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Changes in dynamic transitions between integrated
and segregated states underlie visual hallucinations
in Parkinson’s disease
Angeliki Zarkali 1✉, Andrea I. Luppi 2,3, Emmanuel A. Stamatakis 2,3, Suzanne Reeves4, Peter McColgan5,

Louise-Ann Leyland1, Andrew J. Lees6 & Rimona S. Weil1,7,8

Hallucinations are a core feature of psychosis and common in Parkinson’s. Their transient,

unexpected nature suggests a change in dynamic brain states, but underlying causes are

unknown. Here, we examine temporal dynamics and underlying structural connectivity in

Parkinson’s-hallucinations using a combination of functional and structural MRI, network

control theory, neurotransmitter density and genetic analyses. We show that Parkinson’s-

hallucinators spent more time in a predominantly Segregated functional state with fewer

between-state transitions. The transition from integrated-to-segregated state had lower

energy cost in Parkinson’s-hallucinators; and was therefore potentially preferable. The

regional energy needed for this transition was correlated with regional neurotransmitter

density and gene expression for serotoninergic, GABAergic, noradrenergic and cholinergic,

but not dopaminergic, receptors. We show how the combination of neurochemistry and brain

structure jointly shape functional brain dynamics leading to hallucinations and highlight

potential therapeutic targets by linking these changes to neurotransmitter systems involved

in early sensory and complex visual processing.
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Psychotic disorders cause significant global burden to affec-
ted individuals, families and healthcare systems. In Par-
kinson’s disease (PD), psychosis is common, and visual

hallucinations are associated with cognitive decline1, poorer
quality of life2 and increased mortality3. However, despite their
impact, the brain changes that give rise to psychotic hallucina-
tions are not fully understood. The transient, unpredictable nat-
ure of hallucinations, even in patients who regularly experience
them, suggests they relate to changes in dynamic brain processes
and shifts in states. Resting-state functional MRI (rsfMRI) mea-
sures spontaneous fluctuations in brain activity based on corre-
lated fluctuations in blood oxygenation4 and has shown changes
in the relative activity of specific functional brain networks in
patients with PD-hallucinations5, with increased activation of the
default mode network (DMN) and impaired recruitment of the
dorsal attention network6–9. However, these studies only provide
a static image of functional connectivity, calculated over an entire
scanning period, rather than examining dynamic changes in brain
states.

An extension of this approach is dynamic functional con-
nectivity analysis, which measures spontaneous fluctuations in
connectivity over time10–12 and may be a more accurate repre-
sentation of fluctuating cognitive states than previous static
approaches13. Changes in temporal dynamics are seen in schi-
zophrenia and other psychiatric conditions14–17, and recent work
showed imbalance of temporal dynamics of integrated and seg-
regated states in anaesthesia and disorders of consciousness18,19

and after administration of the psychedelic LSD, known for its
hallucinogenic properties20. Changes in dynamic functional
connectivity are described in PD21 and are associated with
severity of both motor and cognitive symptoms22–24 but are as yet
unexplored in relation to neuropsychiatric symptoms.

Functional connectivity is likely to be affected by breakdown in
the anatomical connections between regions. Indeed, PD patients
with hallucinations show widespread disruption in structural
connections between brain regions, measured using diffusion
MRI25,26. These changes particularly affect highly connected
brain regions or “hubs” important for switching the brain
between different states27,28. Network control theory is a math-
ematical framework developed to study how the activity of a
network’s nodes is influenced by the network’s structure. In the
context of neuroscience, it offers a mechanistic explanation of
how the brain transitions between cognitive states based on its
structure, enabling behaviour29. It integrates information from an
individual’s structural connectome (white matter connectivity
derived from diffusion-weighted imaging) and temporal activa-
tion patterns (derived for example from fMRI) to specify how
observed temporal activation patterns are constrained by the
structural connectome29,30. This framework defines brain states
as the magnitude of haemodynamic activity across brain regions
at a single time point and assumes that the brain’s activation state
at a given time is a linear function of a previous state, the
underlying structural connectome and the additional control
energy that is added to the system29,31. In this way, the minimal
energy cost needed to move the brain from one state to another
can be calculated based on its structural network29,31,32. A state
that is less energy-demanding to maintain, or requires lower
energy for transition, will be preferred. Recent work has shown
that certain state transitions are preferable in the resting brain
over others but this can be overcome by cognitive demands and is
related to brain development and cognition33–36. This framework
has the potential to explain why a particular state is pre-
dominantly seen in health and how the balance between states
may change in the presence of disease.

Transitions between functional states may be modulated by
neurotransmitter systems37. Dopamine transmission, particularly

D2 receptor expression guides state transitions during a working
memory task34. Excess dopamine release is a core neurobiological
theory of schizophrenia38, and excess striatal dopamine has
been linked to hallucinatory experiences39. Dopamine has long
been considered the key driving neurotransmitter for PD
hallucinations40 with higher daily levodopa doses associated with
higher risk of hallucinations41,42. However, recent studies have
challenged this model and implicated other neurotransmitters
in PD-hallucinations: higher density of 5HT2A serotonin
receptors43, reduced GABA concentration44 and cholinergic
neuronal loss45 have each been described in patients with PD and
visual hallucinations. The role of dopamine in cognitive state
transitions in health has also been challenged, with regional
expression patterns of inhibitory and facilitatory neuro-
transmitters other than dopamine recently linked to dynamic
functional states46 and both noradrenaline12,47 and serotonin37

driving whole-brain functional connectivity changes. A better
understanding of the complex changes in neurotransmitter sys-
tems causing hallucinations would inform the development of
more effective and targeted treatments for this distressing
symptom.

Here, we aimed to investigate the nature of temporal dynamics
in PD-associated visual hallucinations using rsfMRI; and deter-
mine whether the balance between predominantly Integrated and
Segregated states of functional connectivity is altered in PD
patients with hallucinations compared to patients without hal-
lucinations and controls (overview in Fig. 1). We found that PD
patients with hallucinations show impaired temporal dynamics,
with a predisposition towards a predominantly Segregated state of
functional connectivity. We then applied network control theory
to calculate each individual’s required energy cost to transition
from the integrated-to-the-segregated state and vice versa, and
the cost to maintain each state. We found that Parkinson’s-hal-
lucinators required less energy to transition from the integrated-
to-segregated state than those without hallucinations and con-
trols. Finally, we identified the brain regions that contribute most
to the transition from integrated-to-segregated state. As dynamic
neural systems are modulated by neurotransmitter systems37,47

we related the spatial organisation of this transition to regional
neurotransmitter distribution using PET-derived density profiles
and regional gene expression for neurotransmitter receptors.

Results
Ninety-one patients with PD were included: 16 PD patients with
habitual visual hallucinations (PD-VH), 75 PD patients without
hallucinations (PD-non-VH) and 32 controls. Demographics and
clinical assessments are seen in Table 1. All participants experi-
enced hallucinations in the visual domain, with details on the
experienced hallucinatory images in Table 2. PD-VH and PD-
non-VH were well matched in demographics, cognitive and
motor performance, levodopa equivalent dose, and image quality
and motion parameters (Table 1 and Supplementary Table 1).
PD-VH participants showed higher depression scores (p= 0.032)
than PD-non-VH participants but well below the clinical
threshold for depression (≥8). As a result of the presence of
hallucinations and higher depression burden (p= 0.014), PD-VH
participants showed higher total UPDRS scores, which assessed
non-motor symptoms, but they did not differ in terms of motor
severity or levodopa equivalent dose. Although disease duration
differed between PD-VH and PD-non-VH participants
(p= 0.044), there was no correlation between disease duration
and temporal functional changes (ρ=−0.110, p= 0.297 between
proportion of time spent in an Integrated vs Segregated state and
disease duration in PD participants) therefore we did not correct
for disease duration in our main comparisons of interest.
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Preserved topology of functional connectivity states. To
examine the dynamic changes in functional connectivity under-
lying PD-hallucinations, we employed an a priori clustering of
dynamic functional connectivity into two states of functional
connectivity, an Integrated and a Segregated state. After obtaining
sliding-windows (44 s duration each) of dynamic functional
connectivity for each participant, the joint histogram of partici-
pation coefficient and within-module degree Z-score for k-means
clustering (k= 2; independently confirmed as optimal number of
clusters on data-driven evaluation, Supplementary Fig. 1). The
cluster with highest average participation coefficient was identi-
fied as the Integrated dynamic state and the cluster with the
lowest participation coefficient as the Segregated state, as

previously described12,18,20,48,49. This was performed separately
for each participant (using the same criteria) leading to
individually-defined predominantly Integrated and Segregated
states (Fig. 1a). Differences between the two states are seen in
Supplementary Fig. 2 and Supplementary Table 3.

These two states did not significantly differ between groups
(PD versus controls or PD-VH versus PD-non-VH) when
comparing connectivity strength in each state using network-
based statistics, or between-group differences in density (Inte-
grated: Kruskal–Wallis H= 2.473, p= 0.290, Segregated: 0.175,
p= 0.529), entropy of connectivity values (Integrated: H= 0.723,
p= 0.696, predominantly-Segregated: H= 0.905, p= 0.636),
structural-functional coupling (Integrated F(111,2)= 1.093,

Fig. 1 Overview of the study methodology. a Deriving Integrated and Segregated states of dynamic functional connectivity. After obtaining sliding-windows
(each 44 s duration) of dynamic functional connectivity for each participant, the joint histogram of participation coefficient and within-module degree
Z-score was used for k-means clustering (k= 2) (BOLD, blood oxygen level dependent activity). The cluster with highest average participation coefficient is
then identified as the predominantly Integrated dynamic state and the cluster with the lowest participation coefficient as the predominantly Segregated
state. Note that this is done for each participant separately leading to individually-defined states. b Modelling state transitions. After deriving each
individual’s Integrated and Segregated states we used an optical control framework to calculate the minimal control energy that needs to be applied to each
node of the structural network to transition from a baseline state at time T0 to a target state at time T1000. Here, as an example, we illustrate the transition
from the Integrated state (top 20% of nodes in blue) to the Segregated state (top 20% of nodes in green) but minimal energies were also calculated for
segregated-to-integrated transition as well as minimal energies to maintain the Integrated state (integrated-to-integrated) and Segregated state
(segregated-to-segregated) using the same model. Minimal control energies were calculated for each subject based on their structural brain network,
which was estimated using diffusion imaging and probabilistic tractography. Both states were represented in the model as a vector of the sum connectivity
strength for each node (1*232). c Linking with neurotransmitter systems. Minimal control energies to transition between and maintain functional states
were compared between patients with PD with (PD-VH, n= 16) and without hallucinations (PD-non-VH, n= 75). Transitions that differed between groups
were then further explored to examine whether contributing nodes (requiring mode control energy) were associated with specific neurotransmitter
systems. To do this, we calculated for each of the 232 regions of interest of our parcellation (Schaeffer 232: 200 cortical and 32 subcortical regions) (1)
mean neurotransmitter density profiles derived from PET data (serotonin (5HT1a, 5HT2a and 5HT1b), dopamine (D1 and D2) and GABAA receptors) and (2)
gene expression profiles for each of 31 pre-selected genes encoding receptors for norepinephrine, acetylcholine, dopamine and serotonin.
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p= 0.339, Segregated: F(111,2)= 1.401, p= 0.251) or small world
propensity (Integrated: H= 1.065, p= 0.587, Segregated:
H= 4.400, p= 0.111).

Impaired temporal properties of dynamic functional con-
nectivity in patients with hallucinations. Although the states
themselves did not differ between groups, we found significant
changes in their temporal properties. PD-VH spent a significantly
smaller proportion of time in the Integrated state (therefore more
time in the Segregated state) than PD-non-VH (β=−0.113,
p= 0.032) and controls (β=−0.128, p= 0.026) (Fig. 2a). Within
PD patients, the proportion of time spent in the Integrated state
was inversely correlated with hallucination severity (Spearman’s
ρ=−0.259, p= 0.013). Mean dwell time (number of consecutive
windows spent in each state) in the Segregated state was higher in
PD-VH than PD-non-VH (19.1 ± 16.9 in PD-VH vs 9.5 ± 9.1 in
PD-non-VH H= 4.058, p= 0.044), but did not differ for the
Integrated state (H= 2.166, p= 0.141). No differences were seen
in dwell times of either state between PD and controls. Finally,
the total number of transitions was lower in PD-VH than PD-
non-VH (5.7 ± 5.3 in PD-VH vs 8.5 ± 6.2 in PD-non-VH,
H= 3.87, p= 0.049) (Fig. 2b). Results were replicated using a
finer parcellation (Supplementary Fig. 4). Overall, this suggests

Table 1 Demographics and clinical assessments in patients with Parkinson’s with hallucinations (PD-VH) and without
hallucinations (PD-non-VH).

Attribute Controls
n= 32

PD-non-VH
n = 75

PD-VH
n= 16

p value

Demographics Age (years) 66.1 (9.4) 64.4 (7.8) 64.8 (8.6) 0.653
Male (%) 13 (40.6) 41 (54.7) 5 (31.2) 0.029a

Years in education 17.8 (2.5) 16.9 (2.6) 17.5 (3.6) 0.279
Total intracranial volume (ml) 1390.7 (96.6) 1479.0 (132.6) 1407.3 (114.8) 0.002a

Mood (HADS) Depression score 1.7 (1.9) 3.9 (3.0) 4.7 (3.4) 0.032a,b,c

Anxiety score 4.0 (3.5) 5.6 (3.8) 7.0 (4.4) <0.001a

Vision Visual acuity (LogMAR)* −0.08 (0.23) −0.08 (0.16) −0.07 0.351
Contrast sensitivity (Pelli Robson)* 1.78 (0.2) 1.79 (0.2) 1.70 (0.2) 0.106
Colour vision (D15 total error score) 2.4 (6.9) 3.4 (8.7) 2.7 (4.6) 0.681

Cognition MMSE 29.0 (1.0) 28.9 (1.2) 28.6 (1.9) 0.883
MOCA 29.0 (1.3) 28.2 (2.1) 26.9 (3.4) 0.047a

Attention Digit span backwards 7.2 (2.1) 7.1 (2.3) 7.9 (2.3) 0.601
Stroop: colour (sec) 32.1 (6.7) 33.5 (7.6) 38.1 (9.1) 0.089

Executive function Stroop: interference (sec) 55.4 (11.6) 60.2 (19.2) 69.6 (23.9) 0.051
Category fluency 22.5 (5.1) 21.7 (5.9) 19.8 (7.4) 0.339

Memory Word Recognition Task 24.3 (1.2) 24.3 (1.2) 23.8 (0.9) 0.056
Logical Memory 14.1 (4.1) 13.5 (4.3) 12.5 (4.6) 0.617

Language Graded Naming Task 22.5 (6.2) 23.9 (2.9) 23.7 (2.3) 0.802
Letter fluency 16.4 (5.4) 16.7 (5.4) 17.7 (5.3) 0.509

Visuospatial Benton’s Judgement of Line
Orientation

24.9 (5.6) 24.5 (3.7) 23.1 (5.3) 0.338

Hooper 25.7 (2.1) 24.7 (2.8) 23.3 (4.3) 0.074
Disease-specific measures Disease duration – 3.9 (2.3) 5.3 (3.4) 0.044

UPDRS total score – 42.7 (20.8) 62.1 (38.5) 0.014
UPDRS part 3 (motor) – 21.2 (11.3) 29.8 (22.6) 0.129
UM-PDHQ (hallucination
severity score)

– – 4.6 (2.4) –

LEDD (mg) – 437.0 (255.1) 450.0 (221.2) 0.295
RBDSQ – 4.0 (2.4) 5.1 (2.5) 0.055

All data shown are mean (SD) except gender.
In bold characteristics that significantly differed between the PD-VH and PD-non-VH.
aSignificant difference between PD-VH and controls.
bSignificant difference between PD-non-VH and controls.
cSignificant difference between PD-VH and PD-non-VH.
*Best binocular score used; LogMAR: lower score implies better performance, Pelli Robson: higher score implies better performance. HADS: Hospital anxiety and depression scale; MMSE: Mini-mental
state examination; MOCA: Montreal cognitive assessment; UPDRS: Unified Parkinson’s disease rating scale; UM-PDHQ: University of Miami Hallucination Questionnaire (max score: 14); LEDD: Total
Levodopa equivalent dose; RBDSQ: REM sleep behaviour disorder screening questionnaire.

Table 2 Characteristics of visual hallucinations experienced
by patients with Parkinson’s disease (PD-VH).

Visual hallucinations characteristics PD-VH (n= 16)

Phenotype Complex visual
hallucinations

11 (62.5%)

Minor visual hallucinations 5 (31.3%)
Frequency Less than once a weeka 11 (62.5%)

More than once a week 5 (31.3%)
Duration Less than 1 s 8 (50.0%)

Less than 10 s 6 (37.5%)
More than 10 s 2 (12.5%)

Insight Always preserved 10 (62.5%)
Sometimes preserved 4 (25.0%)
No insight 2 (12.5%)

Number of experienced images mean (sd) 1.44 (0.79)
Distress No distress 10 (62.5%)

Mild to moderate distress 6 (37.5%)

Participants were asked to reflect on all visual hallucinatory phenomena experienced within the
previous month.
Complex visual hallucinations included well-formed imagery (people, animals, etc.), stationary
or animate images. Minor hallucinations included passage hallucinations and non-formed
images (shadows, etc.). Misperceptions alone were not included as minor hallucinations.
aAll participants experienced hallucinations more frequently than once per month.
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that PD-VH spend more time in the Segregated state than PD-
non-VH, with fewer total transitions and longer dwelling time
within the Integrated state.

Reduced energy costs to transition from the integrated to
segregated state in patients with visual hallucinations. Having
identified significant differences in terms of brain dynamics
between PD-VH and PD-non-VH, which are specifically related
to the severity of visual hallucinations (the focus of our present
investigation), we sought to interrogate further this difference
between PD patients. We have previously shown widespread
structural connectivity changes in PD-VH28. Given neural
dynamics are constrained by the structural connectome, we used
the framework of network control theory to integrate information
about structural network topology and functional brain
dynamics29,31,32. Using this framework, the minimal energetic
cost to transition from one specific functional brain state (defined
as the magnitude of brain activation at a specific time point) to
another can be calculated using the structural brain network
topology31,32,50; lower energetic costs required to transition to a
specific state may make this transition preferable.

Specifically, we aimed to investigate whether the Segregated
state predominance observed in hallucinators could be explained
by differences in ease of transition from the integrated-to-
segregated state or vice versa or a difference in ease of
maintaining the Segregated state. To do this, we calculated the
minimal control energy that needs to be applied to the structural
network of each participant to (1) transition from integrated-to-
segregated state, (2) transition from segregated-to-integrated
state, (3) maintain the Integrated state and (4) maintain the
Segregated state (Fig. 1b). Minimal control energies were
calculated for each subject based on their structural brain
network, which was estimated using diffusion imaging and
probabilistic tractography. For the purposes of this calculation,
and in contrast to previous publications, we represented the
Integrated and Segregated states as a vector of sum functional

connectivity for each brain region. We then examined whether
transition and persistence energies in each state differed between
PD-VH and PD-non-VH.

Similarly to previous work in healthy individuals34, persistence
energy for the more connected Integrated state was higher than
the Segregated state for all participants (repeated measures
ANOVA main effect of Integrated to Segregated state persistence
energy F(1,113)= 12.432, p < 0.001). Similarly the minimal
energy needed to transition from the Segregated to Integrated
state was higher (F(1,113)= 6.722, p= 0.011) (Supplementary
Fig. 3). When we examined differences between patients with PD
with and without hallucinations, PD-VH needed significantly
lower control energy to transition from the Integrated-to-
Segregated state than PD-non-VH (effect size Hedge’s g= 0.922,
t= 2.376, p= 0.029) (Fig. 3a). There were no statistically
significant differences between PD-VH and PD-non-VH in the
minimal control energy needed to transition from Segregated-to-
Integrated state (t= 1.346, p= 0.195), or to persist within the
Integrated (t= 1.041, p= 0.312) or Segregated state (t= 1.079,
p= 0.295). Therefore, network control theory reveals that the
higher proportion of time that PD-VH patients spend in the
Segregated state may be accounted for in terms of this state being
easier to transition to from the Integrated state (as opposed to
being easier to persist in).

Transition from integrated to the segregated state is driven by
subcortical and more multimodal brain regions. A further
benefit of applying control theory to functional brain states is that
it provides regional information about the cost of maintaining
and transitioning between these states.

We therefore aimed to identify which brain regions contribute
more to this transition from the Integrated-to-Segregated state
(which nodes require more energy in order to transition, with
high contributors defined as the top 20% of regions). These
higher contributors are more likely to be responsible for the
changes in energy costs seen in PD-VH (significantly less control

Fig. 2 Altered temporal properties of dynamic functional connectivity in patients with Parkinson’s and visual hallucinations. a Percentage of total time
spent in the Integrated state. Patients with Parkinson’s with visual hallucinations (n= 16) spent significantly less time in the Integrated state of dynamic
functional connectivity than patients without hallucinations (n= 75) (p= 0.032) and controls (n= 32) (p= 0.0262) (error bars are 95% confidence
intervals). b Total number of transitions between states. Patients with Parkinson’s and hallucinations (n= 16) had reduced overall transitions between
states than patients without hallucinations (p= 0.049) (error bars are 95% confidence intervals). PD-VH: Parkinson’s disease with visual hallucinations,
PD-non-VH: Parkinson’s disease without hallucinations.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03903-x ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:928 | https://doi.org/10.1038/s42003-022-03903-x | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


energy needed to transition from Integrated-to-Segregated state
in PD-VH). As expected51, subcortical regions were strongly
represented, with 25 subcortical nodes amongst the top 20% of
contributors (25/47 or 53.2%) with thalamic regions amongst the
highest contributors. Of the cortical nodes, top contributors

included predominantly right hemispheric regions (20/22 cortical
nodes) including regions of the Default mode network: cingulum,
precuneus, inferior and superior temporal regions and medial
frontal regions (Table 3 and Fig. 3b). There was a significant
correlation between the Integrated-to-Segregated state transition

Fig. 3 Changes in control energy to transition from the Integrated to the Segregated state in patients with Parkinson’s and visual hallucinations.
aMinimal control energy to transition from the Integrated to the Segregated state Less energy is needed to transition for patients with Parkinson’s and visual
hallucinations (PD-VH, n= 16) than those without hallucinations (PD-non-VH, n= 75). Log-transformed minimal control energy is presented. Error bars
are 95% confidence intervals. b Regional variation in minimal control energy to transition from the Integrated to the Segregated state The log-transformed
minimal control energy that needs to be applied to each node (n= 232 nodes) is presented; darker colours denote higher amounts of energy required. Note
that only cortical regions are plotted. c Minimal control energy per functional subnetwork. The mean minimal control energy to transition from the
Integrated to the Segregated state across all nodes (n= 232 nodes) of the seven cortical and one subcortical resting state networks is plotted. Darker
colours denote higher levels of the cortical hierarchy; also left to right: unimodal to transmodal regions. There was a significant correlation between the
minimal transition energy from integrated-to-segregated state that was needed to be applied to each node and the nodes position in the cortical hierarchy,
with higher amount of energy needed for more transmodal regions (ρ= 0.526, p < 0.001). Error bars are 95% confidence intervals.
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energy required at each node and the node’s position in the
cortical hierarchy, with higher energy needed for more transmo-
dal regions (ρ= 0.526, p < 0.001) (Fig. 3c).

Correlation with neurotransmitter systems. Finally, we exam-
ined whether the Integrated-to-Segregated state transition (which
was the state transition that specifically differed for PD-VH
patients), is associated with specific neurotransmitter systems
(Supplementary Table 2) in the healthy brain. To do this, we
correlated the mean control per node to transition from the
Integrated-to-Segregated state with mean regional neurotransmitter

density (derived from open-access PET data) and neurotransmitter
receptor gene expression levels (derived from the Allen Brain
atlas52) in health; we tested this against spatially-correlated null
models through sphere permutations, FDR-corrected for multiple
comparisons over 232 nodes (Fig. 1c).

We found a significant correlation between regional log(Energy)
and density of 5HT1b (ρ=−0.274, qspin= 0.009), 5-HT2a
(ρ=−0.347, qspin < 0.001) and GABAA receptors (ρ=−0.317,
qspin= 0.022), from open-access atlases of PET data (Fig. 4).
Regional energy and regional expression levels of genes relating to
5-HT2a receptors were also significantly correlated (ρ=−0.1438,

Table 3 Top 20% of nodes that contribute to the transition from the Integrated to the Segregated state of dynamic functional
connectivity.

Region Coordinates in MNI space Log(Energy) mean (std) Network

x y z

Cortical
Occipital_Mid_L −22 −96 6 9.66 (8.49) Visual
Cuneus_L −12 −72 22 9.65 (8.49) Visual
Temporal_Sup_R 64 −24 8 9.70 (8.35) Somatosensory
Temporal_Sup_R 44 −28 18 9.72 (8.81) Somatosensory
Rolandic_Oper_R 60 0 10 9.59 (8.60) Somatosensory
Postcentral_R 58 −4 30 9.63 (8.54) Somatosensory
Paracentral_Lobule_R 6 −22 68 9.94 (8.62) Somatosensory
Cingulum_Mid_R 10 −36 46 9.38 (8.48) VAN
Temporal_Inf_R 46 −12 −34 9.79 (8.38) Limbic
ParaHippocampal_R 26 −10 −32 9.59 (8.38) Limbic
SupraMarginal_R 62 −38 36 8.73 (8.76) Frontoparietal
Temporal_Inf_R 62 −42 −12 9.38 (8.60) Frontoparietal
Cuneus_R 14 −70 36 9.39 (8.60) Frontoparietal
Cingulum_Mid_R 6 −24 30 8.99 (8.78) Frontoparietal
Cingulum_Mid_R 4 2 30 7.97 (7.90) Frontoparietal
Cingulum_Ant_R 8 30 28 7.64 (7.77) Frontoparietal
Angular_R 50 −58 44 9.49 (8.50) DMN
Rectus_R 4 36 −14 9.59 (8.38) DMN
Cingulum_Ant_R 8 42 4 8.74 (8.94) DMN
Frontal_Sup_Medial_R 8 58 18 5.07 (5.50) DMN
Frontal_Mid_R 28 30 42 7.92 (8.18) DMN
Precuneus_R 6 −58 44 9.24 (8.41) DMN
Subcortical
Anterior hippocampus R 26 −14 −20 9.55 (8.57) Subcortical
Posterior hippocampus R 28 −32 −8 9.68 (8.87) Subcortical
Lateral amygdala R 28 −2 −22 9.83 (8.30) Subcortical
Medial amygdala R 22 −6 −16 5.49 (5.59) Subcortical
Dorsoposterior thalamus R 16 −30 2 9.86 (8.64) Subcortical
Ventroanterior thalamus R 8.0 −10.0 6.0 9.22 (8.67) Subcortical
Dorsoanterior thalamus R 12.0 −22.0 12.0 8.57 (8.19) Subcortical
Nucleus accumbens, shell R 12.0 10.0 −6.0 9.61 (8.68) Subcortical
Nucleus accumbens, core R 14.0 18.0 −2.0 9.05 (8.53) Subcortical
Posterior globus pallidus R 24.0 −8.0 −2.0 7.55 (8.16) Subcortical
Posterior Putamen R 30.0 −6.0 4.0 5.15 (5.45) Subcortical
Anterior Caudate R 14.0 14.0 6.0 8.05 (7.60) Subcortical
Posterior Caudate R 14.0 4.0 16.0 9.89 (9.13) Subcortical
Anterior hippocampus L −24.0 −14.0 −20.0 8.15 (8.26) Subcortical
Posterior hippocampus L −26.0 −32.0 −8.0 9.32 (8.23) Subcortical
Lateral amygdala L −26.0 −2.0 −22.0 8.36 (8.29) Subcortical
Medial amygdala L −20.0 −6.0 −16.0 9.67 (8.64) Subcortical
Dorsoposterior thalamus L −14.0 −30.0 2.0 9.74 (8.39) Subcortical
Ventroanterior thalamus L −6.0 −10.0 6.0 8.22 (8.06) Subcortical
Dorsoanterior thalamus L −10.0 −22.0 12.0 7.47 (6.76) Subcortical
Nucleus accumbens, shell L −10.0 10.0 −6.0 7.66 (7.69) Subcortical
Nucleus accumbens, core L −12.0 18.0 −2.0 9.30 (8.50) Subcortical
Posterior globus pallidus L −22.0 −8.0 −2.0 7.30 (7.50) Subcortical
Anterior Caudate L −12.0 14.0 6.0 9.87 (8.63) Subcortical
Posterior Caudate L −12.0 4.0 16.0 6.89 (7.14) Subcortical

L left, R right hemisphere.
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qspin= 0.044) as well as two GABAA receptors [GABRA1
(ρ=−0.2437, qspin= 0.020) and GABRA2 (ρ= 0.128, qspin=
0.023)]; gene expression data for 5-HT1b receptors were not
available. Although noradrenergic and acetylcholinergic PET data
are not publicly available, genetic expression of noradrenergic
(ADRA1B and ADRA2A), muscarinic (CHRM1, CHRM2, CHRM3,
CHRM4) and nicotinic receptors (CHRNA3, CHRNA4, CHRNA7,
CHRNB2) was correlated with regional transition energy. Gene
expression of DRD2 was also correlated with regional control
energy for the Integrated-to-Segregated state transition (ρ= 0.318,
qspin= 0.013) but this was not replicated using density PET-
derived data (ρ= 0.056, qspin= 0.800). The detailed correlations
between regional control energy and transmitter density and
regional gene expression are seen in Table 4.

Discussion
We have used dynamic functional connectivity and network
control theory to explore the temporal dynamics underlying
visual hallucinations in Parkinson’s, and examined how these can
be explained through changes in brain structure. We found that
PD-hallucinators spent more time in a predominantly Segregated
state of functional connectivity than those without hallucinations,
with fewer total transitions and longer dwelling time within the
Segregated state. The transition from the Integrated-to-Segregated
state was less energy-demanding in PD-hallucinators than non-
hallucinators. This transition is mediated by transmodal brain
regions that are associated with specific neurotransmitter systems,
as confirmed through both in vivo PET mapping and post-
mortem gene expression microarray data.

Fig. 4 Neurotransmitter correlates of Integrated-to-Segregated state transition. The log-transformed minimal control energy that needs to be applied to
each node (n= 232 nodes) to achieve the Integrated-to-Segregated state transition (a) was correlated with the mean regional receptor density of 5HT1b
receptors (b), 5HT2a receptors (c) and GABA receptors (d), from open access atlases of PET data in unaffected individuals. In all cases, ρ is the Spearman
correlation coefficient and q-spin is the FDR-corrected p-value derived following spatial permutations (p-spin, 1000 permutations).
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Previous studies have shown that PD patients with cognitive
impairment similarly spend more time in a Segregated state and
show fewer transitions between states than PD with intact cog-
nition and controls23,24. There were no differences in cognitive
performance between PD patients with and without hallucina-
tions in our cohort, but visual hallucinations are known to be
associated with incipient dementia in PD53. In schizophrenia,
where auditory hallucinations are a core feature, similar findings
of altered dwell time are seen14,54, correlated with severity of
hallucinations55. We similarly saw patients with visual halluci-
nations spending less time in the Integrated (and more time in the
Segregated) state suggesting this finding may be specific to hal-
lucinations as a trait.

We found that only the temporal dynamics of functional
connectivity were altered in patients with hallucinations. This
indicates that a change in the temporal balance between normal/
preserved states rather than a change in the states themselves
underlie PD-hallucinations. This contrasts with work using
similar methodologies in patients with loss of consciousness and
in healthy volunteers after LSD administration where within-state
changes particularly within the Integrated state18,20, were also
seen. However, as we examined the propensity to hallucinate
rather than the hallucinatory state itself (participants were not
actively experiencing hallucinations during scanning) it is possi-
ble that additional within-state changes could underlie visual

hallucinations in PD, in the moment when they actually occur, an
avenue for potential future investigations. In addition, although
hallucinations in our participants were frequent (at least weekly
in most participants) they were not universally complex and
severe. Other important differences are that LSD-induced visual
hallucinations are associated with changes in other sensory
modalities including time/space dysperceptions and ego
dissolution56, which are not seen with PD-associated hallucina-
tions; thus it is not unexpected that the underlying changes in
temporal dynamics are different between these hallucinatory
conditions.

As temporal transition between functional states is constrained
by structural connectivity31,33,57, we used network control theory
to model the ease and regional contribution to the brain’s acti-
vation for each of these two states, represented as the vector of
sum connectivity for each region at each time point31. Specifi-
cally, we examined the energy cost of transitioning between and
maintaining the Integrated and Segregated states. Minimisation of
the control energy cost to transition into a state will make this
transition more preferable, and evidence in healthy adolescents
suggests lower control energy to activate the frontoparietal net-
work during development (secondary to structural connectome
reconfiguration) supports improved executive function35. In
addition, hallucination-inducing substances such as LSD and
psilocybin have been recently shown to reduce overall control
energy needed for between brain-state transitions leading to a
more temporal labile functional landscape58. We found a sig-
nificantly lower energy cost to transition from the Integrated-to-
Segregated state for PD-hallucinators than non-hallucinators. In
this way, network control theory provides mechanistic insights
about why patients with PD-VH spend more time in a more
Segregated state: as it is more energy efficient to transition from
the Integrated-to-Segregated state due to constraints caused by
loss of structural integrity. Further, this framework enabled us to
identify the particular nodes most critical in mediating these
transitions, with subcortical (especially thalamic nodes) and
regions within the DMN especially implicated, consistent with
previous work highlighting DMN involvement in PD
hallucinations6. Thalamic regions were amongst the highest
contributors to this transition. Thalamic involvement has been
previously described in visual hallucinations50,59 and we recently
showed longitudinal changes in grey and white matter within the
medial mediodorsal thalamus60. This provides further evidence of
the thalamus as a key driver of network imbalance in PD-
hallucinations51,61.

Interestingly, the brain regions contributing most to this
transition from Integrated-to-Segregated state showed a correla-
tion with specific neurotransmitter systems in health. Although
the directionality of the relationship is difficult to interpret as data
on regional neurotransmitter density and gene expression were
derived from healthy individuals, regional density of 5HT2A
receptors was significantly correlated with the regional control
energy needed for Integrated-to-Segregated state transition; this
was replicated using regional expression data for the 5HT2A
receptor gene.

Activation of 5HT2A receptors is a key mechanism for drug-
induced hallucinations occurring with the psychedelic drugs,
LSD, psilocybin and ayahuasca62 and modelling studies have
shown that this receptor plays a key role in engendering the
characteristic brain dynamics of LSD63. Recent work highlighted
the crucial role of 5HT2A in neuronal-neurotransmission
dynamic coupling across the brain37. 5HT2A has also been
implicated in PD-hallucinations; evidenced by the higher density
of 5HT2A receptors within frontal, temporal and occipital regions
in patients with PD hallucinations in post mortem and in vivo
studies43,64 and the efficacy of the novel 5HT2A inverse agonist

Table 4 Neurotransmitter receptors showing density and
gene expression correlations with regional control energy
required to transition from the Integrated to the
Segregated state.

Receptor Ligand Correlation
coefficient

q value

Receptor density
5-HT1B Serotonin −0.274 0.009
5-HT2A Serotonin −0.347 0.000
GABA GABA −0.317 0.022

Receptor gene expression

Gene symbol Ligand Correlation coefficient q value

ADRA1B Norepinephrine −0.154 0.018
ADRA2A Norepinephrine −0.210 0.013
CHRM1 Acetylcholine −0.279 0.018
CHRM2 Acetylcholine −0.265 0.028
CHRM3 Acetylcholine −0.223 0.018
CHRM4 Acetylcholine 0.202 0.018
CHRNA3 Acetylcholine 0.416 0.013
CHRNA4 Acetylcholine −0.158 0.033
CHNRA7 Acetylcholine −0.244 0.023
CHNRB2 Acetylcholine 0.207 0.028
DRD2 Dopamine 0.318 0.013
HTR1E Serotonin −0.207 0.013
HTR1F Serotonin −0.3301 0.013
HTR2A Serotonin −0.144 0.044
HTR5A Serotonin −0.311 <0.001
GABRA1 GABA −0.244 0.020
GABRA2 GABA 0.128 0.023
GABRAB2 GABA 0.433 0.018
GABRAD GABA −0.289 0.013
GABRG1 GABA 0.227 0.023
GABRG2 GABA −0.337 0.023
GABRG3 GABA −0.217 0.044

Note that correlation coefficients of absolute values between 0.1 and 0.4 represent moderate
correlation in our dataset. Q values are FDR-corrected p-values from spatial permutation testing
(q-spin).
CHRNA nicotinic cholinergic receptor (Alpha), DRD dopamine receptor D, HTR
5-hydroxytryptamine receptor, ADRA alpha-1A adrenergic receptor, GABR GABA receptor.
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Pimavanserin in the treatment of PD-hallucinations65. Visual
hallucinations are a common phenomenological endpoint of both
LSD and PD; our findings provide further evidence for the role of
5HT2A involved in PD-hallucinations, suggesting a convergent
biological substrate across hallucinations irrespective of cause.

Other serotonergic receptors were also important for the
Integrated-to-Segregated state transition including: 5HT1B
(receptor density, but no genetic expression data), 5HT1E, 5HT1F
and 5HT5A (gene expression data only). The correlation with
multiple serotonin receptors, indicates that serotonergic mod-
ulators targeting multiple receptors could be potential therapeutic
targets for PD-hallucinations. Of note, no receptor density or
gene expression data were available for 5HT3 receptors, a target
of interest for Ondansetron, a 5HT3-antagonist currently under
evaluation as a treatment of hallucinations66.

Regional receptor density and gene expression for GABAergic
receptors were also correlated with regional transition energy in
line with previous studies showing reduced GABA concentration
in the visual cortex of PD-hallucinators44,67. Visual processing
involves a complex interplay between monoaminergic, choliner-
gic and GABA/glutamatergic neurotransmission61. The observed
correlation between the Integrated-to-Segregated state transition
and regional gene expression of noradrenergic (ADRA1B,
ADRA2A) and cholinergic (muscarinic and nicotinic) receptors is
consistent with this, but there were no available PET-derived
density data to replicate this.

Convergent evidence has recently highlighted the impor-
tance of the noradrenergic system in some non-motor PD
symptoms68–70. Noradrenaline plays a key role in modulating
selective attention71 and with serotonin, modulates behavioural
responses to incoming visual information61. The noradrenergic
system is also likely to play a key role in mediating functional
state transitions: noradrenaline-mediated apical amplification
of pyramidal cells differentiates waking and anaesthesia72,
extracellular noradrenaline is associated with sleep-state
transitions73 and locus coeruleus activity flexibly mediates
the recruitment of other neural circuits particularly the pre-
frontal cortex74, leading to dynamic changes in functional
networks, specifically transitioning between motor and task-
negative networks75. Changes within the noradrenergic system
may be involved in altered state transitions in PD-
hallucinations by modulating the activity of sensory cortices
and thalamocortical neurocircuitry76.

In contrast to these other neurotransmitters, we found no
consistent correlation with dopaminergic receptors. It is impor-
tant to note that although DRD1 is one of the major dopamine
receptors in the cortex no DRD1 density data was publicly
available at the time of the study; however, no correlation was
seen between genetic expression of DRD1 and regional con-
tribution to the Integrated-to-Segregated state transition.
Although a lack of correlation between regional dopamine
expression and regional energy does not exclude an indirect
dopamine effect in visual hallucinations, our findings highlight
the role of transmitters other than dopamine in the development
of PD-hallucinations. Rather than a simple hyperdopaminergic
state leading to PD-hallucinations, our findings suggest a complex
imbalance in multiple neurotransmitter systems, with changes in
5HT2A, GABA and noradrenergic receptors all contributing.
Treatment options targeting more than one neurotransmitter
system may therefore be needed to manage visual hallucinations
in PD and other psychotic illnesses.

Several considerations need to be taken into account when
interpreting our findings. Our sample size of visual hallucinators
is small, although comparable with other published studies24,27.
Functional data are susceptible to motion artefact; we adopted
strict exclusion criteria to mitigate for this77 and motion as well as

image quality metrics did not differ between groups. We chose
not to perform global signal regression in keeping with other
studies using the same analyses18,20. Although this can be used to
counteract residual artefacts from head motion77 it can contain
behaviourally-relevant information and affect group results78,79,
and we instead adopted stringent exclusion criteria for motion to
limit potential motion effect. All participants were scanned while
receiving their usual dopaminergic medications and at the same
time of day and levodopa equivalent doses did not significantly
differ between PD-VH and PD-non-VH80. Further studies
assessing PD patients ON and OFF levodopa might provide
additional information. Although brain networks are non-linear,
we used a linear optimal control model since this has been shown
to provide important insights into non-linear dynamics81 and
linear-Gaussian models are often adequate descriptors of func-
tional MRI timeseries, such that more complex, non-linear
models often do not provide additional explanatory power82,83.
Nevertheless, future work may seek to leverage insights from non-
linear models of brain dynamics, e.g. through neurobiologically
detailed dynamic mean-field models that have already been
successfully applied to the study of altered states of
consciousness63,84. Most studies using network control theory so
far have assessed transitions from rest to task34 or activation of a
specific functional network35 where brain states are defined as
regional activation by selecting which regions should be active or
inactive. However, as our key question was to examine the
transition between the integrated and segregated states (identified
from the dynamic changes in the resting state timeseries from our
patients), of dynamic functional connectivity in our patients, such
an approach was not straightforwardly applicable in our case.
Instead, in the literature on brain-states, it is common to define
data-driven brain states in terms of time-resolved patterns of
functional connectivity: that is, states are defined in terms of how
regions are co-active together over a short period of time, rather
than by specifying which regions should be active. Therefore, we
used the sum of regional functional connectivity as a summary
representation for each previously identified state; in this setting
our activity states correspond to brief periods where specific
nodes are active or inactive together, rather than nodes having
high or low activity per se. In other words, our approach identifies
states in terms of nodal co-activation. Although this approach
provides insights into the relative ease of each transition, a task vs
rest approach would be potentially even more informative and
could be examined in future work. Finally, data on neuro-
transmitter density and gene expression were not derived from
our participants but from separate cohorts of healthy volunteers
and post-mortem human brains, respectively; therefore results
relating to neurotransmitter receptors should be interpreted with
caution. Future work may seek to replicate these results with each
patient’s own unique neurotransmitter receptor signature, which
may offer individualised insights and the opportunity to assess
the directionality of this relationship, as well as potential targets
for pharmacological intervention.

Our findings describe that temporal functional dynamics are
altered in PD-hallucinations, with a predisposition towards a
Segregated state of functional connectivity. This segregated state
predominance can be explained by a reduced energy cost to
transition from the integrated-to-segregated state in PD patients
with hallucinations compared to those without hallucinations.
We have also clarified the neuromodulatory correlates of the
integrated-to-segregated state transition in the healthy brain.
These results provide mechanistic insights into visual hallucina-
tions in PD with implications for other psychotic disorders. By
linking these changes to neurotransmitter systems, our findings
highlight possible therapeutic targets for hallucinations, a core
symptom of psychosis.
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Methods
Participants. 123 participants were included: 91 PD patients and 32 unaffected
controls. The study was approved by the Queen’s Square Ethics Committee and
participants provided written informed consent. Patients with PD were classified as
PD with visual hallucinations (PD-VH, n= 16) if they scored ≥1 in Question 2.1 of
the Unified Parkinson’s Disease Rating Scale (UPDRS); the rest were classified as
PD-non-VH (n= 75). We collected additional information on severity, frequency
and phenomenology of experienced hallucinations with the University of Miami
Parkinson’s Disease Hallucinations Questionnaire (UM-PDHQ)85. General cog-
nition was assessed using the Mini-Mental State Examination (MMSE) and
Montreal Cognitive Assessment (MoCA)86,87. In addition, domain-specific cog-
nitive assessments with two tests per domain included: Attention: Digit span
backwards88, Stroop, Naming89; Executive functions: Stroop Interference89, Cate-
gory fluency90; Memory: Word Recognition Task91, Logical Memory88; Language:
Graded Naming Task92, Letter fluency90; and Visuospatial: Benton’s Judgement of
Line93, Hooper Visual Organization Test93. Mood was assessed using the Hospital
Anxiety and Depression Scale (HADS)94. Disease-specific measures for PD
included: motor assessment using the Movement Disorder Society UPDRS95, smell:
Sniffin’ Sticks96, and sleep: REM Sleep Behaviour Disorder Questionnaire
(RBDSQ)97. Levodopa equivalent daily doses (LEDD) were calculated for PD
participants98.

MRI data acquisition and preprocessing. Imaging data were acquired on the
same 3T Siemens Prisma-fit scanner: rsfMRI: gradient-echo EPI, TR= 70 ms,
TE= 30 ms, 105 volumes; diffusion-weighted (DWI): 64 directions (b-values: 50,
300, 1000, 2000). Scanning took place at the same time of day, with PD patients
receiving their normal anti-Parkinsonian medication.

Both imaging modalities underwent rigorous quality assurance: The MRI
quality control tool (MRIQC) was used to assess rsfMRI data99. Participants were
excluded if any of the following was met: (1) mean frame-wise displacement
>0.3 mm, (2) any frame-wise displacement >5 mm, or (3) outliers >30% of the
whole sample. This led to 12 participants being excluded (11 PD). Therefore, 91
patients with PD (16 PD-VH and 75 PD-non-VH) and 32 controls are included.
Note that our sample includes patients that overlap with other reports from our
centre. Slight differences in included patients are caused by exclusions such as head
movement and quality control that differ between studies.

All volumes of raw DWI datasets were visually inspected and evaluated for
artefact; only scans with <15 volumes containing artefacts100 were included in
subsequent structural analyses, resulting in further 5 PD and 2 control participants
being excluded.

Preprocessing of rsfMRI data was performed as described previously101. In
brief, we used fMRIPrep 1.5.0102 and discarded the first 4 volumes to allow steady-
state equilibrium. Functional data were slice-time corrected using 3dTshift from
AFNI103 and motion corrected using mcflirt104. Distortion correction was
performed using TOPUP105. This was followed by co-registration to the
corresponding T1-weighted image using boundary-based registration with six
degrees of freedom106. Motion correcting transformations, field distortion
correcting warp, BOLD-to-T1w transformation and T1w-to-template (MNI) warp
were concatenated and applied in a single step using antsApplyTransforms (ANTs
v2.1.0) using Lanczos interpolation. Physiological noise regressors were extracted
applying CompCor107. Spurious sources of signal were removed through linear
regression: six motion parameters, mean signal from white matter and
cerebrospinal fluid. We did not regress global signal given the lack of consensus
and potential to distort group differences78.

Preprocessing of diffusion-weighted images was performed in MRtrix3.0108

using dwipreproc, with denoising109, removal of Gibbs ringing artefacts110, eddy-
current and motion correction111 and bias field correction112.

Parcellation. To construct functional and structural connectivity matrices, each
participant’s T1-weighted image was parcellated into 200 cortical and 32 sub-
cortical regions of interest (ROIs) using the Schaefer113 and Tian parcellations114,
respectively. Parcellations in the order of 200 regions result in connectomes with
the highest representativeness115,116 and the combined Schaefer-232 parcellation
used here, is considered optimal across structural and functional connectomes115.
We used the same parcellation to construct functional and structural connectivity
matrices for each participant. To ensure robustness of results, analyses were
replicated using the finer-grained Schaefer/Tian parcellations with 400 cortical and
54 subcortical ROIs, respectively.

Dynamic functional connectivity analysis. Dynamic connectivity matrices were
derived using an overlapping sliding-window approach10 with windows of 44 s duration
(63*TR, within the recommended range10) in steps of 1 repetition size (63 windows 44 s
each) (Fig. 1a). A 232*232 weighted adjacency matrix representing the functional
connectome for that time point was calculated for each window.

We then identified states of higher integration or segregation using a “cartographic
profile”12,18,20,117. At each time point, the asymmetric algorithm of Rubinov and
Sporns118 was used to identify network modules by applying the community Louvain
algorithm, which iteratively evaluates different ways of assigning nodes to modules, in

order to maximise the resulting modularity function Q:

Q ¼ 1
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where υ is the total weight of the graph (sum of all the graph’s edges), wij is the signed
weight of the edge between nodes i and j, eij is the weight of an edge divided by the total
weight of the graph (superscripts denote+ positive and − negative edges), and δMiMj is
set to 1 when nodes i and j are in the same module and 0 otherwise. We performed 100
iterations for each time-resolved network with module size resolution parameter γ set at
the default γ= 1.

We calculated participation coefficient and within-degree Z-score for each node
using the Brain Connectivity Toolbox. Participation coefficient was calculated as:

Pi ¼ 1� ∑
M

s¼1

κis
ki

� �2

ð2Þ

where κis is the strength of positive connections between node i and other nodes in
module s; ki is the strength of all its positive connections; and M is the number of
modules in the network, as identified by the modularity detection algorithm. The
participation coefficient ranges between zero (no connections with other modules)
and one (equal connections to all other modules). High mean participation
coefficient within a network implies higher levels of integration between-modules.

The within-module degree Z-score Zi was calculated as:

zi ¼
κis � �κis
σκis

ð3Þ

where κis is the strength of connections between node i and other nodes in module
s, and �κis and σκis are, respectively, the average and the standard deviation of κis
over all nodes belonging to module s.

Joint histograms of participation coefficient and within-module Z-score were
then derived for each time point12 and for each participant. The cluster with the
higher average participation coefficient was defined as the “Integrated” state and
the cluster with the lower average participation coefficient as the “Segregated” state,
as previously described12,18,20. K-means clustering was then performed and
assigned each dynamic functional connectivity matrix to one of two clusters
(Integrated vs Segregated)12,18,20 (Fig. 1a). K= 2 clusters was also best performing
in data-driven evaluation (Supplementary Fig. 1).

We calculated: (1) proportion of time spent in each state as the number of
timepoints within each state divided by number of total timepoints(63), (2) average
dwell time as the number of consecutive windows/timepoints belonging to each
state and (3) number of transitions as the number of transitions from one state to
the other; transitions were further divided into transitions from integrated-to-
segregated and from segregated-to-integrated states.

Structural network construction. After DWI-image preprocessing, diffusion
tensor metrics were calculated for each participant and constrained spherical de-
convolution performed119 followed by anatomically constrained tractography (10
million streamlines)120 and spherical de-convolution-informed filtering of tracto-
grams (SIFT2)121. The resulting set of streamlines, weighted by a cross-sectional
multiplier, was used to construct the structural brain network as a 232*232
undirected weighted connectivity matrix.

Network control analysis. We examined how the structural brain network of each
participant, composed of white matter tracts, constrains the brain in transitioning
from one state of functional connectivity (Integrated or Segregated) to the other. To
do this, we used a linear time-invariance network model, as previously
detailed29,31,50. This can describe neural states as simulated states (x) of a network
with n nodes over time steps t using:

x t þ 1ð Þ ¼ Ax tð Þ þ Bu tð Þ ð4Þ
where x(t) is a vector (1*n nodes) that represents the brain state at given time t, n is
the number of nodes (232 ROIs), matrix A represents the structural connectome
n*n (normalised to ensure stability31,32), matrix B is the matrix of control nodes for
the network with n*n dimensions and u(t) is the control energy applied for each
node at a given time t. In all analyses, we did not constrain the number of nodes
that could be controlled, therefore B is an identity matrix.

This model can be used to derive the structural control energy necessary to
transition from an initial state x(0) to a target state x(T) where T= 1 is the control
horizon31,122 as:

minu

Z T

0
xT � x tð Þ� �0

S xT � x tð Þ� �þ ρu tð Þ0t tð Þdt ð5Þ

where xT is the target state (1*n vector where n is the number of nodes), S is the
diagonal n*n matrix that selects a subset of states to constrain (here the identity
matrix), ρ is the importance of the input penalty to the state penalty (here ρ= 1)
and T is the control horizon.

Importantly, this formalism does not prescribe how the initial “brain state” x(0)
and target state x(T) are identified: both data-driven and pre-specified states have
been used33,35. Here, our goal is to provide a mechanistic understanding of
dynamic transitions between the Integrated and Segregated states of dynamic
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functional connectivity. Since the network control theory model requires each state
to be represented as a 1*232 vector, we represented the Integrated and Segregated
states by their sum connectivity profiles (or “connectivity density”), comprised of
the sum of the connection weights (Pearson correlation coefficient) from each node
to all other nodes; this was calculated separately for each state.

We then used this equation to calculate the control energy to be applied to each
node of the network to: (1) transition from the integrated-to-segregated state (using
x0 (baseline state), the sum connectivity vector of the Integrated state; and xT
(target state), the sum connectivity vector of the Segregated state), (2) transition
from the segregated-to-integrated state, using as x0 the sum connectivity vector of
the Segregated and state xT, the sum connectivity vector of the Integrated state, and
(3) persist within the Integrated or within the Segregated state (i.e. transition from
one state to itself), using the sum connectivity vector for that state for both x0 and
xT (Fig. 1b). A sum of the control energies to be applied across all nodes of the
network represents the minimal energy for the specific transition. Thereby,
minimal transition and persistence energies were calculated for each individual’s
own Integrated and Segregated functional state by capitalising on the availability of
both functional and structural data for each individual.

We also identified which brain regions contribute more to the transition from the
Integrated-to-Segregated state (which differed between PD-VH and PD-non-VH), or
which nodes require more energy to be applied to them in order to transition: high
contributors to the state transition were defined as the top 20% of regions.

Statistics and reproducibility. Between-group differences in clinical character-
istics and temporal properties of dynamic states were assessed using ANOVA (post
hoc Tukey) or t-tests for normally distributed and Kruskal–Wallis (post hoc Dunn)
or Mann–Whitney for non-normally distributed variables (normality assessed
using Shapiro-Wilk test and visual inspection). Statistical significance threshold
p < 0.05. Differences in transition and persistence energy between PD-VH vs PD-
non-VH were performed using repeated measures ANOVA (p < 0.05).

In addition, we investigated whether each of the two states significantly differed
across groups using network-based statistics (NBS)123. A general linear model was
used with PD-VH versus PD-non-VH and PD versus controls as contrasts of
interest and age and total intracranial volume as covariates. Permutation testing
with unpaired t-tests was performed (5000 permutations), calculating a test statistic
for each connection. An a priori threshold of t= 2.7 was applied based on our
sample size and family-wise error rate (FWE) of p < 0.05.

Correlation with Neurotransmitter systems. We investigated whether temporal
changes in functional connectivity were associated with specific neurotransmitter
systems (Fig. 1c). First, we calculated the regional control energy needed to tran-
sition towards and persist within a state that was more predominant in PD-VH.
This was expressed as a vector 1*232 with one control energy value per node.
Neurotransmitter profiles were extracted for each of the 232 ROIs from publically-
available maps using JuSpace124:

● Serotonin receptors 5-HT1A, 5-HT1B, 5-HT2A based on carbonyl-(11)C]
WAY-100635, [(11)C]P943, [(18)F]altanseri templates125.

● D1 receptors based on the D1R-selective [11C]SCH23390 template126.
● D2/3 receptors based on the [(11)C]raclopride template127.
● and GABAa receptors based on the (11C)flumazenil template128.

Each of the templates was registered to MNl space and parcellated with the
Schaefer-232 atlas and mean values of binding potential were extracted from each
ROI using the built-in JuSpace function124.

Expression profiles for genes of noradrenergic, cholinergic (nicotinic and
muscarinic), dopaminergic and serotoninergic receptors were obtained using data
from the Allen Human Brain Atlas (AHBA)52, with preprocessing as recently
described129. We extracted and mapped gene expression data to the 232 ROIs of
our parcellation using abagen130. Data was pooled between homologous cortical
regions to ensure adequate coverage of both left (data from six donors) and right
hemisphere (data from two donors). Distances between samples were evaluated on
the cortical surface with a 2 mm distance threshold. Probe-to-gene annotations
were updated in Re-Annotator131. Only probes where expression measures were
above a background threshold in more than 50% of samples were selected. A
representative probe for a gene was selected based on highest intensity. Gene
expression data were normalised across the cortex using scaled, outlier-robust
sigmoid normalisation. 15,745 genes survived these preprocessing and quality
assurance steps. Expression profiles for 31 pre-selected genes (Supplementary
Table 2) encoding receptors for noradrenaline, acetylcholine, dopamine and
serotonin were extracted for each of the 232 ROIs.

We correlated regional control energy with (1) regional receptor density profiles
for serotonin (5HT1a, 5HT2a and 5HT1b), dopamine (D1 and D2) and GABA
receptors, and (2) regional gene expression for 31 pre-selected genes. The
significance of correspondence between regional control energy and regional
neurotransmitter density/gene expression was estimated using a spatial
permutation test which generates randomly rotated brain maps whilst preserving
spatial covariance132. We performed 1000 random spatial permutations133 and
calculated the Spearman correlation coefficient between extracted regional control
energy values and neurotransmitter maps to build a null distribution. The
permutation-based p-value (pspin) was calculated as the proportion of times that the

null correlation coefficients were greater than the empirical coefficients132,133.
Derived pspin values were then corrected for multiple comparisons (Benjamini
Hochberg; FDR-corrected values denoted as qspin).

Statistical analyses were performed in Python 3 (Jupyter Lab v1.2.6).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data used to generate Figs. 2–4 are provided in Supplementary Data.

Code availability
Analysis code is available here: https://github.com/AngelikaZa/TVFC. Links to further
data sources and packages used are found in the Supplementary Material.
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