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A B S T R A C T   

Introduction: Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB) show heterogeneous brain atrophy 
patterns which group-average analyses fail to capture. Neuroanatomical normative modelling overcomes this by 
comparing individuals to a large reference cohort. Patient-specific atrophy patterns are measured objectively and 
summarised to index overall neurodegeneration (the ‘total outlier count’). We aimed to quantify patterns of 
neurodegenerative dissimilarity in participants with PD and DLB and evaluate the potential clinical relevance of 
total outlier count by testing its association with key clinical measures in PD and DLB. 
Materials and methods: We included 108 participants with PD and 61 with DLB. PD participants were subclassified 
into high and low visual performers as this has previously been shown to stratify those at increased dementia 
risk. We generated z-scores from T1w-MRI scans for each participant relative to normative regional cortical 
thickness and subcortical volumes, modelled in a reference cohort (n = 58,836). Outliers (z < − 1.96) were 
aggregated across 169 brain regions per participant. To measure dissimilarity, individuals’ Hamming distance 
scores were calculated. We also examined total outlier counts between high versus low visual performance in PD; 
and PD versus DLB; and tested associations between these and cognition. 
Results: There was significantly greater inter-individual dissimilarity in brain-outlier patterns in PD poor 
compared to high visual performers (W = 522.5; p < 0.01) and in DLB compared to PD (W = 5649; p < 0.01). PD 
poor visual performers had significantly greater total outlier counts compared to high (β = -4.73 (SE = 1.30); t =
-3.64; p < 0.01) whereas a conventional group-level GLM failed to identify differences. Higher total outlier 
counts were associated with poorer MoCA (β = -0.55 (SE = 0.27), t = -2.04, p = 0.05) and composite cognitive 
scores (β = -2.01 (SE = 0.79); t = -2.54; p = 0.02) in DLB, and visuoperception (β = -0.67 (SE = 0.19); t = -3.59; 
p < 0.01), in PD. 
Conclusions: Neuroanatomical normative modelling shows promise as a clinically informative technique in PD 
and DLB, where patterns of atrophy are variable.   

1. Introduction 

Cognitive impairment is a core diagnostic feature of Dementia with 
Lewy bodies (DLB) (McKeith et al., 2017) and is common in Parkinson’s 
disease (PD) where almost half of patients develop dementia within ten 

years’ of diagnosis (Williams-Gray et al., 2013). Conventional group- 
level neuroimaging studies measuring brain structure in DLB and PD 
have yielded heterogeneous findings (Weil et al., 2019; Oppedal et al., 
2019), with no consistent atrophy pattern predicting future cognitive 
decline (Weintraub et al., 2012; Lee et al., 2014) or correlating with 
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symptom severity (Oppedal et al., 2019). This has limited the value of 
conventional neuroimaging measures as biomarkers. 

A key issue in group-level analysis is between-subject heterogeneity, 
which results from intrinsic biological differences alongside psychoso
cial and environmental factors independent of the disease (Cohen- 
Mansfield, 2000). This has implications for case-control studies that 
compare group means, which only allow inferences to be made for the 
‘average subject’, and treat between-subject variability as noise (Verdi 
et al., 2021). 

To better understand the neural basis of neurodegenerative disorders 
such as PD and DLB, there is a need to understand between-patient 
heterogeneity. Neuroanatomical normative modelling is a recently 
established framework that maps individual patterns of variation from 
the expected norm (based on age and sex) for a given neuroimaging 
measure (Verdi et al., 2021; Marquand et al., 2016; Marquand et al., 
2019). Exemplifying this approach, Rutherford and colleagues (Ruth
erford et al., 2022) modelled lifespan trajectories of cortical thickness 
and subcortical volumes using Bayesian Linear Regression based on a 
reference cohort of 58,836 healthy participants. Then, a new in
dividual’s cortical and subcortical data could be plotted within each 
normative distribution, to quantify deviation from expected patterns. 
Statistical thresholds can be used to binarise the resulting z-scores to 
quantify neuroanatomical outliers. The number of outliers can be 
aggregated to provide the total outlier count, an individualised measure 
of overall neurodegeneration. 

Neuroanatomical normative modelling has recently been applied in 
Alzheimer’s disease (AD) (Verdi et al., 2023; Verdi et al., 2023; Flavia 
et al., 2022), showing an increased number of outlier regions in AD than 
mild cognitive impairment (MCI) or healthy controls (Verdi et al., 
2023). Importantly, total outlier count correlated with poorer cognitive 
performance, fluid biomarker-measures of Alzheimer’s pathology, and 
predicted future conversion from MCI to dementia (Verdi et al., 2023; 
Verdi et al., 2023). Given that neuroimaging measures in Lewy body 
disorders may be more neuroanatomically heterogeneous than AD 
(Scheltens and Korf, 2000; Mak et al., 2014), this approach may have 
even greater utility in Parkinson’s and DLB. 

Here, we employed neuroanatomical normative modelling to inves
tigate heterogeneity in Lewy body diseases and evaluate the potential of 
this technique to provide useful measures of disease severity. In PD, 
previous work has shown that visual performance predicts future 
cognitive decline, with poor visual performance associated with risk of 
future dementia (Zarkali et al., 2021; Hannaway et al., 2023). Here, we 
a) investigated differences in total outlier count between high and poor 
visual performers with PD; and between PD and DLB; and compared 
these to conventional cortical thickness analyses; b) compared patterns 
of dissimilarity between PD participants with high versus poor visual 
function; and between PD and DLB participants, and c) evaluated 
whether total outlier count correlated with cognitive severity in PD and 
DLB. We hypothesised that there would be a) significant differences in 
total number of regional outliers between high and poor visual perfor
mance PD groups, and in PD compared with DLB; b) greater dissimilarity 
in individual patients for low versus high visual performers in PD; and 
for DLB compared to PD. Finally, we predicted c) that greater total 
outlier count would be associated with poorer cognitive performance in 
PD and DLB. 

2. Material and methods 

2.1. Participants 

Structural T1w-MRI data from two sites were used. The first site at 
University College London (UCL), included 108 participants with PD, 36 
with DLB and 38 controls, from the Vision in Parkinson’s disease study 
(PI: Dr Weil, Queen Square Ethics Committee reference 15/LO/00476). 
The second site was the pseudoanonymised Alzheimer’s Disease 
Research Center (ADRC) “8361” which contributes data to the National 

Alzheimer’s Coordinating Center (NACC) database (Beekly et al., 2007), 
and included 25 participants with DLB and 127 controls. Participants 
from the UCL site were recruited from the National Hospital for 
Neurology and Neurosurgery outpatient clinics and affiliated hospitals, 
or from national patient support groups (Lewy Body Society and Rare 
Dementia Support). They were diagnosed as having PD or probable DLB 
if they satisfied Queen Square Brain Bank PD diagnostic criteria (Daniel 
and Lees, 1993) and the Dementia with Lewy Bodies Consortium Criteria 
(McKeith et al., 2017) respectively. Exclusions were a history of trau
matic brain injury, or major co-morbid psychiatric or confounding 
neurological disorders; and for participants with PD, presence of de
mentia was also an exclusion criterion, defined using Movement Disor
der Society criteria (Emre et al., 2007). All UCL participants were 
assessed by a neurologist (RSW) to ascertain the diagnosis of PD or DLB. 
Controls were recruited from spouses of patients and UCL volunteer 
databases. Inclusion criteria were being aged 50–80 and exclusions were 
the presence of past neurological or psychiatric history, or cognitive 
impairment on history or neuropsychological testing. 

Participants from site “8361” were included if they had a structural 
MRI scan and met the following criteria based on descriptors available in 
the NACC data file (06/2022 data freeze): 1) dementia diagnosis; 2) 
primary or contributing cause of cognitive impairment: Lewy body 
disease; 3) not classed as MCI; and 4) absence of a diagnosis of PD. 
Controls in the NACC dataset had no evidence of cognitive impairment 
or history of neurological illness. 

2.2. Clinical assessment 

PD participants at the UCL site were divided into high (n = 64) and 
low (n = 32) visual performers based on performance on two compu
terised visual tasks: biological motion and the ‘Cats-and-dogs’ task (see 
Supplementary material). These have been described previously 
(Zarkali et al., 2021; Weil et al., 2017; Weil et al., 2018; Leyland et al., 
2020) and shown to predict dementia and poor outcomes in Parkinson’s 
(Zarkali et al., 2021; Hannaway et al., 2023). We stratified the Parkin
son’s group on this basis rather than on mild cognitive impairment 
(MCI) status because the phenomenology and presentation of PD-MCI is 
often heterogeneous (Muslimovic et al., 2005; Litvan et al., 2012; Yar
nall et al., 2014; Weil et al., 2018) and a significant proportion of pa
tients revert to normal cognition within five years (Pedersen et al., 
2017). In contrast, patients with PD and visual dysfunction are at 
heightened risk of developing dementia, as shown in several longitudi
nal cohorts and population studies (Williams-Gray et al., 2013; Zarkali 
et al., 2021; Hannaway et al., 2023; Hamedani et al., 2020; Han et al., 
2020). 

Clinical assessment, performed on the same day as the MRI scan, 
included detailed neuropsychology and disease-specific measures of 
clinical severity. For cognition, we used the Mini-Mental State Exami
nation (MMSE) (Folstein et al., 1975), the Montreal Cognitive Assess
ment (MoCA) (Nasreddine et al., 2005), which is a widely-used measure 
of global cognitive function in PD (Dalrymple-Alford et al., 2010) and a 
composite cognitive score (Zarkali et al., 2021; Hannaway et al., 2023). 
This combines measures across five cognitive subdomains: Stroop colour 
(Stroop, 1935) (attention); letter fluency (Lezak et al., 2004) (language); 
category fluency (Lezak et al., 2004) (executive function); word recog
nition (Warrington, 1984) (memory); Hooper Visual Organisation Test 
(Hooper, 1958) (visuo-perceptual ability), plus MoCA, averaging z- 
scores for each, thus providing a more comprehensive assessment of 
cognition. Additionally, as visuo-perceptual ability is usually affected 
early in DLB (McKeith et al., 2017), we specifically examined visuo- 
perceptual performance using the Hooper Visual Organisation Test 
(Hooper, 1958). 

Disease-specific measures included the Movement Disorder Society 
Unified PD Rating Scale (MDS-UPDRS) that measures motor and non- 
motor domains (Goetz et al., 2008), part III of the MDS-UPDRS (MDS- 
UPDRS-III) to assess motor function (Goetz et al., 2008), the University 
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of Miami PD Hallucinations Questionnaire (UM-PDHQ) to evaluate 
hallucinations (Papapetropoulos et al., 2008) and the Hospital Anxiety 
and Depression Scale (HADS) (Zigmond and Snaith, 1983) to measure 
depression severity. 

2.3. MRI acquisition and processing 

Structural T1w-MRI scans at UCL were acquired on a 3 T Siemens 
Magnetom Prisma scanner with a 64-channel head coil. Structural 
magnetisation prepared rapid acquisition gradient echo (MPRAGE) data 
were acquired using the following parameters: 1 × 1 × 1 mm voxel, TE 
= 3.34 ms, TR = 2530 ms, flip angle = 7◦, acquisition time = 9 min. 
Structural T1w-MRI scans from NACC ADRC “8361” were acquired on 
1.5 T GE scanners (further information on scanning parameters are 
available via the NACC database). 

The “recon-all” function in FreeSurfer v6.0.0 (http://www.frees 
urfer.net) was used to process all UCL and NACC MRI data. Cortical 
thickness values (Destrieux parcellation; lh.aparc.a2009s.stats, rh. 
aparc.a2009s.stats) (Destrieux et al., 2010) and subcortical volumes 
(aseg.stats) were extracted. Processed images were quality controlled by 
visually inspecting grey and white matter boundaries, and subcortical 
segmentation boundaries superimposed on the corresponding structural 
T1-weighted image by a researcher blind to clinical status. Particular 
attention was paid to atrophied scans which can sometimes affect robust 
segmentation of brain structures. 

2.4. Reference normative dataset 

Rutherford and colleagues (Rutherford et al., 2022) modelled 
normative lifespan curves for cortical thicknesses across 148 regions 
(Destrieux parcellation) and subcortical volumes derived from Free
surfer using a warped Bayesian Linear Regression with age and sex as 
covariates, and accounting for site differences (Bayer et al., 2022). 
Bayesian linear regression with likelihood warping allows accurate 
modelling of non-Gaussian effects and upscaling of normative models to 
large cohorts (Fraza et al., 2021). Their reference cohort comprised 
58,836 participants from 82 sites. 

2.5. Applying neuroimaging normative modelling to study data 

The reference normative model was recalibrated to the study data
sets with an adapted transfer learning approach (Kia et al., 2022). This 
involved inputting control data from our two study sites into the refer
ence normative model to generate stable parameters for cortical thick
nesses and subcortical volumes, to account for residual differences in 
data distributions, caused by factors such as scanner differences. Z- 
scores were then generated for each individual with DLB or PD, per 
region, relative to the recalibrated reference values. All modelling steps 
were performed using PCNToolkit (v0.20) (Rutherford et al., 2022). 

2.6. Statistical analysis 

2.6.1. Total outlier count 
From the z-scores for each cortical and subcortical region generated 

from the normative modelling pipeline described above, outliers were 
defined as z-scores < -1.96. This is a commonly used threshold repre
senting 95 % confidence that points below it differ from the mean 
(Fisher, 1925). This is equivalent to the p = 0.05 threshold for signifi
cance in frequentist statistical models, and since we are interested in 
atrophy, only consider lower values (i.e., the bottom 2.5 % of the pop
ulation distribution) for a given neuroimaging metric. However, to 
ensure our findings were not driven by a particular threshold, we 
repeated the analysis using a more liberal outlier threshold < -1.282, to 
test whether this affected our findings (see Supplementary Material). 

The total number of outliers across the 169 regions (148 cortical and 
21 subcortical) was summed per participant to provide the total outlier 

count. Linear regressions, correcting for age and sex, were used to test 
for group differences in total outlier count between high and low visual 
performers with PD; and between DLB and PD. Further, subgroup ana
lyses compared DLB participants at the UCL and NACC sites; and PD and 
DLB participants only at the UCL site. Group comparisons for proportion 
of outliers at each region were conducted using Mann-Whitney U tests 
and corrected for multiple comparisons using the False Discovery Rate 
(FDR). 

2.6.2. Measuring dissimilarity within and between groups 
Hamming distance is widely used in information theory and reflects 

the dissimilarity between two strings of equal length. At each point on 
the strings, a distance of 1 is assigned if the symbols are different, 0 if the 
symbols are the same. This is summed across the length of the strings to 
give the Hamming distance (Hamming, 2018). Hamming distance was 
calculated using the vector of binarised z-scores for outliers across 169 
brain regions. Participants were compared pairwise within groups, so 
had n-1 Hamming distance scores ranging from 0 to 169, where n is their 
group size. Median Hamming distance scores for each participant were 
calculated (rather than mean, as distributions were skewed) and 
between-group comparisons for the median Hamming distances run, 
using Mann-Whitney U tests. 

To visualise spatial outlier patterns of cortical thickness for each 
region, we calculated the proportion of participants within each group 
that were outliers, and mapped these onto the Destrieux atlas cortical 
surface using ggseg in R (Mowinckel and Vidal-Piñeiro, 2020). 

2.6.3. Associations between total outlier count and clinical features 
Linear regressions adjusting for age and sex were used to test asso

ciations between total outlier count and composite cognitive score, 
MoCA and visuo-perception, measured using the Hooper Visual Orga
nisation Test. In exploratory analyses, we tested associations with 
disease-specific measures including global measure of severity (MDS- 
UPDRS), motor severity (MDS-UPDRS-III), hallucination severity (UM- 
PDHQ) and depression score (HADS). Associations were tested in PD and 
DLB groups separately. For the DLB group we only included data from 
UCL where clinical severity data had been comprehensively collected. 

Statistical analyses were performed in R (v4.2.2). 

2.7. Potential outliers in total outlier count measure 

One PD participant and two DLB participants (one from UCL and one 
from NACC) had, on data visualisation, much higher total outlier counts 
(45, 50 and 53, respectively) than other participants (PD range 
excluding outlier: 0–24; DLB: 0–38). Their brain imaging was carefully 
quality controlled by three authors (RB, RSW, JHC), but did not show 
significant structural abnormalities, acquisition, or processing errors; 
and clinical assessment of the UCL participants was consistent with 
unambiguous diagnoses (see Supplementary Table 1). We present results 
with and without these participants below. 

2.8. Conventional cortical thickness analysis 

We used a conventional General Linear Model (GLM) (Freesurfer 
v6.0) to test for regional group-level differences in cortical thickness 
between high and low visual performers with PD and between PD and 
DLB. Age and sex were used as covariates and Monte Carlo multiple 
comparison correction, threshold p < 0.05. 

3. Results 

3.1. Participants 

We included 108 participants with PD (all from the UCL site); and 61 
people with DLB (36 from UCL, 25 from the NACC site), plus 165 con
trols (38 from UCL, 127 from NACC), used to calibrate the reference 
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dataset models to the study data (see Table 1 for demographic and 
clinical information, for further details of clinical measures in PD high 
and low visual performers see Supplementary Table 2). 

3.2. Differences in total outlier count between DLB and PD 

Mean total outlier count was significantly higher in DLB (n = 61; 
mean = 8.7 (SD = 11.3)) compared to PD (n = 108; mean = 3.60 (SD =
6.0)) when adjusting for age and sex (PD versus DLB: β = -5.60 (SE =
1.74); t = -3.23; p < 0.01) and also higher in the PD low (n = 34; mean =
5.4 (SD = 8.7)) compared to high visual performers (n = 62; mean = 2.3 
(SD = 3.5)), when adjusting for age and sex (β = -4.73 (SE = 1.30); t =

-3.64; p < 0.01). 
DLB participants from the NACC site (n = 25) had significantly 

higher numbers of outliers compared to those from the UCL site (n = 36), 
when adjusting for age and sex (UCL versus NACC: β = -6.02 (SE = 2.97); 
t = -2.02; p = 0.050). 

Mean cortical thickness z-scores, derived from the normative 
modelling, showed a similar pattern of group differences as the total 
outlier score metric, except for DLB compared to PD group at the UCL 
site, where mean z-score was significantly lower in the DLB group, 
reflecting greater atrophy overall (Table 1). 

3.3. Heterogeneity in patterns of outliers found between PD at-risk of 
dementia groups and between DLB and PD 

Dissimilarity, as measured by Hamming distance, was significantly 
higher in PD low visual performers (n = 34; mean = 7.1 (SD = 8.4)) 
compared to high visual performers (n = 62; mean = 3.3 (SD = 3.4), W 
= 522.5; p < 0.01); and higher in DLB (n = 61; mean = 12.6 (SD = 10.3)) 
compared to PD (n = 108; mean = 4.6 (SD = 6.0), (W = 5649; p < 0.01). 
Hamming distance matrices for between group comparisons are shown 
in Fig. 1. 

The proportion of regional outliers were mapped by group (Fig. 2). 
For low compared to high visual performers with PD, and for DLB 
compared to PD, there are more regions in which there are greater 
numbers of outliers than would be expected by chance (i.e., >2.5 %), 
suggesting greater heterogeneity and more widespread atrophy. 

In the PD group as a whole, 125 regions out of 169 had at least one 
patient with an outlier. This compares with 147/169 regions in the DLB 
group. The region with the highest number of PD patients who were an 
outlier was the left paracentral lobule and sulcus region (n = 15, 13.9 
%). In the DLB group the region with the highest number of outliers (15 
people, only 24 % of the group) was the right posterior-dorsal part of 
the cingulate gyrus (dPCC). For further information on the proportion of 
outliers per region, and where significant regional differences between 
groups exist, as well as a comparison between PD low and high visual 
performers, see Supplementary Table 3 and Supplementary Fig. 1. 

3.4. Total outlier counts are associated with cognitive performance in DLB 
and with visuospatial processing in PD 

There were significant differences in several clinical measures be
tween PD and DLB groups, with the latter more severely affected 
(Supplementary Table 4). 

In DLB, there were significant associations between total outlier 
count and both the composite cognitive score (β = -2.01 (SE = 0.79); t =
-2.54; p = 0.02) and MoCA (β = -0.55 (SE = 0.27), t = -2.04, p = 0.05), 
when adjusting for age and sex. There was no significant association 
with the Hooper Visual Organisation Test (β = -0.45 (SE = 0.24); t =
-1.89; p = 0.068, Fig. 3). There were also no significant associations with 
the MDS-UPDRS, MDS-UPDRS-III, UM-PDHQ or HADS (Table 2). 

In the PD group, total outlier score showed a significant association 
with the Hooper Visual Organisation Test (β = -0.67 (SE = 0.19); t =
-3.59; p < 0.01), but did not show associations with global cognitive 
performance. Similar to DLB, no associations were found in PD between 
total outlier count and other disease measures (Table 2). 

We repeated our analyses using a lower outlier threshold (z-score <
-1.282), to ensure they were not driven by a particular threshold. The 
key findings were qualitatively similar to our findings using the 
threshold, z-score < -1.96 (Supplementary Tables 5 and 6). 

Additional sensitivity analyses without the two individuals with 
large numbers of outlier regions showed similar results. In DLB, the 
association between total outlier count and poorer composite cognitive 
scores trended, but did not reach significance ((β = -0.94 (SE = 0.51); t 
= -1.83; p = 0.078) and MoCA (β = -0.33 (SE = 0.16); t = -2.01; p =
0.053). In PD, the association between total outlier count and visuo- 
perception (β = -0.38 (SE = 0.15); t = -2.59; p = 0.01) remained 

Table 1 
Demographics, clinical characteristics and total outlier counts.  

PD vs DLB     

PD (n =
108) 

DLB (n = 61) Statistic 

Age, y 64.1 (7.8) 73.8 (6.5) t ¼ -9.2; p < 0.01 
Male, n (%) 51 (48) 55 (90) χ2 ¼ 27.9; p < 0.01 
Education, y 17.1 (2.8) 15.6 (3.4) W ¼ 2483; p < 0.01 
Disease duration, y 4.1 (2.5) 4.3 (2.7) W = 3393; p = 0.74 
MMSE 29.0 (1.1) 23.3 (5.6) W ¼ 663.5; p < 0.01* 
Total outlier count 3.6 (6.0) 8.7 (11.3) β ¼ -5.60 (SE ¼ 1.74); p < 

0.01* 
Mean regional z- 

score 
− 0.25 
(0.84) 

− 0.62 (0.87) β ¼ 0.67 (SE ¼ 0.17); p < 
0.01*  

High vs Low visual Performers with PD  

High (n =
62) 

Low (n = 34) Statistic 

Age, y 61.5 (7.1) 68.1 (8.0) t ¼ -4.02; p < 0.01 
Male, n (%) 31 (50) 14 (41) χ2 = 0.38; p = 0.54 
Education, y 16.5 (2.7) 18.2 (2.7) W ¼ 720.5; p < 0.01 
Disease duration, y 3.7 (2.1) 4.9 (2.9) W = 829.5, p = 0.54 
MMSE 29.0 (1.1) 28.7 (1.2) W = 1207; p = 0.22 
Total outlier count 2.3 (3.5) 4.1 (5.2) β ¼ -4.73 (SE ¼ 1.30); p < 

0.01* 
Mean regional z- 

score 
− 0.04 
(0.42) 

− 0.20 (0.50) β ¼ 0.31 (SE ¼ 0.10); p < 
0.01*  

DLB by site (UCL vs NACC participants)  

UCL (n =
36) 

NACC (n =
25) 

Statistic 

Age, y 72.9 (5.5) 75.1 (6.3) t = -1.41; p = 0.17 
Male, n (%) 33 (92) 22 (88) χ2 = 0.001; p = 0.97 
Education, y 16.0 (3.5) 15.0 (3.4) W = 515; p = 0.34 
Disease duration, y 3.7 (2.0) 5.3 (3.3) W ¼ 315; p ¼ 0.05 
MMSE 24.7 (3.4) 21.2 (7.3) W = 547; p = 0.15 
Total outlier count 6.3 (9.3) 12.1 (13.2) β ¼ -6.02 (SE ¼ 3.00); p ¼

0.048* 
Mean regional z- 

score 
− 0.39 
(0.83) 

− 0.95 (0.81) β ¼ 0.61 (SE ¼ 0.17); p < 
0.01*  

PD vs DLB at UCL site only  

PD (n =
108) 

DLB (n = 36) Statistic 

Age, y 64.1 (7.8) 72.9 (5.5) t ¼ -7.54; p < 0.01 
Male, n (%) 51 (48) 33 (92) χ2 ¼ 19.4; p < 0.01 
Education, y 17.1 (2.8) 16.0 (3.5) W = 1613, p = 0.12 
Disease duration, y 4.1 (2.5) 3.7 (2.0) W = 2103; p = 0.46 
MMSE 29.0 (1.1) 24.7 (3.4) W ¼ 467; p < 0.01 
Total outlier count 3.6 (6.0) 6.3 (9.3) β = -3.13 (SE = 1.61); p =

0.054* 
Mean regional z- 

score 
− 0.25 
(0.84) 

− 0.39 (0.83) β ¼ 0.48 (SE ¼ 0.19); p < 
0.01* 

PD, Parkinson’s disease; DLB, Dementia with Lewy bodies; UCL, University 
College London; NACC, National Alzheimer’s Co-ordinating Centre. 
All data are shown as mean (SD) apart from sex. 
*p values were analysed by a linear regression adjusting for age and sex. 
BOLD signifies statistically significant difference. 
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(Supplementary Fig. 2). 

3.5. Group-level cortical thickness analysis is less sensitive to differences 
in cortical atrophy between groups 

A conventional GLM approach did not find any significant clusters of 
differences in cortical thickness between high and low visual performers 
in PD. Comparing PD with DLB, there were two significant clusters in the 
left precentral region and one significant cluster in both the superior 
frontal and precentral regions on the right, signifying reduced cortical 
thickness in DLB compared with PD in these regions (Supplementary 
Table 7). 

4. Discussion 

We used neuroanatomical normative modelling to examine hetero
geneity of brain atrophy in PD and DLB, to overcome the limitations of 
‘group-average’ analyses. We found greater and more variable atrophy 
in DLB compared with PD, despite limited spatial overlap in the cortical 
regions affected. We showed a similar effect for people with PD at higher 
risk of developing dementia (low visual performance), compared to PD 
at low risk of dementia (high visual performers), with higher total 
outlier count, and greater dissimilarity in PD low visual performers than 
high visual performers. Importantly, conventional GLM group-average 
analyses did not reveal atrophy differences between these groups. 

Total outlier count is agnostic to the regional location of cortical 
atrophy, whereas conventional GLM approaches require cortical atro
phy to be in the same locations between individuals. Strikingly, total 
outlier count was significantly associated with severity of cognitive 

measures in both DLB and PD. Overall, this indicates that measures 
derived from neuroanatomical normative modelling may have utility in 
Parkinson’s and DLB. 

We observed differences in total outlier count in patients at different 
stages in progression to dementia: in a PD dementia at-risk group (where 
patients did not yet have dementia); as well as in DLB. This suggests that 
neuroanatomical normative modelling may have clinical utility as a 
prognostic neuroimaging measure of disease progression in Lewy body 
disorders, as has been shown in Alzheimer’s disease previously (Verdi 
et al., 2023; Verdi et al., 2023). Importantly for its clinical application, 
total outlier count can be calculated based on cortical thicknesses and 
subcortical volume read-outs from freely-available automated pipelines 
for commonly acquired T1w-MRI scans. 

Higher total outlier count was significantly associated with poorer 
global cognition (lower composite cognitive and MoCA scores) in DLB 
but not with a measure of visuo-perceptual processing (the Hooper test). 
In contrast, in PD, we did not find a relationship between composite 
cognitive scores and total outlier count; whereas we did find a rela
tionship between total outlier count and visuo-perception. It is possible 
that the lack of relationship between cognitive measures and total 
outlier count in PD was due to ceiling effects in the MoCA and composite 
cognitive scores. In contrast, the Hooper test, which measures visual 
perceptual processing, may be particularly sensitive to cognitive 
impairment in PD because visuoperceptual and visuospatial ability are 
early and key cognitive domains affected in PD (Curtis et al., 2019), thus 
less prone to ceiling effects. 

The Hamming distance enabled quantification of dissimilarity be
tween groups, and revealed greater inter-individual heterogeneity in 
low compared to high visual performers with PD, and in DLB compared 

Fig. 1. Outlier Heterogeneity. Outlier Hamming distance matrices for PD-low visual performers (A) and PD-high visual performers (B). Kernel density estimates (Y- 
axis) for a given Hamming distance score (X-axis) show that PD-low visual performers had more dissimilarity as evidenced by the flatter peak and longer tail 
compared to PD-high visual performers (C). Outlier Hamming distance matrices for the DLB (D) and PD (E) groups. Kernel density estimates (Y-axis) for a given 
Hamming distance score (X-axis) show that DLB participants had more dissimilarity as evidenced by the flatter peak and longer tail compared to the overall PD group 
(F). In A, B, D, E: dark blue / indigo represents the lower end of hamming distance scores whereby two participants are relatively similar to one another in terms of 
regional distribution of outliers, whereas yellow represents higher hamming distance scores, signifying greater dissimilarity. The more yellow in the plot, the greater 
the dissimilarity between individuals in the groups. PD, Parkinson’s disease; DLB, Dementia with Lewy bodies. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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to PD. In both comparisons, the group associated with poorer cognitive 
functioning showed greater dissimilarity. This is consistent with previ
ous work showing increased dissimilarity in Alzheimer’s compared to 
MCI and controls (Verdi et al., 2023). Greater dissimilarity in DLB 
compared to PD may relate to greater cortical involvement in DLB 
(Tsuboi and Dickson, 2005). Our findings highlight the benefits of 
considering individual differences over group-level analyses in Lewy 
body disease. 

Normative modelling has some key advantages over alternative ap
proaches to quantifying atrophy relative to a reference group, for 
example using W-score metrics, which have been previously applied to 
PD and DLB (Tremblay et al., 2021; Spotorno et al., 2020). The reference 
dataset of 58,836 used in normative modelling is around a thousand-fold 
larger than most W-score reference datasets, capturing much greater 
population variability and providing more robust estimates of deviation 
from control data. Further, the neuroanatomical normative modelling 
pipeline enables inter-individual heterogeneity to be quantified, which 
is not usually examined using W-score approaches. 

4.1. Limitations 

There are some limitations to consider for this work. Outliers were 
defined as z-scores < -1.96. This means total outliner count may fail to 
capture potentially relevant subthreshold levels of neurodegeneration. 
However, when using an alternative threshold, we found similar results, 
as was the case when using the mean cortical thickness z-score, which 
requires no threshold. 

A further limitation is the differences between sites from which DLB 
participant data were collected. DLB data from the UCL site were 

collected prospectively with our study aims in mind, whereas NACC is a 
large relational database, where neuropsychological and clinical fea
tures information was limited. Although participants at the UCL and 
NACC sites did not differ in age and sex, NACC participants had longer 
disease duration, which may partly account for the observed increased 
total outlier count in that group. Alternative explanations are differences 
in study inclusion criteria, and testing demands on participants at the 
UCL site, leading to possible selection bias of less functionally impaired 
participants. MRI scans from the NACC site were performed on a 1.5 T 
scanner, and those at UCL on a 3 T scanner. However, the normative 
modelling pipeline is designed to help account for such differences in 
input data (Bayer et al., 2022) and the adapted transfer learning 
approach (Kia et al., 2022) allowed us to recalibrate the reference 
normative model based on site differences, including scanner 
parameters. 

Finally, our DLB dataset is relatively small, although it is consistent 
with other imaging DLB studies (Ye et al., 2020). This may have un
derpowered the correlational analyses in the DLB group. DLB patients 
are generally frailer than those with PD and can be more challenging to 
assess. Recent data-sharing initiatives could enable normative modelling 
to be applied to larger DLB datasets from multi-site collaborations. 

5. Conclusions 

We showed that neuroanatomical normative modelling provides a 
new perspective on PD and DLB, which show more variable atrophy 
patterns between patients; and the total outlier count has potential as a 
clinically-useful measure of disease severity. This methodology yields 
personalised rather than more traditional case-control group average 

Fig. 2. Regional maps of outliers. The proportion of participants who are outliers in a particular cortical region, mapped onto the cortical surface. A. Low visual 
performers (who are at-risk of Parkinson’s dementia) compared to high visual performers with PD (at lower risk of Parkinson’s dementia). Qualitatively, more regions 
have a higher proportion of participants with outliers in the low visual performer group. B. PD and DLB. Qualitatively, more regions have higher proportions of 
participants with outliers in DLB than PD. Of note, there is no one region with more than 25% of participants being outliers, highlighting the heterogeneity in cortical 
atrophy in DLB and PD. Grey represents regions with 0–2.5% outliers. 

R. Bhome et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 42 (2024) 103596

7

measures and holds promise for prognosis or treatment-response pre
dictions for individual patients. 
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Table 2 
Association of total outlier count with measures of cognitive performance and other disease specific measures.   

PD (n = 108) DLB (n = 36) 

Attribute beta SE t p valuea beta SE t p valuea 

Cognitive performance 
Composite Cognitive Score  − 1.19  0.79  − 1.51  0.14  ¡2.01  0.79  ¡2.54  0.016 
MoCA  − 0.17  0.31  − 0.55  0.58  ¡0.55  0.27  ¡2.04  0.050 
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Disease-specific measures 
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HADS depression  0.05  0.19  0.26  0.80  − 0.39  0.32  − 1.23  0.23 

PD, Parkinson’s disease; DLB, Dementia with Lewy bodies; MoCA, Montreal Cognitive Assessment; HVOT, Hooper Visual Organisation Test; HADS, Hospital Anxiety 
and Depression Scale; MDS-UPDRS, Movement Disorders Society Unified Parkinson’s Disease Rating Scale; UM-PDHQ, University of Miami Hallucinations; Ques
tionnaire; HADS, Hospital Anxiety and Depression Scale. 
ap values were analysed using linear regressions adjusting for age and sex. 
In bold results showing statistically significant associations. 

R. Bhome et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 42 (2024) 103596

8

(PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 
AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas 
Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 
(PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 
AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), 
P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott 
Small, MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI 
Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 
AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, 
MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank 
LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 
AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, 
MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI 
Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), 
P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd 
Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), 
P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI 
Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 
AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, 
MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI 
Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 
AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Lev
erenz, MD). 

Author contributions 

Rohan Bhome, Rimona S Weil and James H Cole conceived the study. 
Rohan Bhome, Ivelina Dobreva and Naomi Hannaway collected data. 
Rohan Bhome, Serena Verdi, Sophie A Martin, Neil P Oxtoby and Gon
zalo Castro Leal contributed to data processing and statistical analysis. 
Rohan Bhome wrote the first draft of the manuscript and all authors 
edited and agreed to the final version of the manuscript. 

CRediT authorship contribution statement 

R. Bhome: Conceptualization, Formal analysis, Methodology, 
Writing – original draft, Writing – review & editing, Investigation. S. 
Verdi: Formal analysis, Methodology, Resources, Writing – review & 
editing. S.A. Martin: Data curation, Writing – review & editing. N. 
Hannaway: Data curation, Investigation, Writing – review & editing. I. 
Dobreva: Data curation, Investigation, Writing – review & editing. N.P. 
Oxtoby: Data curation, Writing – review & editing. G. Castro Leal: Data 
curation, Writing – review & editing. S. Rutherford: Methodology, 
Writing – review & editing. A.F. Marquand: Methodology, Writing – 
review & editing. R.S. Weil: . J.H. Cole: Conceptualization, Method
ology, Supervision, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The authors thank all the participants for their time. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2024.103596. 

References 

Bayer, J.M.M., Dinga, R., Kia, S.M., Kottaram, A.R., Wolfers, T., Lv, J., et al., 2022. 
Accommodating site variation in neuroimaging data using normative and 
hierarchical bayesian models. Neuroimage 264, 119699. 

Beekly, D.L., Ramos, E.M., Lee, W.W., Deitrich, W.D., Jacka, M.E., Wu, J., et al., 2007. 
The National Alzheimer’s coordinating center (NACC) database: the uniform data 
set. Alzheimer Dis. Assoc. Disord. 21 (3), 249–258. 

Cohen-Mansfield, J., 2000. Heterogeneity in dementia: challenges and opportunities. 
Alzheimer Dis. Assoc. Disord. 14 (2), 60–63. 

Curtis, A.F., Masellis, M., Camicioli, R., Davidson, H., Tierney, M.C., 2019. Cognitive 
profile of non-demented Parkinson’s disease: meta-analysis of domain and sex- 
specific deficits. Parkinsonism Relat. Disord. 60, 32–42. 

Dalrymple-Alford, J.C., MacAskill, M.R., Nakas, C.T., Livingston, L., Graham, C., 
Crucian, G.P., et al., 2010. The MoCA well-suited screen for cognitive impairment in 
Parkinson disease. Neurology 75 (19), 1717–1725. 

Daniel, S.E., Lees, A.J., 1993. Parkinson’s disease society brain Bank, London: overview 
and research. J. Neural Transm. Suppl. 39, 165–172. 

Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of human 
cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53 (1), 
1–15. 

Emre, M., Aarsland, D., Brown, R., Burn, D.J., Duyckaerts, C., Mizuno, Y., et al., 2007. 
Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. 
Disord. 22 (12), 1689–1707 quiz 837.  

Fisher, R.A., 1925. Statistical Methods for Research Workers. Oliver and Boyd, 
Edinburgh.  

Flavia L, Serena V, Seyed Mostafa K, Aleksandar D, Haneen H, Anna F, et al. Examining 
real-world Alzheimer’s disease heterogeneity using neuroanatomical normative 
modelling. medRxiv. 2022:2022.11.02.22281597. 

Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. “Mini-mental state”. a practical 
method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 
12 (3), 189–198. 

Fraza, C.J., Dinga, R., Beckmann, C.F., Marquand, A.F., 2021. Warped Bayesian linear 
regression for normative modelling of big data. Neuroimage 245, 118715. 

Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-Martin, P., 
et al., 2008. Movement Disorder Society-sponsored revision of the unified 
Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric 
testing results. Mov. Disord. 23 (15), 2129–2170. 

Hamedani, A.G., Abraham, D.S., Maguire, M.G., Willis, A.W., 2020. Visual impairment is 
more common in Parkinson’s disease and is a risk factor for poor health outcomes. 
Movement Disord. 35 (9), 1542–1549. 

Hamming RW. Numerical methods for scientists and engineers. Second, ed 2018. 
Han, G., Han, J., Han, K., Youn, J., Chung, T.Y., Lim, D.H., 2020. Visual acuity and 

development of Parkinson’s disease: a nationwide cohort study. Mov. Disord. 35 (9), 
1532–1541. 

Hannaway, N., Zarkali, A., Leyland, L.A., Bremner, F., Nicholas, J.M., Wagner, S.K., 
et al., 2023. Visual dysfunction is a better predictor than retinal thickness for 
dementia in Parkinson’s disease. J Neurol Neurosur Ps. 

Hooper, H.E., 1958. The Hooper visual organization test manual. Western Psychological 
Services, Los Angeles, USA.  

Kia, S.M., Huijsdens, H., Rutherford, S., de Boer, A., Dinga, R., Wolfers, T., et al., 2022. 
Closing the life-cycle of normative modeling using federated hierarchical Bayesian 
regression. PLoS One 17 (12), e0278776. 

Lee, J.E., Cho, K.H., Song, S.K., Kim, H.J., Lee, H.S., Sohn, Y.H., et al., 2014. Exploratory 
analysis of neuropsychological and neuroanatomical correlates of progressive mild 
cognitive impairment in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 85 
(1), 7–16. 

Leyland, L.A., Bremner, F.D., Mahmood, R., Hewitt, S., Durteste, M., Cartlidge, M.R.E., 
et al., 2020. Visual tests predict dementia risk in Parkinson disease. Neurol Clin 
Pract. 10 (1), 29–39. 

Lezak, M.D., 2004. Verbal fluency. In: Lezak, M.D., HDBaLDW (Eds.), 
Neuropsychological Assessment. Oxford University Press, UK.  

Litvan, I., Goldman, J.G., Troster, A.I., Schmand, B.A., Weintraub, D., Petersen, R.C., 
et al., 2012. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: 
Movement Disorder Society task force guidelines. Mov. Disord. 27 (3), 349–356. 

Mak, E., Su, L., Williams, G.B., O’Brien, J.T., 2014. Neuroimaging characteristics of 
dementia with lewy bodies. Alzheimers Res. Ther. 6 (2), 18. 

Marquand, A.F., Rezek, I., Buitelaar, J., Beckmann, C.F., 2016. Understanding 
heterogeneity in clinical cohorts using normative models: beyond case-control 
studies. Biol. Psychiatry 80 (7), 552–561. 

Marquand, A.F., Kia, S.M., Zabihi, M., Wolfers, T., Buitelaar, J.K., Beckmann, C.F., 2019. 
Conceptualizing mental disorders as deviations from normative functioning. Mol. 
Psychiatry 24 (10), 1415–1424. 

McKeith, I.G., Boeve, B.F., Dickson, D.W., Halliday, G., Taylor, J.P., Weintraub, D., et al., 
2017. Diagnosis and management of dementia with Lewy bodies fourth consensus 
report of the DLB consortium. Neurology 89 (1), 88–100. 
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