
27

Customizing
Contentful
A DEVELOPER’S
GUIDE

2

Table of Contents

Authors

Introduction

Content modeling process

Media metadata pattern

Configuring automatic backups

Data ownership with Contentful

Blue-green deployment

Integrations with Contentful

Smart web applications

3

4

5

11

16

23

27

31

34

3

Authors
As a solutions architect with more than 16 years of experience, Arjun Ganesh designs cutting-edge
solutions that help customers increase their speed and agility when bringing digital experiences to
market.

In engineering roles and as a solutions architect, Edwin Maldonado prioritizes customers’ needs
and helps them learn the best practices of content modeling and software developer kits.

Sia Rad, a global IT director and technical architect, has more than 20 years of experience in
consulting, designing and delivering secure and distributed enterprise solutions across industries.

Jim Sam is a solution architect who is passionate about helping customers achieve their content
goals. For nearly a decade, he has helped companies and nonprofits in their digital transformation
by analyzing and designing systems that enable seamless access to content.

As a technical architect, Daniel Schley helps customers to succeed in transforming their digital
solutions toward a modern content management infrastructure.

Kiersten Thamm is a technical writer and the managing editor of the Contentful blog. She’s a
Contentful power user and collaborates with engineers to write articles that help users build dream
projects with Contentful.

4

Introduction
The world’s largest companies run on Contentful. Companies whose scale, scope and legal
obligations often produce complicated challenges.

That’s where Contentful’s solution architects come in. Architects design solutions for the most
complex situations, helping customers built secure and inventive digital experiences under any
circumstance.

A successful content model sets everyone up for success.

This book begins with Jim Sam’s article “Content modeling process.” In it, he helps readers develop
content models that cater to specific business goals. His advice benefits all Contentful users that
want to think more strategically about the process of content modeling.

The following six articles address advanced topics related to Contentful integrations. Our architects
wrote each in response to specific customer requests, but their solutions have wider applications.

UI extensions can enhance Contentful’s web app in almost any way expressible in HTML and
Javascript — including the integration of external APIs in the web app. In “Media metadata
patterns,” Jim Sam explains how to add fields to a media asset by creating custom metadata fields
with a content-type wrapper and UI extension. Daniel Schley clarifies other complex integrations
with Contentful in “Integrations with Contentful.”

Edwin Maldonado and Arjun Ganesh provide data backup and ownership solutions. Maldonado
demonstrates how to set up automatic backups for Contentful spaces using AWS Lambda Function
and CloudWatch in “Configuring automatic backups.” In “Data ownership,” Ganesh takes data
a step further and explains how an enterprise can use AWS S3 to back up data on personal
infrastructure and maintain an audit log.

Sia Rad and Ganesh address seamless experience and personalization in user experience. In
“Blue-Green deployment,” Rad explains how to use Contentful spaces to publish updates without
interrupting a customer’s experience. Ganesh shows how to create a moderately personalized web
application using Contentful, Optimizely and Google Analytics.

Some of these solutions depend on features only available to enterprise-level customers. If you
aren’t already working with Contentful, you can request a free enterprise trial.

We hope this collection helps you use Contentful to build your most ambitious project.

https://www.contentful.com/contact/enterprise-trial/

5

Content
modeling process
Jim Sam

How you structure your content determines what business outcomes the content produces. Having project
owners, content strategists, developers, and editors understand this is crucial for the project’s success.

The content model is at the heart of a team’s Contentful experience. Why? It’s the technical way you
structure content that determines business outcomes. Well-structured, strategic content enables digital
teams to quickly ship their products across multiple channels.

How do you go about creating a successful content model? What does that process look like? We’ve hinted
at this before with content modeling basics, composable entries, and topics and assemblies, but let’s
discuss it on a more thorough level.

Prerequisite concepts
This article builds on the information in content modeling basics, composable entries and topics and
assemblies. Familiarity with creating databases or metadata schemas is helpful but not required. Familiarity
with JavaScript is also helpful for some of the associated tooling.

Major themes

TOPICS AND ASSEMBLIES

Content types and their entries can describe content (topics) or context (assemblies), which hard content
flows into. Assemblies can aggregate topics or other assemblies. Any individual assembly can be medium-
specific (web, mobile, etc.) or work across all media. The fields that go in a particular assembly have
profound implications on content re-use, content security, personalization, workflows, and automation
strategy.

6

A content type as a blueprint for content (a topic):

A content type as a blueprint for context, a grouping of featured products (an assembly). Implicit in this
assembly is that it will have a parent assembly:

Note that this assembly does not imply a specific medium and could be used for any.

7

FUNCTIONALITY CHOICES

Your content model depends on what functionality you want to optimize for. Like with all software
architecture decisions, there are trade-offs. You need to have in mind what quality attributes you are
optimizing for: content reusability, authoring/editing usability, content security, automation, modifiability,
app speed, etc. that can be in conflict with each other. There is no singular, definitively-best content model.

WHO SHOULD DEFINE A CONTENT MODEL?

We strongly suggest that a cross-functional team is involved early in the process. A successful content
model drives successful business outcomes, and the best content model reflects the needs and
expectations of everyone involved.

What may seem obvious to a developer may not be so evident to a content editor, and what an editor
wants might be opposed to the needs of content strategy. For example, WYSIWYG editors in other content
management systems do not allow you to enforce a content strategy between content creators, which leads
to unique pieces of content that do not conform to a larger strategy.

A team can iterate on its content model more quickly when diverse roles discuss their challenges, and
everyone maintains appropriate expectations since they understand the project as a whole.

Optimizing for specific outcomes
The mechanics of defining what fields belong in what content types gets to the heart of the functionality
question.

In general, each content type should be a conceptual thing unto itself (i.e. product, row of cards, button,
etc.). But it’s a key question every time, if an attribute or group of attributes should be a field on that
content type or abstracted to a referenced content type. Different optimizations will show different, often
unforeseen problems.

To better illustrate this, let’s walk through a few common scenarios and outline the pros and cons. This is by
no means an exhaustive list of trade-offs or content modeling tactics that you might face but a greatest-hits
collection. Where your team falls in each is dependent on your objectives.

Authoring usability vs. content reusability
One of the hardest choices with content modeling is the question of how flat a model should be. Flat means
here that a content type does not have many reference fields. Flat content types are easy to understand for
an editor, but they do not lend themselves to content reuse. The same content is often manually entered
again and again across flat entries. When this content requires an update to change a value across all
entries, someone must either write a script to programmatically change the values or change each manually.
Abstracting those values into a referenced entry offers an elegant solution.

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

8

This is a flat content type for a product web page. It’s easy to understand what fields will compose a page,
but you might find many of the same button designs used repetitively across entries.

This is an example of an abstracted content type for a product web page.

9

Understandability vs. omnichannel reusability
Content models are frequently geared towards one medium, which can cause omnichannel problems down
the road. For example, we often see content models that mimic a web site’s layout with landing page, category
page, product page, etc. as content types. It’s easy to understand for all stakeholders.

Users can onboard quickly, and it maps nicely to the front-end code for a web site. It suits many customers
well, but it has a downside: poor content reusability. The mixing of hard content (a product) with context (a
page describing the product) means the wrong content is pulled from the API in a different medium. If you
want to reuse the content in a mobile app or digital signage when displaying product info using our REST
APIs, you would likely pull an excessive amount of content from a product page entry that doesn’t make sense
for a non-web medium. Using the GraphQL API could be a solution, but this may create unwanted cognitive
overhead when maintaining your app over time.

Extensibility automation vs. authoring usability
Abstracting fields into their own content type offers some benefits to developers while challenging content
authors and editors. Webhook automation exemplifies this dynamic. As a content model becomes more
structured through assemblies, it is possible to finely tune when a webhook fires to another service. This is
a similar strategy to developers including extra divs on a web page for styling reasons. However, like the
question of omnichannel reusability, this introduces added complexity for a content creator or editor.

Automation vs. space limits and maintainability
From time-to-time, customers map content types to React components in their design system. On a technical
level, this seems like a good idea. Having a one-to-one mapping between Contentful and the front-end makes
sense. However, we generally do not endorse this pattern for two reasons. First, it often results in a high
content type count, which pushes against the limits of purchase limits. Second, components and content types
will change as the app goes through its life cycle. Keeping them in sync may become difficult to maintain,
especially if the app is only partially redesigned. Instead, we suggest using higher order components or
selectors in redux to do this mapping.

Malleable content models
With Contentful, your content model is not permanent. It may need to change over time due to agile iteration,
honest mistakes or changing business needs. A content type as an abstracted blueprint for a product web
page. Our easy-to-learn migration tooling allows you to refine or overhaul it as needed.

Content models require modification for any number of reasons. Maybe you need to move some fields into their
own content type so that content can be reused and data entry time diminished, such as in this deep dive video.

Combining our content migration DSL and tooling with space environments allows your development
team to prepare migration scripts for the next version of your content model, independent of editors, and
programmatically apply these changes — CMS as code.

https://www.youtube.com/watch?v=7YVg0dsJC2c
https://github.com/contentful/contentful-migration
https://www.contentful.com/developers/docs/concepts/multiple-environments/
https://www.contentful.com/r/knowledgebase/cms-as-code/

10

As you adjust your content model, we suggest using an expand/contract process. In this, one migration
script will create the necessary new fields, references and new content types. A second script will adjust the
corresponding entries so that the new and old schemas temporarily exist together, with old fields disabled for
editing and the new fields possibly omitted from the API response. Once all applicable parties have approved
the new version of the content model, a final script runs to clean out the old content.

Conclusion
Contentful allows you to define your content model and equips you to ensure your content model promotes
intended outcomes, even as your digital products evolve. However, a content model is just another software
architecture choice, and there are tradeoffs between functionalities. Keeping this in mind will help you
develop your optimal content model.

11

Media
metadata pattern
Jim Sam

How custom metadata fields on an asset can be achieved with a content type wrapper and UI extension.

Customers often want more fields on a media asset beyond the default title and description. Handling this
is a three-step process. This can be as simple as adding an explicit alt text field or supporting standards like
IPTC photo metadata or Dublin Core.

How it’s done

STEP 1: CREATE A WRAPPER CONTENT TYPE

Create a new content type named image (or video, etc.). Because a content type is custom-defined by
default, you now define the fields you’d like. Included in this content type is a media field, likely with the
media field validation set to the type of file required by this type.

12

13

STEP 2: VALIDATIONS ON THE PARENT CONTENT TYPE

Set a validation on any field in a parent content type that would need to reference this new content type. In
this example, an Images carousel needs to reference this Image content type and nothing else.

At this point, you could be ready to go, though we do not recommend stopping here. Stopping here would
require your editors to click into and publish the media when creating content, which can cause problems.

14

STEP 3: INSTALL THE IMAGE UPLOADER UI EXTENSION (RECOMMENDED)

The Image Uploader UI extension changes the presentation of the web app to flatten the content creation
flow. For a content creator or editor, the flow is a drag and drop to the Image content type entry and the UI
extension field (which looks like a regular asset field).

The extension creates a new asset with that file and connects it to the entry in question. Nothing structurally
changes about how the image exists as far as the APIs are concerned, but it makes it easier on your content
creators and editors.

To take advantage of this feature, install the UI extension from the marketplace. Then, in the image content
type, change the appearance of the media field to use the UI extension.

To a content creator, the flow now looks simpler.

https://www.contentful.com/developers/marketplace/image-uploader/

15

Conclusion
In Contentful, adding custom fields to an image asset is done by creating a wrapper content type around
a media asset. One defines these custom fields as they would define any content type. With a helper UI
extension, it’s a seamless experience for content creators and editors.

16

Configuring
automatic backups
Edwin Maldonado

How to set up automatic backups for Contentful spaces using AWS Lambda Function and CloudWatch for
scheduling.

Contentful maintains a command line interface (CLI) which offers a `space export` command that lets you
download a backup of your Space. If you are interested in reading about the different options that you can
pass to the space export command, go to the readme on Github.

 contentful space export — space-id {SPACE-ID} — environment-id {SPACE-ENV} — management-
Token {CMA-TOKEN} — exportDir {YOUR-PATH}

This will create a backup that is a JSON file with the whole space structure (content model, entries, assets,
roles & permissions and webhooks).

The CLI `space export` command works great but we have bigger plans. We want to automate this process
by scheduling a routine to do it for us.

Thankfully, there is yet another tool called the Contentful export tool, which is a Javascript library that helps
you to backup your space (as the `space export` CLI) in a programmatic way.

Process

1. Generate a backup of your space. By writing a NodeJS script that can collect the export options,

download the backup and save it as a JSON file locally.

2. Upload the backup to AWS S3. Once you have the JSON dump locally, you can upload it to a S3

Bucket where you can collect the backups.

3. Wrap your backup script in a Lambda function so that you have the advantage of triggering it in a

variety of ways. One good option is AWS CloudWatch, which can be configured to run as a Cron

Job.

4. For the purpose of this tutorial, I will schedule my script on a daily basis. You are free to adapt it to

your needs.

https://github.com/contentful/contentful-cli/
https://github.com/contentful/contentful-cli/tree/master/docs/space/export/
https://github.com/contentful/contentful-export/

17

Implementation
Create a new AWS Lambda function from the AWS Console. You will quickly notice that there are three ways
to create a lambda deployment package:

1. Use the built in editor

2. Upload a .zip file

3. Upload a file from Amazon S3

Use the `Upload a .zip file` option, which means that you will need to upload a zip file that contains our
function .̀js` file and the `node_modules` required for our function.

Create a `package.json` file with the below dependencies:

PACKAGE.JSON

 {

 “dependencies”: {

 “aws-sdk”: “2.450.0”,

	 “file-system”:	“”,

 “contentful-export”: “”

 }

 }

https://aws.amazon.com/

18

Create another file called `index.js` This file will contain your main function — now you’re only downloading
our backup file to our local `tmp̀ folder:

INDEX.JS

 ‘use strict’

const AWS = require(‘aws-sdk’);

const fs = require(‘fs’);

const contentfulExport = require(‘contentful-export’);

exports.handler	=	async	(event)	=>	{

 const local_backup_path = ‘/tmp/’

	const	file_name	=	‘contentful_backup.json’

 const options = {

 spaceId: process.env.SPACE_ID,

 environmentId: process.env.SPACE_ENV,

 managementToken: process.env.MANAGEMENT_TOKEN,

			contentFile:	file_name,

 exportDir: local_backup_path,

 useVerboseRenderer: false,

 saveFile: true

 }

	try	{

 const result = await contentfulExport(options);

 return sendResponse(200, ‘File downloaded’);

 } catch (err) {

 console.log(‘Oh no! Some errors occurred!’, err);

 }

 return sendResponse(200,’End of the Function’);

};

Note that we are using environment variables on the script, you can set these `ENV` variables on the AWS
Lambda function page.

19

You still need to upload the dump file to a S3 bucket. In the AWS Console, create a new bucket (or pick
an existing one). Once you have your bucket in place, you need to set up the communication between our
lambda function and the S3 bucket. In order to do that we have two options:

1. Use your API credentials in the lambda function to talk to S3.

2. Or set up a new IAM Role.

I lean towards the IAM Role option to keep things clean in our function. So again from the AWS Console, go
to the `Security, Identity, & Compliance` section and choose IAM.

Create the new IAM role and make sure to attach the AmazonS3 policy to it.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html/

20

Link the new IAM Role to your lambda execution option:

This allowed our lambda function to talk directly with our S3 bucket. Let’s write the uploader part then, and
this is how the final function looks like:

 ‘use strict’

 const AWS = require(‘aws-sdk’);

 const s3 = new AWS.S3();

 const fs = require(‘fs’);

 const contentfulExport = require(‘contentful-export’);

				exports.handler	=	async	(event)	=>	{

 const local_backup_path = ‘/tmp/’

						const	file_name	=	‘contentful_backup.json’

 const options = {

 spaceId: process.env.SPACE_ID, // Replace it

 environmentId: process.env.SPACE_ENV, // Replace it

 managementToken: process.env.MANAGEMENT_TOKEN, // Replace it

						contentFile:	file_name,

 exportDir: local_backup_path,

 useVerboseRenderer: false,

 saveFile: true

 }

21

						try	{

 const result = await contentfulExport(options);

 console.log(‘Your space data has been downloaded!’);

				//	Save	file	to	AWS	S3

				console.log(‘Preparing	file	for	AWS	S3!’);

				const	outputFile	=	local_backup_path	+	file_name;

				let	fileBuffer	=	new	Buffer(fs.readFileSync(outputFile));

				fs.unlinkSync(outputFile);

				await	uploadFile(fileBuffer);

 return sendResponse(200, outputFile);

 } catch (err) {

 console.log(‘Oh no! Some errors occurred!’, err);

 }

 return sendResponse(200,’End of the Function’);

 };

				const	sendResponse	=	(status,	body)	=>	{

 var response = {

 statusCode: status,

						body:	body

 };

 return response;

 };

				const	uploadFile	=	async	(buffer)	=>	{

 let params = {

						Bucket:	process.env.S3_BUCKET_NAME,

						Key:	‘backups/’	+	Date.now().toString()	+	‘.json’,

						Body:	buffer

 };

						return	await	s3.putObject(params).promise();

 }

22

Scheduling the function
Pick a trigger for our lambda function, specifically a CloudWatch Event. Create the trigger and schedule it as
you wish, I used the daily option:

`Schedule	expression:	rate(1	day)̀

Make sure to compress your deployment package (`index.js` and `node_modules`), upload the zip file to the
lambda’s function code section and test it!

This is how the final solution looks like on the AWS lambda page.

23

Data ownership
with Contentful
Arjun Ganesh

How to own your data and make sure it is always available no matter what.

Contentful provides 99.96 to 99.99 availability depending on your enterprise SLA. This is sufficient
in most cases, but sometimes you need even more reliability. Enterprises that store critical data in
Contentful may need to satisfy legal or compliance requirements associated with data ownership and
business continuity. Regulated and public enterprises might need to have backup protection in the
unlikely event that Contentful ceases to operate in the future.

Contentful and AWS S3 offer a reliable, secure and out-of-the-box integration that solves these
demands. It backs up data on your own infrastructure and allows you to maintain an audit log. You could
also build a custom HA/DR/BPC procedure with Contentful.

Solution
Integrating AWS and Contentful begins by setting up a S3 bucket on AWS. Below are screenshots that
show how a S3 bucket being created via the AWS console:

24

You will need to enable versioning, as seen below. This stores multiple versions of the same file as one:

Use an existing user with the right permissions, or generate a new Access ID and Access Key that can be
used from Contentful to write in this folder. The latter is the better option.

That’s all that is required from AWS. The remaining configuration can be done from the Contentful web
app. You need to be an admin or an owner of the space that you’re using to do so.

Create a new webhook within Contentful using the AWS S3 template.

25

Enter the region and the name of the bucket, along with the access credentials.

When an entry is created or updated, a JSON file is stored in this S3 bucket with all the info of the entry.
The JSON file is versioned — you always see the latest version. If you want to publish content and aren’t
concerned with draft content, then update the events when the webhook is triggered under the webhook
settings.

26

This covers most of the use cases:

1. Backup of contentful data in your AWS S3

a. You own your data, it is on your cloud.

b. You’re ensured compliance and data availability in the unlikely event that Contentful does not

exist in the future

3. Create an audit log, because the data contains user information for each entry. Notice each JSON

is associated with the user ID who made the change.

We still need to do one more thing to satisfy HA, DR and BCP requirements. If you are accessing Contentful
directly from a client:

1. Create a lambda or similar function that can be called from the client

2. In the lambda make the Contentful call

3. If this fails, make the call to the S3 bucket to get the corresponding JSON

4. Massage the JSON from the S3 and remove unwanted elements

5. Return it to the client

If you have a service that merges contentful content and some form of React/Mustache templates, update
this service to call the S3 bucket (similar to above) if Contentful is down.

Now — even if Contentful is down — your digital experience will still function with the latest published data
from the S3 bucket.

Conclusion
This simple, out-of-the-box integration between Contentful and AWS S3 is reliable and solves complex
enterprise requirements. It demonstrates just how flexible and reliable SaaS and API based integrations are.

Useful links
Webhooks

Contentful Delivery APIs

AWS S3 bucket (create. read)

https://www.contentful.com/developers/docs/concepts/webhooks/
https://www.contentful.com/developers/docs/references/content-delivery-api/
https://www.contentful.com/developers/docs/references/content-delivery-api/

27

Blue-green
deployment
Sia Rad

27

User experience plays a crucial role in the success of every business. Displaying the latest content to
customers without interrupting their experience is a win-win for both businesses and customers.

Some businesses struggle to make their latest changes available to customers with the agility that the
market demands due to the redundant and inherent dependencies in their developer operations (DevOps)
process. Time to market increases when platforms cannot eliminate the dependencies between making and
deploying iterative changes.

Business leaders and marketing teams need an agile approach to let customers know about products and
services just in time. Developers need a platform that enables them to deploy changes while future changes
are being developed without impacting customer experience. And consistent and reliable access to the
latest content and features keeps customers happy.

Solution summary
You can leverage Contentful’s out-of-the-box capabilities to build the solution. Refer to CMS as Code to
learn how to use spaces and space environments if your DevOps is not already doing so.

Two spaces can be dedicated to your agile DevOps (Blue and Green) and a config file (self-hosted) to
switch from the Blue to Green or vice versa. Doing so enables you to serve your front-end with the content
from one space (Blue acting as the active space serving as production) while your dev team works on new
changes in the other space (Green acting as the standby space serving pre-production) without impacting
production. Once the changes are ready to go live, a config change would promote the pre-production to
production and vise versa. As a result, Blue becomes pre-production and Green becomes production until
the next round of continuous deployment.

Prerequisite concepts
Take some time to review and learn about the following concepts before you continue:

1. CMS as Code, also known as Infrastructure/Content as Code

2. Managing multiple environments

3. Contentful CLI and CMA SDKs

https://www.contentful.com/r/knowledgebase/cms-as-code/
https://www.contentful.com/r/knowledgebase/cms-as-code/
https://www.contentful.com/developers/docs/concepts/multiple-environments/
https://www.npmjs.com/package/contentful-cli
https://www.contentful.com/developers/docs/references/content-management-api/

28

Use case
A Healthcare Provider company in North America with more than 75 million members wanted to build
a platform that had a high level of availability for customers. They also wanted their IT team to build
and deploy content models, and revamp, review and publish content without interrupting the customer
experience. Previously, they made iterative releases and pushed changes from development to test and
production. But each deployment of a new release caused downtime. Some of the deployments took hours
and needed to happen overnight to minimize the impact on the customer experience.

The requested platform required a DevOps process that uses the following components:

1. Two spaces (known as Blue and Green)

2. Space environments (e.g. Dev, QA, Master)
Note: The number of environments and the naming convention could vary for different
businesses.

3. Contentful CLI/CMA scripts to apply changes from Dev, QA, Master

4. Code repository to commit the scripts and check out and run as needed

5. Script to publish the draft content, if applies per release

6. A self-hosted config file containing:

a. Prod Space API Access Token

b. Prod Space ID

c. Prod Environment Name (this is currently optional, since it isn’t possible to rename the

“master” environment at this point. Let’s keep it here for forward compatibility.)

29

Blue-green deployment process
Now that you have a way to build the Blue-Green architecture, let’s look at what process should be used to
properly build and deploy changes in this model.

Draft

MasterDev QA

Space 1

Published
Publish
Content

Clone master

Delete
environment

Execute

Commit
Developer

Create
Edit/Delete

Content

Test
Content
Model

Create/Edit/
Delete/Review

Content

Migrate
content

Pull published content

Update Config File

Tester

End user

Author/Editor/Reviewer

1

8

7

3

10

2 4 5

6
CI/CD

Middleware

Draft

Master

Space 1

Published

API Access Token = <Green Master CDA Access Token>
Space ID = <Green Space ID>
Environment = master

9 Production
Website

1. Let’s assume that the Blue space (production) is serving the production front-end and the Dev and QA
envs are created as clones of the Master on the Green Space (Pre-Prod).

2. Script the changes, run it on the Dev environment, and do unit testing
3. Commit the script into your CI/CD code repository
4. Deploy the changes on the QA env by running the same script and review and QA the changes
5. Deploy the changes on the Master by running the same script and preview and validate the changes
6. Publish any content that needs to be part of this release. Note: At this point, you are ready to serve

production front-end by the latest changes from the Green space.
7. Update the config file with the Green space properties (i.e. Space ID, CDA Access Token, and master

environment name)
8. Start serving the front-end by pulling the latest changes from the Green space
9. Assuming you have already built a script to refresh everything on the master environment of the Blue

space with a copy of the master environment from the Green space, run the script and validate the
results.

10. Dispose of the environments on the Green space if your normal practice is to recreate those
environments for every sprint.

11. Repeat the same process for the next release by switching Blue and Green space roles

30

Expected outcome
Implementing this solution will enable businesses and their IT teams to streamline their DevOps process
and deploy changes to production without having production downtime and interrupting their customer
experience. It will improve time to market and increase customer satisfaction and sales.

Conclusion
A Blue-Green deployment offers a solution for IT teams unable to deploy changes to production without
degrading customer experience. A Blue-Green deployment provides the architecture to automate
the process, eliminate dependencies, and deploy changes without scheduled production outages or
unscheduled interruptions to service.

Useful links
CMS as Code

Managing multiple environments

Contentful CLI

Contentful Delivery APIs

Contentful Management APIs

https://www.contentful.com/r/knowledgebase/cms-as-code/
https://www.contentful.com/developers/docs/concepts/multiple-environments/
http://Contentful CLI
http://Contentful Delivery APIs
https://www.contentful.com/developers/docs/references/content-management-api/

31

Integrations
with Contentful
Daniel Schley

One of the most powerful aspects of Contentful is its extensibility. UI extensions can enhance Contentful’s
web app in almost any way expressible in HTML and Javascript—including the integration of external APIs in
the web app.

The high-level principles for these integrations can seem simple, but complicated questions often arise
during implementation. Does this field need to be in Contentful? Content is already stored in another
system, so should we sync it to Contentful or integrate it as a reference? How can we combine data from
multiple source systems for common use in one product, such as a website?

Almost all use cases built with Contentful entail publication of content to a publicly available information
system, such as a website or an app. Most editorial content is managed in Contentful, which means change
happens in Contentful and potentially should trigger follow up actions with Contentful as the leading system
and event source. More complex use cases require the integration of data hosted and/or managed in
another system like a product information management.

Use case
ACME Corp is a telecommunications company that frequently publishes product pages for the mobile
phones that they sell through their website. They decided to use Contentful to managing their marketing
websites. They already had a product information system (PIS), and they wanted to use an enhanced version
of the content in their marketing website. They respected the separation of concerns and avoid redundancy;
they had learned how important this was when they lost product information due to last-minute changes
during a product launch phase. Recovering that information required significant effort since the same data
needed to be changed in several places in separate systems, such as CMS and PIM.

https://www.contentful.com/blog/2017/10/25/a-new-way-to-set-up-content-approval-workflows/

32

Data
The following content was relevant to their product website, in addition to what is available in the PIM.

Simple content model for product description page:

• Product description

• Product images

 The PIM already contains product information, including:

• Title/product name

• Manufacturer

• Colors

• Configurations

ACME needed an integration that respected a loose coupling among integrated components so that their
content creators could see relevant information and avoid duplicating information in the CMS. They also
needed to present their products in a seamless and unified way.

API integration
ACME needed to move quickly, so they decided to use the easiest integration possible. Their architecture
required a BFF for additional reasons, so they integrated via PIM reference and enrich product information
in Contentful.

1. Contentful Date: Contentful data contain the product ID as productReference.

2. PIM Data: Data from the PIM can be retrieved via product ID subsequently from the backend.

3. Architecture: The backend fetches product data first from Contentful, and can then use the

referenced product ID to resolve data in the PIM and provide a unified response for the frontend.

Web app integration
Web app integrations allow editors to reliable link PIM data and additional content in Contentful without
manually creating a reference.

UI extensions to the rescue
In ACME’s case, the answer is a single UI extension. The product entry in Contentful shows a drop-down
menu that contains the product selection where the Content Creator selects the referenced product. The
UI extension stores the corresponding product ID and fills the internalTitle field automatically, which is
validated for uniqueness. The additional title field serves web app search purposes and makes it easier to
find products. The entry also contains the description and the corresponding images.

https://samnewman.io/patterns/architectural/bff/

33

Consistency
Because there might be changes in the PIM products name, there is a chance for inconsistency. ACME
responded to this challenge by implementing a serverless function that uses the Content Management API
to update the title in corresponding change situations triggered via outgoing PIM webhooks.

Future expansion
ACME decided to adopt GraphQL in the future, which will allow even easier integrations via schema
stitching and a unified ACME GraphQL API for all systems managing external data.

https://www.contentful.com/blog/2019/01/23/combining-apis-graphql-schema-stitching-part-1/
https://www.contentful.com/blog/2019/01/30/combining-apis-graphql-schema-stitching-part-2/

34

Smart web
applications
Arjun Ganesh

Your web application should have a top-down approach from the view of your customers, putting your
customers at the top. It can be as simple as a sleek, user-friendly layout of interactive images sprinkled
with personalised data. The latter is what adds intelligence to your site. Customers want to see more of the
things they like in an enjoyable, immersive experience.

Various cloud based services make this possible. Using Contentful, Optimizely and Google Analytics,
you can achieve simple, mildly personalised web applications that can then be moderated based on
performance statistics. It’s like lego pieces for building a site.

Where to start?
Every web application needs content. Let’s start with that. You need somewhere to securely store the
content that allows you to retrieve and edit it quickly without developers. Get Contentful. Your editors
and authors can manage content within Contentful, and your developers can retrieve content via APIs and
integrate it with their front-end code of choice.

Content creators are always trying to figure out what content to display when, on which page and to
whom. An experimentation platform enables them to do this without the guesswork. Optimizely seamlessly
integrates with Contentful and equips you with the capability of targeting audiences and the APIs to access
them. Google Analytics provides the data that content creators need to make strategic decisions. Data
about what performs well, what makes the highest sale and generates the most traffic.

Build build build
Create a content model inside Contentful that can power the data for your user experience and front-end
code. Get content creators to start populating content. Numerous articles cover this topic in detail, and I
have listed some at the end of this article.

To use the Optimizely feature in Contentful, the fields that content creators would like to experiment on
need to be references. For example, if a call to action button is required, make it a child reference type to
you home page parent type.

Next, setup your experimentation platform. Create variations and audiences. Define targeting criteria such
as cookies or other context parameters such as device or location).

35

To connect Optimizely to Contentful, go to apps in the Contentful web app and enable the Optimizely app.
You should see a screen similar to below:

36

Enter your Optimizely Personal Access Token and connect your account. This will bring a list of your projects.
Select the one you created. Add the relevant Contentful content types that you want to run this experiment
against. If you select the parent type, you should see the referenced child that you want to experiment with.

When you create an entry, you will see a drop-down menu that gives you the option to select a variation
container.

A variation container brings up the Optimizely variations and allows you to select the content you would like
to display for each variation.

37

Publish the entry and let the front-end code work with the Optimizely API.

Surface your google analytics data inside the Contentful web app as a custom sidebar UI extension. You
need to build a JS page that surfaces stats from google analytics and install it as a sidebar UI extension in
the web app. I have included additional resources under useful links.

Conclusion
Contentful provides a single platform for practitioners to create content, run Optimizely experiments and
make decisions based on data derived from Google Analytics. This reduces complexity and increases go-to-
market speed. It empowers practitioners to create content based on numerous experiments — resulting in
an awesome customer experience.

38

Useful links
Content Modeling Basics

Contentful Delivery APIs

Contentful Management APIs

Sample Google Analytics Integration

Telus Personalisation Case Study

https://www.contentful.com/r/knowledgebase/content-modelling-basics/
https://www.contentful.com/developers/docs/references/content-delivery-api/
https://www.contentful.com/developers/docs/references/content-management-api/
https://github.com/stefanjudis/contentful-analytics-ui-extension
https://labs.telus.com/blog/scaling-personalization-and-b-testing-telus

	Authors
	Introduction
	Content
modeling process
	Media
Metadata Pattern
	
Configuring
Automatic Backups
	Data Ownership
with Contentful
	Blue-Green
Deployment
	Integrations
with Contentful

