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Dementia is one of the most debilitating aspects of Parkinson’s disease. There are no validated biomarkers that can track

Parkinson’s disease progression, nor accurately identify patients who will develop dementia and when. Understanding the sequence

of observable changes in Parkinson’s disease in people at elevated risk for developing dementia could provide an integrated bio-

marker for identifying and managing individuals who will develop Parkinson’s dementia. We aimed to estimate the sequence of

clinical and neurodegeneration events, and variability in this sequence, using data-driven statistical modelling in two separate

Parkinson’s cohorts, focusing on patients at elevated risk for dementia due to their age at symptom onset. We updated a novel ver-

sion of an event-based model that has only recently been extended to cope naturally with clinical data, enabling its application in

Parkinson’s disease for the first time. The observational cohorts included healthy control subjects and patients with Parkinson’s dis-

ease, of whom those diagnosed at age 65 or older were classified as having high risk of dementia. The model estimates that

Parkinson’s progression in patients at elevated risk for dementia starts with classic prodromal features of Parkinson’s disease (olfac-

tion, sleep), followed by early deficits in visual cognition and increased brain iron content, followed later by a less certain ordering

of neurodegeneration in the substantia nigra and cortex, neuropsychological cognitive deficits, retinal thinning in dopamine layers,

and further deficits in visual cognition. Importantly, we also characterize variation in the sequence. We found consistent, cross-vali-

dated results within cohorts, and agreement between cohorts on the subset of features available in both cohorts. Our sequencing

results add powerful support to the increasing body of evidence suggesting that visual processing specifically is affected early in

patients with Parkinson’s disease at elevated risk of dementia. This opens a route to earlier and more precise detection, as well as a

more detailed understanding of the pathological mechanisms underpinning Parkinson’s dementia.
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Introduction
Dementia is one of the most debilitating aspects of

Parkinson’s disease, with important social and economic

implications (Spottke et al., 2005; Leroi et al., 2012). It

affects half of all patients within 10 years of diagnosis but

with high variability in the timing of onset (Williams-Gray

et al., 2013). There are no validated biomarkers of

Parkinson’s disease progression, and the particular sequence

and evolution of Parkinson’s disease pathology and cognitive

decline remain unclear. Knowing the precise sequence of

events in Parkinson’s disease progression will be critical for:

(i) reducing heterogeneity in clinical trials; (ii) monitoring

treatment outcomes as new therapeutic interventions are

developed; and (iii) providing important insights into the

mechanistic underpinnings of degeneration in Parkinson’s

disease. Therefore, a key challenge is to construct quantita-

tive models of pathological and cognitive decline in

Parkinson’s disease progression using real-world patient

data such as neuroimaging and clinical measures.

Pathological changes underlying the development of de-

mentia in Parkinson’s disease relate to accumulation of

a-synuclein (Spillantini et al., 1997), as well as amyloid-b,

and tau (Irwin et al., 2017) with a synergistic relationship

seen between these proteins (Compta et al., 2011; Swirski

et al., 2014). However, it is challenging to detect these proc-

esses in patients living with the disease. There is no radio-lig-

and that directly binds a-synuclein. Even compounds that

directly bind to amyloid, such as Pittsburgh compound B,

have low specificity for predicting dementia in Parkinson’s

disease (Gomperts et al., 2012). The utility of tau-binding

ligands has been studied longitudinally in Alzheimer’s dis-

ease research (Jack Jr et al., 2018), but they are yet to be

tested in Parkinson’s disease, and may be similarly afflicted

by low specificity. More generally, molecular neuroimaging

markers are costly and not widely available.

Conventional neuroimaging features that measure tissue

loss caused by neuronal death, such as cortical thickness, are

less likely to be sensitive to early stages of Parkinson’s de-

mentia (Hattori et al., 2012). More advanced techniques

have begun to show potential to identify tissue changes

related to neurodegeneration (Lanskey et al., 2018). Of

these, quantitative susceptibility mapping (QSM) is particu-

larly promising as it relates to accumulation of brain tissue

iron, which is strongly linked with neurodegeneration (Ward

et al., 2014; Ndayisaba et al., 2019), co-localizes with amyl-

oid and tau (Ayton et al., 2017), and correlates with cogni-

tive change in Parkinson’s disease (Thomas et al., 2020).

Neuropsychological tests across cognitive domains are

used to map cognitive decline in Parkinson’s disease. Tests

of verbal fluency and visuospatial function seem to be early

indicators of an individual’s risk of developing dementia

(Williams-Gray et al., 2013), and visual processing regions

are affected early in patients who develop cognitive impair-

ment (Weil et al., 2016). Indeed, multiple lines of evidence

support the importance of visual processing regions in

Parkinson’s dementia and cognitive decline. These include

accumulation of post-mortem pathology (Toledo et al.,

2016), deficits in colour vision (Anang et al., 2014), and our

own studies highlighting deficits in quantitative higher-order

visual measures (Weil et al., 2019) and retinal thinning

(Leyland et al., 2020).

How these clinical and neuroimaging measures of decline

fit into a sequential model of progression to Parkinson’s de-

mentia is not yet known. A particular challenge is the ab-

sence of any objective pathological biomarkers that track

Parkinson’s disease progression in patients at elevated risk of

dementia—unlike Alzheimer’s disease, for example, where

neuroimaging and CSF biomarkers are now included in

diagnostic criteria (Dubois et al., 2014). Disease duration

(time since diagnosis), which can be useful as a measure of

disease progression in other degenerative diseases such as

Alzheimer’s disease, is particularly ineffective in Parkinson’s

dementia (Prange et al., 2019). Duration is often negatively

related to disease progression as patients with an older age

at diagnosis frequently progress more rapidly to dementia

while having a shorter duration of disease (Marinus et al.,

2018; Prange et al., 2019). Another approach to consider in

modelling progression to Parkinson’s dementia is regressing

measures of interest against a clinical cognitive variable such

as the Montreal Cognitive Assessment (MoCA) (Nasreddine

et al., 2005). However, this clinical measure is confounded

by practice/learning effects (in general) and by ceiling/floor

effects at early/late stages of cognitive involvement. Data-

driven approaches that jointly estimate disease progression

and the unknown (latent) disease stage are an emerging ap-

proach (Iddi et al., 2018; Li et al., 2019). In the work of

Iddi and colleagues (2018) this approach was applied to esti-

mate disease progression in a general Parkinson’s population

using mostly clinical features.

A data-driven understanding of Parkinson’s disease pro-

gression in patients at elevated risk of dementia will enable

robust identification of at-risk patients before dementia has

taken hold. Currently the state of the art in Parkinson’s de-

mentia risk determination are clinico-genetic algorithms (Liu

et al., 2017; Schrag et al., 2017). These calculate an individ-

ual’s risk of cognitive decline by combining demographic,

clinical, motor, and cognitive scores, as well as genetic and

biomarker results. Across all studies, higher age at onset is

consistently and significantly seen as the strongest risk factor
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for dementia in Parkinson’s disease (Hietanen and

Teräväinen, 1988; Jankovic et al., 1990; Biggins et al., 1992;

Aarsland et al., 2001, 2007; Akinyemi et al., 2008;

Williams-Gray et al., 2013; Liu et al., 2017).

Here we used novel event-based disease progression mod-

elling to investigate Parkinson’s disease progression, enrich-

ing for those at higher risk of dementia using older age at

onset. The event-based model (Fonteijn et al., 2012; Young

et al., 2014) is a generative statistical model of disease pro-

gression that learns the ordering (and uncertainty in this

ordering) of observable abnormalities from a cross-sectional

dataset, without the need for a priori-defined disease stages

or normal/abnormal cut-points—making it particularly suit-

able, in principle, for Parkinson’s disease where such disease

stages do not exist in a meaningful way. A recent develop-

ment uses kernel density estimation (Firth et al., 2020) to

allow the approach to cope naturally with the ceiling and

floor effects seen in clinical data, enabling the extension to

Parkinson’s disease for the first time. The model learns

directly from biomarker data, where we use the term

‘biomarker’ to include any observable dynamic measure that

potentially contains disease information, e.g. clinical/cogni-

tive tests, brain imaging, etc. Previous versions of the

event-based model have been used widely in recent years to

construct data-driven models of disease progression in spor-

adic Alzheimer’s disease (Young et al., 2014; Oxtoby et al.,

2017), familial Alzheimer’s disease (Fonteijn et al., 2012;

Oxtoby et al., 2018), Huntington’s disease (Fonteijn et al.,

2012; Wijeratne et al., 2018), and others (Eshaghi et al.,

2018; Firth et al., 2018). We update the method of Firth

et al. (2020) and apply it to the complex and heterogeneous

problem of Parkinson’s disease progression.

Materials and methods

Participants

We analysed baseline visit data from two separate cohorts. We
refer to our local cohort as the discovery cohort, which is from
the Vision In Parkinson’s Disease study (Leyland et al., 2020).
The second cohort is from the Parkinson’s Progression Marker’s
Initiative (PPMI) (Marek et al., 2011). See Table 1 for demo-
graphics and statistical comparisons and Supplementary mater-
ial for additional details.

Our discovery cohort included data from 107 patients with
Parkinson’s disease (disease duration 4.1 ± 2.5 years) who were
recruited to our UK centre, 37 of whom were diagnosed at age
65 or later, plus 34 healthy control subjects. Throughout we
will refer to Parkinson’s patients with age at onset 565 as
PDD-HR (Parkinson’s Disease Dementia–High Risk), and other
patients as PDD-LR (Parkinson’s Disease Dementia–Low Risk).
This cohort has been described previously (Leyland et al.,
2020). Inclusion criteria were early stage Parkinson’s disease
(UK Parkinson’s Disease Society Brain Bank diagnostic criteria)
(Gibb and Lees, 1989), within 10 years of diagnosis, aged 49–
80 years. Exclusion criteria were confounding neurological or
psychiatric disorders (four excluded), a diagnosis of dementia or

Mini-Mental State Examination (MMSE) score 425 (two
excluded) (Liu et al., 2017), or ophthalmic disease sufficient to
impair visual acuity (three excluded) (Leyland et al., 2020).
Data from 34 unaffected age-matched control subjects, recruited
from unaffected spouses and university databases, were also
included. All participants gave written informed consent and the
study was approved by the Queen Square Research Ethics
Committee.

We downloaded PPMI data in April 2020 from the
Laboratory Of NeuroImaging portal accessed via the PPMI
website (http://www.ppmi-info.org/). PPMI is an observation-
al multicentre study involving over 400 newly diagnosed
drug-naive patients (451 downloaded) and �200 healthy con-
trols (196 downloaded), plus a small number of possible pro-
dromal individuals [hyposmia or rapid eye movement (REM)
sleep behaviour disorder (RBD)], and patients having a PET/
SPECT scan without evidence of dopaminergic deficiency
(SWEDD), all with standardized clinical, cognitive and neuro-
imaging assessments. Inclusion criteria for our study was
PPMI participants having complete baseline data in the meas-
ures of interest (described below) with known disease dur-
ation (n = 46 excluded). Prodromal and SWEDD groups were
omitted from model fitting, and controls with RBD were
excluded [REM Sleep Behaviour Disorder Screening
Questionnaire (RBDSQ) 55] (Stiasny-Kolster et al., 2007).
Participants from the PPMI dataset each provided written
informed consent at their participating site for their data to
be collected and shared for this initiative. Our discovery co-
hort included a richer set of measures than the PPMI cohort.
Our comparison experiments included only those clinical and
neuroimaging measures available in both cohorts.

Clinical and neuropsychological
evaluation

Symptom severity was assessed using the Movement Disorders
Society Unified Parkinson’s Disease Rating Scale (UPDRS)
(Movement Disorder Society Task Force on Rating Scales for
Parkinson’s Disease, 2003). Participants were tested on their
usual medications and levodopa equivalent daily dose (LEDD)
was calculated (Tomlinson et al., 2010). Cognition was tested
using the MoCA. Olfaction was assessed using Sniffin’ sticks
(Hummel et al., 1997) in the discovery cohort, and the
University of Pennsylvania Smell Identification Test (UPSIT) in
the PPMI cohort. Participants also completed the Hospital
Anxiety and Depression Scale (HADS; Snaith, 2003), and
RBDSQ (Stiasny-Kolster et al., 2007). Control patients scoring
55 were excluded (discovery cohort n = 1; PPMI cohort
n = 34), as these could be considered REM sleep behaviour dis-
order cases rather than true unaffected controls (Stiasny-Kolster
et al., 2007). Cognitive assessment was in line with recent MDS
guidelines (Litvan et al., 2012) with two assessments per cogni-
tive domain, as described previously (Leyland et al., 2020)
(Table 1).

Assessments of visual function

Visual acuity was measured using a LOGMAR chart and con-
trast sensitivity was measured using a Pelli-Robson chart (SSV-
281-PC) (http://www.sussex-vision.co.uk). Colour vision was
assessed using the D15 test (Farnsworth, 1943) and error scores
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log transformed. Higher-order visuo-perception was measured

using two contrasting tasks, that each probe distinct aspects of

higher-order visuo-perception: the Cats-and-Dogs test that meas-

ures skew tolerance (Weil et al., 2017; Leyland et al., 2020) and

biological motion (Saygin, 2007). These tests were administered

at the start of each testing session using a counterbalanced de-

sign to control for order effects. Stimuli were generated within

MATLAB Psychophysics Toolbox 3 and implemented on a Dell

Latitude 3340, in a darkened room.

Ophthalmic assessments and retinal

structure

A comprehensive ophthalmic assessment was performed by a

consultant ophthalmologist (F.B.) and included slit-lamp exam-

ination and measurement of intra-ocular pressures.

Inner retinal layer structure was measured using high-reso-

lution spectral-domain optical coherence tomography (SD-OCT;

Heidelberg HRA/Spectralis v.6.8.1.0) (Nassif et al., 2004) after

pharmacological mydriasis according to a standard protocol

(Archibald et al., 2011), as described previously (Leyland et al.,

2020). Automatic layer segmentation was applied to compute

the thickness of each retinal layer and manually corrected and

verified as previously described (Leyland et al., 2020). We

focused on the ganglion cell layer (GCL) and inner plexiform

layer (IPL) as these are the locations of dopaminergic amacrine

cells, with most evidence for thinning in Parkinson’s disease

(Chorostecki et al., 2015; Polo et al., 2016) and we have

previously shown an association between cognitive risk and

these layers in Parkinson’s disease (Leyland et al., 2020).

Genetic analysis

The dementia risk genes we considered were APOE4, MAPT

(H1/H1), and GBA. In our discovery cohort, blood samples

were collected, and DNA extracted from an EDTA sample. We

performed single nucleotide polymorphism (SNP) array geno-

typing using the NeuroChip array (Blauwendraat et al., 2017).

MAPT haplotypes were distinguished using the rs8070723 and

rs17649553 SNPs. Standard quality control procedures were

conducted to remove individuals with low overall genotyping

rates (598%), related individuals, heterozygosity outliers [42

standard deviations (SD) from the mean], and population out-

liers (46 SD from the mean of any of the first 10 genetic princi-

pal components after merging with European samples from the

HapMap reference panel). Variants were removed if they had a

low genotyping rate (599%), Hardy-Weinberg equilibrium P-
value 5 1 � 10–5 and minor allele frequency 51%. Following

quality control, genotypes were imputed on the Michigan

Imputation Server (https://imputationserver.sph.umich.edu) (Das

et al., 2016) to the Haplotype Reference Consortium panel

(r1.1).

For the external cohort we downloaded genetics spreadsheets

from the PPMI database. SNP genotyping of APOE from DNA

was performed using the TaqManTM method, with results in

‘Current_Biospecimen_Analysis_Results.csv’ in the PPMI data-

base. SNP genotyping for MAPT and GBA was performed

Table 1 Descriptive statistics of study participants

Controls PDD-LR PDD-HR U or v2 (PDD-HR versus Controls) P

Discovery cohort (local study) n = 33 n = 64 n = 36

Age, years 64.7 (9.0) 59.7 (5.1) 73.0 (4.0) 266.5 50.0001

Disease duration, years – 4.7 (2.6) 3.4 (2.1) – –

Age at onset PD – 55.5 (4.3) 70.1 (3.8) – –

UPDRS total 8.2 (5.2) 46.8 (24.0) 42.9 (18.1) 4.5 50.0001

LEDD – 484 (284) 388 (201) – –

Gender, female/male 18/15 35/29 13/23 1.68 0.195

RBDSQ 1.7 (1.3) 4.2 (2.5) 4.2 (2.4) 218 50.0001

Smell test (Sniffin’ sticks) 12.2 (2.6) 8.1 (2.9) 6.8 (3.4) 133 50.0001

Cognition (MoCA) 28.6 (1.3) 28.2 (1.7) 27.6 (2.2) 416.5 0.015

Category Fluency (animals) 22.1 (5.2) 22.0 (5.1) 20.2 (6.4) 459 0.053

Letter Fluency 16.8 (5.6) 16.5 (4.9) 16.3 (6.4) 553.5 0.315

External cohort (PPMI study) n = 127 n = 206 n = 146

Age 60.0 (11.0) 55.6 (7.3) 70.9 (3.7) 3119 50.0001

Disease duration, years – 0.53 (0.55) 0.65 (0.62) – –

Age at onset PD – 55.0 (7.3) 70.3 (3.7) – –

UPDRS total 1.8 (2.8) 26.0 (11.1) 30.2 (11.1) 36 50.0001

Gender female/male 48/79 72/134 48/98 0.52 0.470

RBDSQ 1.9 (1.4) 3.9 (2.5) 4.2 (2.6) 4408 50.001

Smell test (Sniffin’ sticks equivalent) 13.6 (1.7) 9.3 (3.4) 7.4 (3.6) 1208 50.0001

Cognition (MoCA) 28.2 (1.1) 27.4 (2.2) 26.8 (2.2) 5409 50.0001

Category Fluency (animals) 22.0 (5.4) 21.8 (5.5) 19.5 (4.6) 6732 50.0001

Letter Fluency 14.5 (4.3) 13.2 (4.9) 12.2 (4.4) 6194 50.0001

Values are mean (SD), except where indicated otherwise. Each P-value shown is for a Mann-Whitney U-test (means) or v2-test (proportions) of the null hypothesis that there is no

statistical difference between the PDD-HR and control samples. For comparison of olfactory performance, PPMI UPSIT scores were converted to Sniffin’ Sticks equivalent using an

equi-percentile method (Lawton et al., 2016). LEDD = Levodopa equivalent daily dose; PD = Parkinson’s disease; RBDSQ = REM Sleep Behaviour Disorder Screening

Questionnaire; UPDRS = Unified PD Rating Scale; UPSIT = University of Pennsylvania Smell Identification Test.
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using Illumina Immunchip and NeuroX arrays and analysed
using Genome Studio v1.9.4 and results in ‘PPMI_PD_
Variants_Genetic_Status_WGS_20180921.csv’ in the PPMI
database. As only seven patients carried GBA mutations in the
discovery cohort (n = 2 T369M, n = 3 E326K and n = 2
N370S), these were excluded from the current analyses as GBA
carriers may have progression that differs in rate and/or se-
quence (and are likely to have a lower age at dementia onset)
but cannot be modelled with a sample of n = 7. For consistency
we also excluded GBA carriers in our PPMI analysis (n = 10
controls, n = 39 PDD-LR, n = 7 PDD-HR). After excluding
GBA carriers, included patients were tested for genetic variation
due to MAPT and APOE4 status in key features of Parkinson’s
disease progression (UPDRS-3 and MoCA) using a Mann-
Whitney U-test. The Supplementary material contains a detailed
analysis of genetics in both cohorts.

MRI acquisition and image analysis

In the discovery cohort, high-resolution anatomical T1-weighted
images [magnetization prepared rapid aquisition gradient echo
(MP-RAGE)] were acquired at 3 T on a Siemens Prism-fit MRI
system with a 64-channel head coil (repetition time = 2530 ms,
echo time = 3.34 ms, inversion time = 1100 ms, flip angle a =
7�, slices = 176, 1 � 1 � 1 mm voxels, field of view =
256� 256 mm). Susceptibility-weighted MRI images were
obtained from a 2 � 1-accelerated, 3D flow-compensated
spoiled-gradient-recalled echo sequence. Flip angle 12�; echo
time, 18 ms; repetition time, 25 ms; and receiver
bandwidth, 110 Hz/pixel. Matrix size was 204 � 224 � 160
with 1 � 1 � 1 mm3 voxel resolution (scan time 5 min 41 s).
Multishell diffusion weighted imaging (DWI) was acquired
with the following parameters: b = 50 s/mm2 (17 directions),
b = 300 s/mm2 (eight directions), b = 1000 s/mm2 (64 direc-
tions), b = 2000 s/mm2 (64 directions); 2 � 2 � 2 mm isotropic
voxels, echo time = 3260 ms, repetition time = 58 ms, 72 slices,
2 mm thickness, acceleration factor = 2.

Because of MRI safety requirements, five patients and one
control subject were unable to undergo MRI scanning. All
images were assessed visually for quality, including artefacts
such as motion and distortions. All T1-weighted scans were
bias-corrected via the FreeSurfer protocol (described in detail in
Collins et al., 1994; Dale et al., 1999; Fischl et al., 1999) with
parameters optimized for 3 T. Cortical reconstruction and volu-
metric segmentation of MRI scans for both cohorts was per-
formed using FreeSurfer-v6.0 software (http://surfer.nmr.mgh.
harvard.edu/) (Fischl et al., 1999; Fischl and Dale, 2000). This
involves skull stripping, volumetric labelling, intensity normal-
ization, grey/white matter segmentation and registration to
established surface atlases. Cortical thickness was calculated as
the closest distance from the grey–white matter boundary to the
grey matter–CSF boundary at each vertex.

Cortical reconstructions were visually inspected slice-by-slice
for segmentation errors. Subjects with any inaccuracies that
were considered severe enough to significantly affect cortical
thickness measures were excluded from the analyses: one con-
trol participant failed the reconstruction process and one con-
trol’s whole brain was removed from the analysis due to poor
segmentation. A further five patients with Parkinson’s disease
and three control subjects had the temporal lobe cortical thick-
ness measures excluded due to poor segmentation locally

(treated as missing data), but all other brain regions were
included for these individuals.

Image acquisition in the PPMI cohort followed a very similar
3D T1-weighted 1.5 or 3 T MRI protocol to the local 3 T proto-
col described above: sagittal plane MP-RAGE or SPGR (spoiled
gradient) sequence (slices = 170–200, 1 � 1 � 1.2 mm voxels,
0 mm slice gap, field of view = 256 � 256 mm). Diffusion-
weighted images were acquired along 64 uniformly distributed
directions with a b-value = 1000 s/mm2 and a single b = 0
image (116 � 116 matrix, 2 mm isotropic resolution, repetition
time = 900 ms, echo time = 88 ms, 2-fold acceleration). All
other parameters followed site-dependent manufacturer recom-
mendations for the scanner used (GE/Siemens/Philips). Scans
were read by a radiologist at each site to meet standards of clin-
ical practice and ensure that there were no significant abnormal-
ities. Cortical thickness estimates were obtained as above using
FreeSurfer v6.0.0.

Quantitative susceptibility mapping reconstruction

QSM image reconstruction was performed as described in
Thomas et al. (2020). Phase preprocessing used the QSMbox
pipeline for single-echo, coil-combined data (https://gitlab.com/
acostaj/QSMbox) (Acosta-Cabronero et al., 2018), with 3D
complex phase data unwrapped using a discrete Laplacian
method. Brain masks (required to separate local from back-
ground fields), were calculated from magnitude data using the
BET2 algorithm in FSL v5.0. (https://fsl.fmrib.ox.ac.uk). Phase
preprocessing was performed using Laplacian boundary value
extraction followed by variable spherical mean-value filtering.
We estimated susceptibility maps using multi-scale dipole inver-
sion (Acosta-Cabronero et al., 2018). Filtering during recon-
struction was performed using an 8 mm kernel. QSM spatial
normalization and regional extraction was performed using
QSMexplorer (https://gitlab.com/acostaj/QSMexplorer) (Acosta-
Cabronero et al., 2016). For template creation, radio-frequency
bias corrected MP-RAGE images were spatially normalized
using a previously optimized ANTs (http://stnava.github.io/
ANTs) routine. Bias-corrected magnitude gradient echo images
were then affinely co-registered to their corresponding MP-
RAGE volume using ANTs. QSM spatial standardization was
completed through a composite warp of the above transforma-
tions and high order interpolation. Mean absolute QSM values
were extracted from the set of cortical regions defined by the
Desikan-Killiany-Tourville atlas (Klein and Tourville, 2012) in
OASIS-30 space. The study-wise to OASIS-30 space non-linear
warp field was calculated with a deformable b-spline co-registra-
tion routine in ANTs. Desikan-Killiany-Tourville labels were
brought into study space using the inverse of this transformation
and nearest-neighbour interpolation. To minimize partial-vol-
ume contamination, each cortical region of interest was inter-
sected with a binarized study-wise grey matter mask, inferred
from anatomical MP-RAGE images using SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/). The PPMI study does not
include QSM data.

Diffusion weighted imaging reconstruction

Prior to diffusion processing, each volume of the raw data was
visually inspected and evaluated for the presence of artefact;
only scans with 515 volumes containing artefacts were
included (Roalf et al., 2016). DWI images underwent standard
preprocessing including denoising (Veraart et al., 2016),
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removal of Gibbs ringing artefacts (Kellner et al., 2016), eddy-
current and motion correction (Andersson et al., 2003) and bias
field correction (Tustison et al., 2010) followed by upsampling
to a voxel size of 1.3 mm3 (Raffelt et al., 2012) and intensity
normalization across subjects. Fibre-orientation distributions
(FODs) for each participant were computed via multi-shell
three-tissue constrained spherical-deconvolution using the
group-average response function for each tissue type (grey mat-
ter, white matter and CSF) (Dhollander et al., 2016). A group-
averaged FOD template was created from 30 randomly selected
subjects at baseline (20 patients with Parkinson’s disease, 10
healthy control subjects) and each participant’s FOD image was
registered to the template (Raffelt et al., 2011). Fixel-based met-
rics were then derived from each subject in template space
(Raffelt et al., 2012). In addition to fixel-based metrics, we
derived the diffusion tensor from each participant’s FOD image
(Veraart et al., 2013) and calculated a fractional anisotropy
(FA) and mean diffusivity (MD) map for each participant, which
was registered to template space. Mean fibre cross-section (FC)
as well as mean FA and MD were calculated from the left and
right substantia nigra based on the DISTAL atlas (Ewert et al.,
2018). FC was chosen from the three derived fixel-based metrics
as prior work by our group, and others, has shown this to be
the most sensitive fixel-based metric in both baseline and longi-
tudinal change in Parkinson’s disease (Rau et al., 2019; Zarkali
et al., 2020). Diffusion data from 14 participants in the discov-
ery cohort failed the predetermined quality control criteria and
were not included in our analyses (treated as missing data).

For the PPMI cohort we downloaded available diffusion ten-
sor imaging (DTI) metrics from six hand-drawn regions of inter-
est within the left and right substantia nigra (Vaillancourt et al.,
2009) and included mean FA values.

Data selection and preparation

We aimed to build a data-driven model of Parkinson’s disease
progression in patients at elevated risk for dementia. Most stud-
ies of Parkinson’s disease—including the cohorts analysed
here—recruit recently diagnosed patients, with very few having
severe cognitive deficits. Therefore, as described above, we
focused our models on those patients considered to be at ele-
vated risk for developing dementia due to older age at onset
(Hietanen and Teräväinen, 1988; Dubois et al., 1990; Jankovic
et al., 1990; Biggins et al., 1992; Katzen et al., 1998; Aarsland
et al., 2001, 2007; Akinyemi et al., 2008; Williams-Gray et al.,
2013). Specifically, we use a threshold age at onset of 65 years,
classifying older patients at diagnosis (565 years old) as PDD-
HR, and the other patients as PDD-LR. Our threshold reflects
the average age at onset for Parkinson’s disease, which is esti-
mated to be between 60 and 70 years old (Macleod et al.,
2018). We stress-tested this dementia risk threshold by building
models using thresholds of 60 and 70 years, which showed
strong and significant rank correlation with the main model pre-
sented (Supplementary material). Table 1 shows detailed demo-
graphics of included participants in our cohorts.

In our discovery cohort we selected clinical, cognitive, retinal,
and visual measures from our battery (Leyland et al., 2020)
based on specificity to Parkinson’s dementia (Liu et al., 2017;
Schrag et al., 2017; Leyland et al., 2020). UPDRS scores were
not included in the modelling because motor symptoms are pre-
sent in all patients with Parkinson’s disease (by definition).
Measures of average cortical thickness in each brain lobe (five

per hemisphere: frontal, parietal, occipital, temporal, plus the
cingulate) were calculated from T1-weighted structural MRI by
combining the default estimates returned by FreeSurfer for the
68 cortical regions of interest in the Desikan-Killiany atlas
(Desikan et al., 2006). We included absolute QSM measures
from 12 brain regions out of 96 in the Desikan-Killiany-
Tourville atlas using the Mann-Whitney U-test for PDD-HR ver-
sus controls (P50.05 uncorrected). We adjusted all measures
for gender, age, and years of education using a linear model:
y � gender � (age + education) trained on controls. This
accounts for confounding effects such as the influence of age
and education on performance in clinical assessment tasks and
allows for possible differences between genders.

For our comparison experiments on PPMI data we included a
subset of measures: only those available in both cohorts (see
text and Supplementary material).

Statistical analysis

The event-based model

We updated a recent version of the event-based model that
incorporates non-parametric mixture modelling (Firth et al.,
2020). Our novelty is described below. We used this model to
estimate the most likely sequence of clinical and neuroimaging
events in the progression to Parkinson’s disease dementia, and
the uncertainty (positional variance) in the sequence. This longi-
tudinal picture of disease progression is extractable from cross-
sectional data by assuming a single monotonic progression and
exploiting combinations of observable abnormality (earlier/later
events) across individuals (Fig. 1). By analogy, if all patients
who present with the common cold have a cough, but only
some of these also sneeze, we would infer with very high confi-
dence that coughing comes before sneezing (of course, this ana-
logy only works for a hypothetical common cold that is
progressive/non-remitting). The confidence in the ordering of
events is quantified intrinsically within the event-based model
and depends on the data (and the nature of disease progression).
Returning to our analogy, confidence in the ‘cough-then-sneeze’
sequence would be reduced if only most patients presented in
this manner, rather than all patients. We present event-based
models as positional density heat maps, also known as position-
al variance diagrams (Fonteijn et al., 2012). A positional density
heat map shows the posterior distribution of events and their
position in the most likely sequence. ‘Hot’ regions of high dens-
ity correspond to high confidence in the ordering, appearing as
a narrow, dark diagonal pattern in the map. ‘Cool’ regions of
broad, lower density correspond to lower confidence in the
ordering, e.g. some events are likely to occur concurrently as far
as the model can discern from the data. Our methodological
novelty is in the mixture modelling step of event-based model-
ling. We allowed only a small fraction of data from controls to
be labelled as abnormal/post-event. Specifically, any controls
having extreme abnormality above the 90th percentile for that
marker (including control and patient data) were labelled as ab-
normal, otherwise data from controls remained labelled as nor-
mal/pre-event. This adds clear interpretability to our models:
they represent progression to Parkinson’s dementia as disease-
specific deviations from normality. Markers were excluded if
mixture modelling was unable to discern disease signal from the
data (separation between controls and patients consistent with
disease progression).
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Similarity measure for event-based models

We use the Bhattacharrya coefficient (BC) as a similarity meas-

ure (Liese and Miescke, 2008) for event-based models in terms

of statistical overlap between two posterior distributions:

BC ¼ 1�H2 (1)

where H is the mean Hellinger distance (Watanabe, 2009) be-

tween models, calculated row-wise in the positional density map

(mean and SD reported). The Bhattacharrya coefficient is equal

to zero when the posterior positional densities of two event-

based models do not overlap (maximal Hellinger distance), and

it is equal to unity when the positional densities overlap exactly.

To provide some context, we calculate a reference value of BC0

= 0.37 ± 0.02, which represents the statistical similarity of

randomized models (Supplementary material).

Patient staging

Each individual participant is assigned a fine-grained disease

stage within the model via the data likelihood for their set of

measurements across events. Following Young et al. (2014), we
assigned the stage that maximizes the individual likelihood.
Patient stage is akin to a data-driven, multivariate risk score,
with previous work showing strong predictive value for cogni-
tive outcomes in sporadic Alzheimer’s disease (Young et al.,
2014), and for disease onset in familial Alzheimer’s disease
(Oxtoby et al., 2018) and Huntington’s disease (Wijeratne
et al., 2018).

Cross-validation

We used repeated stratified 5-fold cross-validation to ensure ro-
bustness of the event-based model results. This involved refitting
both the mixture models and the sequence on 80% of the co-
hort data and testing accuracy on the held out 20% for each of
10 5-fold random partitions, giving a total of 50 cross-valid-
ation folds/models, which are averaged to find the final model
(see Supplementary material for details). This gives a more ro-
bust model (both in terms of the sequence and uncertainty in
the sequence) than a single maximum-likelihood model built on
100% of the data. Additionally, this enables us to compare the
50 models to assess model robustness and generalizability using
cross-validation similarity and consistency quantified by the
Bhattacharyya coefficient given above. We cross-validated
model accuracy via patient staging (described above) with the
gold standard model stage provided by staging from the full
cross-validated model (all folds combined). This necessitated
two runs of cross-validation: one to generate the ground truth
model stage for each participant, and a second to calculate met-
rics across cross-validation folds. Model robustness is evidenced
by high similarity (average BC closer to unity) and simultan-
eously high consistency (low standard deviation of BC) between
models across cross-validation folds. Model accuracy is evi-
denced by low errors in patient staging across folds.

External cohort: PPMI

For comparison, our experiments were repeated on available
data in the PPMI cohort. We included healthy controls and
patients with Parkinson’s disease (Table 1). Our PPMI experi-
ments included the subset of measures available: clinical, cogni-
tive, DTI metrics in the substantia nigra, and cortical thickness.
Our retinal and visual measures are not available in PPMI, nor
are the brain iron content biomarkers from QSM. We quantify
the comparison statistically using rank correlation and our simi-
larity measure defined above after first averaging the posterior
within data modality (Supplementary material).

Data availability

The derived data and python code that support the findings of
this study are available from the corresponding author, upon
reasonable request. The underlying event-based model code is
publicly available at https://github.com/noxtoby/kde_ebm_open.

Results

Participants

Table 1 presents key descriptors in both cohorts. Briefly, our

discovery cohort included 33 controls and 36 PDD-HR

patients. These groups were used to estimate event

Figure 1 How the event-based model works. The event-

based model is a statistical method for quantifying a sequence of

observable abnormality in a set of disease-relevant features (bio-

markers). The model works by assessing, at the group level, combi-

nations of simultaneously normal and abnormal measurements in

different biomarkers across individuals at multiple stages of disease

progression. Top: In neurodegenerative disease progression (left to

right), observable abnormality (vertical axis) across multiple fea-

tures (A, B, C, D) likely proceeds in a cascade or sequence A!
B!C!D, as in an influential hypothetical model of Alzheimer’s dis-

ease progression (Jack et al., 2010; Jack Jr et al., 2013). Bottom: A

cross-sectional sample of individuals (columns) at different stages of

disease progression (horizontal axis) showing the corresponding

observed combinations of normal (white) and degrees of abnormal-

ity (shades of colour) across the four features. A single individual

sampled near the middle of the disease is shown in both panels:

early events (A and B) have higher abnormality than later events (C

and D). Whenever such an individual shows an elevated value of

biomarker A, but a normal value for biomarker B, this adds evi-

dence that A changes before B.
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distributions within the event-based model, i.e. marker/event

severity in the progression to Parkinson’s dementia. See

Supplementary material for details of the event distributions.

All patients (including 64 PDD-LR) were used to estimate

the sequence of events (under the assumption that all

patients would eventually progress to dementia, given suffi-

cient survival). Our external cohort included 127 controls,

146 PDD-HR patients, and 206 PDD-LR patients. In

MoCA and UPDRS-3 scores we found no variation due to

MAPT or APOE4 status (Mann-Whitney U-test, all

P50.13) and, when GBA cases were included in the

analyses, results were statistically indistinguishable

(Supplementary material). Together this suggests that genetic

variation is not a factor in our study (larger numbers are

required to investigate progression in genetic Parkinson’s,

particularly for GBA).

Features: clinical, cognitive, visual
and imaging markers

Our final set of 42 features for discovery is shown on the

vertical axis of Fig. 2, including eight clinical/cognitive meas-

ures, six vision measures, four retinal measures, eight region-

al measures of cortical thickness, four measures of white

matter neurodegeneration in the substantia nigra, and 12 re-

gional measures of brain iron content. The subsets of fea-

tures for cross-cohort comparison are shown on the vertical

axes of Fig. 4, including clinical/cognitive measures, meas-

ures of white matter neurodegeneration in the substantia

nigra, and measures of regional cortical thickness.

Sequence of events in Parkinson’s
disease progression

Our cross-validated probabilistic model of Parkinson’s dis-

ease progression in patients at elevated risk of dementia is

presented as the positional density map in Fig. 2 (left). The

right side shows a complementary visualization of the cumu-

lative abnormality (left to right). In each panel, disease pro-

gresses from upper left to lower right, with colour intensity

reflecting row-wise positional/cumulative density and confi-

dence in the ordering. Thus, a dark diagonal pattern (left

panel) shows strong confidence in the ordering and a light,

off-diagonal pattern shows weak confidence in the ordering.

Rows in Fig. 2 are coloured to reflect the data modality.

The model estimates that progression starts with classic

prodromal features of Parkinson’s disease (REM-sleep be-

haviour problems, olfactory dysfunction; shown in purple)

then proceeds to early visual dysfunction (D15 colour, con-

trast sensitivity; light green), then increased iron content pri-

marily in temporal and frontal regions (orange) along with

cognitive deficits (Stroop, Hooper, MoCA; greyscale), then

abnormal cortical thickness apparently starting in the occipi-

tal lobe (light blue). At this point the ordering becomes less

certain, but involves white matter neurodegeneration in the

substantia nigra (red), retinal thinning (magenta), further

cortical neurodegeneration, iron accumulation, vision defi-

ciency (in tests of skew tolerance, biological motion, and

acuity), and cognitive decline (fluency and language

dysfunction).

Patient staging

We assigned each participant in the discovery cohort to their

most likely numerical stage within the model (see ‘Materials

and methods’ section and Young et al., 2014), given their

data. A histogram of the staging results is shown in Fig. 3.

Qualitatively, model stage concurs with expectations, i.e.

healthy controls (Fig. 3) are very early (mostly stage zero)

with Parkinson’s disease patients at varying stages (we found

no statistically significant differences between PDD-LR and

PDD-HR stages).

Cross-validation

Figure 3 shows that, under cross-validation, the model is

likely to generalize well to other patient cohorts: good simi-

larity (high mean BC), high consistency (low SD BC), and

high accuracy (low staging errors) across 50-folds. Ten

repeats of stratified 5-fold cross-validation produced high

statistical overlap of BC = 0.60± 0.04 (mean, SD across

folds) relative to the reference value BC0 = 0.37± 0.02

(Supplementary material), as well as low mean absolute

error of 1.5±3.3 stages in patient staging (see ‘Materials and

methods’ section).

Comparison with external dataset:
PPMI

A visual comparison of our Parkinson’s progression model

(Fig. 2) with a model built using the PPMI dataset is shown

in Fig. 4, on the subset of comparable features available in

both cohorts. The models show high qualitative and quanti-

tative concordance: classical Parkinson’s symptoms and cog-

nitive decline precedes neurodegeneration, with white matter

degeneration in the substantia nigra generally preceding cor-

tical thinning; supported by high rank correlation s = 0.87

(P = 0.017) and statistical similarity BC = 0.96

(Supplementary material). Supplementary Fig. 5 explores the

subsequence of abnormality in cortical thickness.

Discussion
We used data-driven event-based modelling to reveal the

fine-grained probabilistic sequence of decline in clinical, cog-

nitive and neuroimaging measures during Parkinson’s dis-

ease. We enriched for Parkinson’s dementia by focusing the

model on patients at high risk of dementia due to their older

age at onset (565 years) and used repeated stratified cross-

validation for robustness, plus repeat experiments on an ex-

ternal cohort for comparison. Our dementia enrichment

strategy is supported by the PDD-HR group having
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significantly lower MoCA scores than the PDD-LR group at

follow-up �1.5 years later (Mann-Whitney U-test, P5 0.05;

Supplementary material).

Our data-driven model estimates that the earliest events in

Parkinson’s disease progression in patients at elevated risk of

dementia include measures of REM sleep behaviour prob-

lems and olfactory dysfunction. These events are followed

by early changes in visual performance (including colour

vision loss), and cognitive dysfunction. The earliest events

detectable with neuroimaging are QSM estimates of brain

tissue iron accumulation in frontal and temporal regions,

before regional abnormality in cortical thickness from

T1-weighted MRI and white matter neurodegeneration in

the substantia nigra from diffusion-weighted MRI. The data

and model suggest that retinal thinning, like cortical thin-

ning, is a relatively late occurrence. Our results provide

data-driven support for current understanding of

Parkinson’s disease progression, with early loss of smell and

REM sleep changes (Hummel et al., 2007; Stiasny-Kolster

et al., 2007). As our aim was to model progression in estab-

lished disease, all patients had Parkinson’s disease (rather

than prodromal disease), which is why we omitted UPDRS

scores from the model. Including them would see motor dys-

function as the earliest event, which could be somewhat mis-

leading at the individual patient level since studies of

populations in prodromal stages of Parkinson’s disease have

shown that smell and sleep changes are often found before

motor changes (Korczyn and Gurevich, 2010). Large

longitudinal cohorts that include the prodromal phase in

confirmed cases will be useful to confirm the ordering of

these early premotor features.

We highlight the relatively early appearance of colour de-

tection deficits and contrast sensitivity, measured here by

simple tests capable of being performed by opticians and

optometrists. Early involvement of visual dysfunction is

interesting—particularly so because it precedes retinal abnor-

mality and the earliest cortical neurodegeneration. This is

consistent with emerging data that suggest visual changes

are an early manifestation or even a precursor of cognitive

change in Parkinson’s disease (Williams-Gray et al., 2013;

Anang et al., 2014), including some of our own work on the

discovery cohort (Leyland et al., 2020) and more recently

showing, in very large cohorts, that Parkinson’s disease

patients with poor vision have a worse phenotype with

higher rates of dementia (Hamedani et al., 2020; Han et al.,

2020). Together, this evidence suggests the exciting prospect

that routine assessment of vision may have a role in disease

stratification for cognitive decline in Parkinson’s disease.

Our model placed abnormal measures of brain tissue iron

before abnormal cortical thickness in Parkinson’s disease

progression. We also found that the sequence of regional

cortical thinning was highly uncertain (Supplementary ma-

terial). This is consistent with reports that grey matter atro-

phy is inconsistent across patients and often a late event in

Parkinson’s dementia (Hattori et al., 2012; Lanskey et al.,

2018) and is also consistent with our recent separate work

Figure 2 Event-based model of progression in Parkinson’s disease. Data-driven sequence of events in Parkinson’s disease progression

colour coded by modality shown as: positional density (left); and cumulative abnormality (right) from repeated stratified 5-fold cross-validation.

The estimated sequence of events is seen on the vertical axis, with ordering proceeding from top to bottom (earliest to latest event). Colour in-

tensity represents the proportion (0 in white, 1 most intense) of the posterior distribution in which events (y-axis) appear in a particular position

in the sequence (x-axis). This model is robust, having a similarity of BC = 0.60 ± 0.04 across 50 cross-validation folds. D15 = colour test; GCL =

ganglion cell layer; GNT = Graded Naming Test; IPL = inner plexiform layer; L = left; R = right; RBDSQ = REM sleep behaviour disorder

screening questionnaire; UPDRS = Unified Parkinson’s disease rating scale.
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on the discovery cohort showing that cortical brain iron

increases are seen in Parkinson’s disease patients in relation

to cognitive performance (Thomas et al., 2020). The hetero-

geneity observed in both cohorts motivates future work on

data-driven subtyping (see below).

Our model suggests that loss of retinal tissue in key dopa-

mine-containing layers (GCL and IPL) occurs after brain tis-

sue iron increases and grey and white matter atrophy has

commenced. This might suggest that retinal changes are like-

ly to occur later, after retrograde signals from cortical brain

regions, and not concurrently with brain atrophy. Similar

effects of cortical damage having a retrograde effect on ret-

inal thickness are seen in multiple sclerosis (Henderson

et al., 2008). This could be verified in prospective datasets.

Recent models of axonal degeneration as an early feature of

Parkinson’s disease suggest that this process of de-arboriza-

tion may occur throughout the nervous system, and could

explain changes seen in both the retina and cortex (Adalbert

and Coleman, 2013), but with differing timings.

A particular strength of our study is the analysis of an ex-

ternal dataset which supports many of our conclusions on

the subset of features available in both cohorts. Specifically,

models built on each cohort showed quantitative agreement

on the ordering of prodromal symptoms of Parkinson’s dis-

ease, cognitive decline, white matter neurodegeneration in

the substantia nigra, and cortical thinning (Supplementary

material). This is remarkable given the considerable

difference in age and disease duration between the cohorts:

PPMI patients are younger and have less advanced disease

(Table 1), due to our cohort being enriched for older onset

Parkinson’s disease and also for longer disease duration.

We did not find differences in progression features be-

tween patients carrying APOE4 or MAPT H1/H1 polymor-

phisms in our cohort or the PPMI dataset and our analyses

were not powered to detect differences in the sequence of

progression between groups carrying these polymorphisms.

We also excluded the small number of patients carrying

GBA mutations as these patients are likely to have a more

rapid progression to dementia and may show a divergent se-

quence of events (Blauwendraat et al., 2020), although we

note that the model is statistically unchanged if these seven

patients are included [s = 0.75 (P = 2 � 10–12) and BC =

0.99] (Supplementary material). Future work including

much larger numbers of patients, and enriched for specific

genetic subtypes, should specifically examine the role of gen-

etic variation in modifying the rate and sequence of events in

Parkinson’s disease.

The event-based model would also be of interest applied

to dementia with Lewy bodies or established Parkinson’s dis-

ease dementia. As visual processing deficits are seen in the

prodromal phase of dementia with Lewy bodies (McKeith

et al., 2020) and in patients with more rapid Parkinson’s dis-

ease dementia (Anang et al., 2014; Hamedani et al., 2020),

we predict that visual changes will also be found as early

events in Lewy body dementia.

Limitations and future work

In the absence of markers of disease progression for pro-

dromal Parkinson’s dementia, we used later age at onset

(565 years) as a proxy for a higher-risk group for

Parkinson’s dementia. This is based on a wealth of evidence

that higher age at onset of Parkinson’s disease is a strong

predictor for earlier and more aggressive Parkinson’s demen-

tia (Dubois et al., 1990; Katzen et al., 1998) and is likely to

be a more robust marker than, for example, global cognitive

scores such as the MMSE or MoCA, which lack sensitivity

in diagnosing dementia in Parkinson’s disease (Zadikoff

et al., 2008; Hoops et al., 2009), particularly at early stages

of Parkinson’s dementia. Ultimately, quantitative markers of

disease activity in Parkinson’s dementia are needed to enable

early detection and better stratification of patients at risk of

Parkinson’s dementia. Our data-driven model may fill this

role, being akin to a multimodal, computational biomarker

of progression to Parkinson’s dementia.

Our results are built on cross-sectional data from patients

with established Parkinson’s disease, at elevated risk of

developing Parkinson’s dementia. In order to fully validate

our results, we aim to test the model on prospective data,

with enough follow-up time to allow for conversion of

patients to Parkinson’s dementia. This is ongoing work.

Indeed, our models could be used to inform the design of

such prospective studies, e.g. identifying which events are

Figure 3 Patient staging results: discovery cohort. Top:

Model stage showing most healthy controls at stage zero (inset);

and patients at varying, but mostly early, stages. Bottom: Cross-valid-

ation accuracy across 50-folds from repeated stratified 5-fold cross-

validation. Left: Mean and standard deviation (STD) absolute error

in patient stage. Right: raw errors in patient stage. Overall mean ab-

solute error was 1.5 ± 3.3 stages. CV = cross-validation.
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involved early/late in the progression to Parkinson’s

dementia.

The event-based model assumes a single sequence in the

progression, which is unrealistic given the widely docu-

mented variability in presentation of Parkinson’s disease

patients. This limitation means that we cannot necessarily

distinguish between events that occur early in only a propor-

tion of patients and events that occur late in all patients,

both of which would appear with relatively low frequency

in a patient population. Indeed, our experiments provided

evidence for such heterogeneity—manifested as off-diagonal

positional density in Figs 2 and 4. Addressing this limitation

is the topic of future work.

We have plans for multiple lines of future work motivated

to further improve understanding of Parkinson’s disease pro-

gression. First, we are actively seeking access to data from

suitable cohorts in order to characterize the prodromal

phase. Second, we aim to unravel the aforementioned het-

erogeneity through automatic data-driven subtyping of dis-

ease progression which has had success in other dementias

(Young et al., 2018) and chronic obstructive pulmonary dis-

order (Young et al., 2020). Finally, we are keen to under-

stand biological mechanisms in Parkinson’s disease and

other neurodegenerative diseases, for which topological pro-

file models that examine the patterns of atrophy and net-

work involvement (Garbarino et al., 2019) are a promising

method.

Summary

We used data-driven event-based modelling to determine

that the most likely sequence of events in Parkinson’s disease

progression in patients at elevated risk of dementia begins

with classic prodromal features of Parkinson’s disease

followed by early visual deficits and some cognitive dysfunc-

tion, increased brain iron content, then neurodegeneration in

the substantia nigra, cortex, and retina, and further decline.

The models we have constructed, and those we aim to

construct in the future, should prove useful in clinical prac-

tice and informing the design of future studies. For example,

the fine-grained patient staging mechanism utilized in this

study has the potential to reduce heterogeneity in a patient

cohort and to support precision medicine decisions.

Likewise, we expect that our future data-driven subtyping

work will be able to reduce heterogeneity further, as demon-

strated in other dementias (Young et al., 2018). Ultimately,

we are convinced that these computational models, as part

of a larger effort, offer a tangible route towards identifying a

disease-modifying therapy in Parkinson’s disease.
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