ]	7.91E-1	0.00E+0	-6.42E-1	0.00E+0	0.00E+0	0.00E+0	-1.49E-1	0.00E+0	0.00E+0
PERT	[MJ]	1.29E+1	4.09E-4	4.00E-3	7.43E+2	0.00E+0	1.98E-5	1.30E-2	3.25E-4	-4.41E-1
PENRE	[MJ]	3.95E+1	1.30E-1	2.40E-2	1.68E+3	0.00E+0	6.00E-3	2.01E+0	2.00E-3	-2.81E+0
PENRM	[MJ]	1.96E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-1.96E+0	0.00E+0	0.00E+0
PENRT	[MJ]	4.14E+1	1.30E-1	2.40E-2	1.68E+3	0.00E+0	6.00E-3	4.90E-2	2.00E-3	-2.81E+0
SM	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
RSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
NRSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
FW	[m³]	2.20E-2	7.34E-7	2.21E-4	8.60E-1	0.00E+0	3.56E-8	2.59E-4	6.25E-7	-1.00E-3

Caption

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece Extension module 90 43

Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
HWD	[kg]	3.75E-6	1.26E-11	3.53E-11	6.94E-7	0.00E+0	6.10E-13	1.87E-10	3.78E-11	-8.47E-9
NHWD	[kg]	1.19E-1	1.33E-5	2.00E-3	1.19E+0	0.00E+0	6.44E-7	1.10E-2	1.20E-2	-3.20E-2
RWD	[kg]	9.43E-4	1.40E-7	1.26E-6	2.55E-1	0.00E+0	6.76E-9	1.82E-6	2.82E-8	-9.23E-5
CRU	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MFR	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	5.20E-2	0.00E+0	0.00E+0
MER	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EEE	[MJ]	1.07E-1	0.00E+0	1.15E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EET	[MJ]	1.95E-1	0.00E+0	2.08E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0

Caption HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components

for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece Extension module 90 43

Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
PM	[Disease Incidence]	1.97E-7	4.82E-11	1.18E-10	1.77E-6	0.00E+0	2.33E-12	2.41E-10	1.68E-11	-2.06E-8
IRP	[kBq U235- Eq.]	9.10E-2	1.99E-5	1.95E-4	4.18E+1	0.00E+0	9.65E-7	1.64E-4	2.90E-6	-1.40E-2
ETP-fw	[CTUe]	1.99E+1	9.20E-2	1.10E-2	7.17E+2	0.00E+0	4.00E-3	1.80E-2	1.00E-3	-1.32E+0
HTP-c	[CTUh]	1.20E-9	1.73E-12	6.01E-13	1.98E-8	0.00E+0	8.38E-14	1.59E-12	2.10E-13	-8.92E-11
HTP-nc	[CTUh]	6.32E-8	7.40E-11	2.61E-11	7.30E-7	0.00E+0	3.59E-12	1.61E-10	2.31E-11	-7.16E-9
SQP	[-]	1.82E+1	3.34E-4	6.00E-3	5.34E+2	0.00E+0	1.62E-5	1.50E-2	5.17E-4	-1.22E+0

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential Caption comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 - for the indicator IRP

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 - for the indicators ADPE, ADPF, WDP, ETP-fw, HTP-c, HTP-nc, SQP

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

References

Standards

EN 15804

EN 15804:2019+A2 (in press), Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

EN 300328 V2.1.1

Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU.

EN 301489-1 V2.2.0 Draft

ElectroMagnetic Compatibility (EMC)standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU.

EN 301489-17 V3.2.1 Draft

ElectroMagnetic Compatibility (EMC)standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard for ElectroMagnetic Compatibility.

EN 50581

EN 50581:2012, Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances.

EN 62311

EN 62311:2008, Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields.

EN 62368-1

EN 62368-1:2014, Audio/video, information and communication technology equipment - Part 1: Safety requirements.

ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

Radio Equipment Directive (RED)

Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC.

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

Restriction of Hazardous Substances (RoHS)

Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), Directive (EU) No 2011/65.

Further References

IBU 2016

Institut Bauen und Umwelt e.V.: General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021.

GaBi ts software

Sphera Solutions GmbHGabi Software System and Database for Life Cycle Engineering 1992-2020 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen

GaBi ts documentation

GaBi life cycle inventory data documentation (https://www.gabi-software.com/support/gabi/gabi-database-2020-lci-documentation/).

LCA-tool dormakaba

LCA tool, version 1.0. Developed by Sphera Solutions GmbH.

PCR Part A

PCR – Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019, Version 1.0, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

PCR Part B

PCR – Part B: Requirements on the EPD for Building Hardware product, version 1.3, Institut Bauen und Umwelt e.V., www.ibu-epd.com, 2019.

Publisher

Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany Tel +49 (0)30 3087748- 0 Fax +49 (0)30 3087748- 29 Mail info@ibu-epd.com Web www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany Tel +49 (0)30 - 3087748- 0 Fax +49 (0)30 - 3087748 - 29 Mail info@ibu-epd.com Web **www.ibu-epd.com**

+49 711 341817-0

Author of the Life Cycle Assessment

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Germany Fax +49 711 341817-25 Mail info@sphera.com Web www.sphera.com

Tel

Owner of the Declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany Tel +49 2333 793-0 Fax +49 2333 793-4950 Mail info.de@dormakaba.com Web **www.dormakaba.com**