Original Page 1

$\begin{aligned} & \hline \text { ITEM } \\ & 100 \\ & \hline \end{aligned}$	General	
	1. Each exchange and each toll telephone is designated as a Rate Centre. 2. "Rate Centre" means the point in each exchange from which distances are measured for the calculation of charges for interexchange services, Extended Area Service (EAS)* and for computing rates for Message Toll Calls. (* EAS is equivalent to Extended Flat Rate Calling (EFRC) for Centrex Service/Systems.) 3. The VerticalHorizontal method of measuring airline distances is a system whereby the geographic co-ordinates for each Rate Centre are translated into numerical "Vertical" and "Horizontal" ($V \& H$) geometric co-ordinates which permit the mathematical computation of the air mileage between any two Rate Centres. 4. The V \& H system consists of a series of co-ordinates which represent a theoretical grid of vertical and horizontal lines covering Alberta. The spacing between adjacent parallel lines is about 1670 feet and represents a distance of one co-ordinate unit. 5. A vertical and horizontal co-ordinate is computed for each Rate Centre from its latitude and longitude location by use of appropriate map-projection equations. A pair of V \& H co-ordinates locates a Rate Centre, for determining airline distances, at the intersection of the vertical and horizontal grid lines so designated; it also designates the centre of a square having each side about 1670 feet long and an area of about onetenth of a square mile. The rate distance between any two Rate Centres is the airline distance between the points designated by the $\mathrm{V} \& \mathrm{H}$ co-ordinates of the respective Rate Centres.	$\stackrel{C}{\text { C }}$

| ITEM
 100.1 | Method of Computing V \& H Message Toll Rate Distance |
| :--- | :--- | :--- | :--- |$|$| | (a) \quad Obtain the "V" and "H" co-ordinates for each center. |
| :--- | :--- |
| (b)Obtain the difference between the "V" co-ordinates and the difference between the
 "H" co-ordinates, in each case by subtracting the smaller co-ordinate from the
 larger. | |
| (c)Divide each of such differences by three, rounding each quotient to the nearest
 whole number. | Square the two integers and add the two squares. If the sum of the squares is
 greater than 1777, divide the integers obtained in (c) by three and repeat step (d).
 Repeat this process until the sum of the squares obtained in (d) is less than 1778. |

Original Page 2

ITEM	Method of Computing V \& H Message Toll Rate Distance - Continued	
100.1		

| | (e) \quadThe number of successive divisions by three in steps (c) and (d) determines the
 value of "N" below. Multiply the final sum of the two squares obtained in (d) by the
 multiplier specified in the following table for this value of " N ". |
| :--- | :--- | :--- | :--- |

$\underline{\mathrm{N}}$	$\underline{\text { MULTIPLIER }}$	MINIMUM RATE MILEAGE	
1			
2	0.9	41	
3	8.1	121	
4	72.9	361	
5	656.1	1,081	
6	$5,904.9$	3,241	

Original Page 3

$\begin{aligned} & \hline \text { ITEM } \\ & 100.1 \\ & \hline \end{aligned}$	Method of Computing V \& H Message Toll Rate Distance - Continued	
	b) Divide integers in (a) by three and round to the nearest whole number $=90$ and 26. Square integers and add: Sum of squared integers $\begin{aligned} & 90 \times 90=8,100 \\ & 26 \times 26=\frac{676}{8,776} \end{aligned}$ $\begin{aligned} & 8,776 \\ & \text { efore di } \end{aligned}$ Sum of squared integers is greater than 1777, therefore divide integers above and repeat process. (c) Divide integers in (b) by three and round to the nearest whole number $=30$ and 9 . Square integers and add: $\begin{array}{r} 30 \times 30=900 \\ 9 \times 9=\frac{81}{981} \end{array}$ This sum of squared integers is less than 1778, and was obtained after three successive divisions by three; therefore " N " $=3$. 4. Multiply final sum of squared integers by factor 72.9 (corresponding to $" \mathrm{~N} "=3$) $981 \times 72.9=71,514.9$ 5. Square root of $71,514.9=267$ and a fraction which is rounded to 268 miles (a fraction of a mile being considered a full mile). The 268 miles is larger than the minimum of 121 rate miles applicable when " N " $=3$; consequently the rate distance is 268 miles.	

$\begin{aligned} & \hline \text { ITEM } \\ & 100.2 \\ & \hline \end{aligned}$	Method of Computing Interexchange Rate Distance
	1. The interexchange rate distance is computed by using the Vertical (V) and Horizonal (H) Coordinates of the Rate Centres. Such distance is the square root of one tenth $(1 / 10)$ of the sum of the square of the difference between the V Coordinate and the square of the difference of the H Coordinate, with any remaining fraction being rounded to the next higher mile. The formula is as follows: Rate Distance $=\sqrt{\left..1\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)^{2}+\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)^{2}\right)}$ where V_{1} is the larger of the V coordinates and H_{1} is the larger of the H coordinates.

