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A B S T R A C T   

Parkinson’s dementia is a common and devastating part of Parkinson’s disease. Whilst timing and severity vary, 
dementia in Parkinson’s is often preceded by visual dysfunction. White matter changes, representing axonal loss, 
occur early in the disease process. Clarifying which white matter connections are affected in Parkinson’s with 
visual dysfunction and why specific connections are vulnerable will provide important mechanistic insights. 
Here, we use diffusion tractography in 100 Parkinson’s patients (33 low visual performers) and 34 controls to 
identify patterns of connectivity loss in Parkinson’s with visual dysfunction. We examine the relationship be-
tween regional transcription and connectivity loss, using the Allen Institute for Brain Science transcriptome atlas. 
We show that interhemispheric connections are preferentially affected in Parkinson’s low visual performers. 
Interhemispheric connection loss was associated with downweighted genes related to the smoothened signalling 
pathway (enriched in glutamatergic neurons) and upweighted metabolic genes. Risk genes for Parkinson’s but 
not Alzheimer’s or Dementia with Lewy bodies were over-represented in upweighted genes associated with 
interhemispheric connection loss. Our findings suggest selective vulnerability in Parkinson’s patients at highest 
risk of dementia (those with visual dysfunction), where differences in gene expression and metabolic dysfunc-
tion, affecting longer connections with higher metabolic burden, drive connectivity loss.   

1. Introduction 

Dementia is a common and disabling symptom in Parkinson’s dis-
ease, but the structural changes at the early stages are not yet known. 
Parkinson’s patients with visual dysfunction are at higher risk of Par-
kinson’s dementia: PD patients who make errors copying intersecting 
pentagons show double dementia rates (Williams-Gray et al., 2013). 
Poor colour vision predicts PD dementia (Anang et al., 2014) and 
impaired visual performance in higher-order visual tasks is strongly 
correlated with deteriorating cognition at follow-up (Weil et al., 2019). 
Therefore, Parkinson’s patients with visual dysfunction are a useful 
group to identify early structural changes linked with Parkinson’s 

dementia. 
Animal and cellular models of Parkinson’s disease show that the 

earliest degenerative changes involve alpha-synuclein accumulation in 
the axonal compartment (Chung et al., 2009; Prots et al., 2018). Exog-
enous alpha-synuclein in neuronal cultures leads to formation of 
endogenous pathology that starts within the axon (Volpicelli-Daley 
et al., 2011). Mouse models for leucine rich repeat kinase 2 (LRRK2) 
gene, the commonest genetic cause of PD, exhibit axonal pathology 
before neurite loss (Li et al., 2009). Therefore in vivo measures of white 
matter integrity in Parkinson’s patients with visual dysfunction are 
likely to provide important mechanistic insights for the early stages of 
Parkinson’s dementia. 
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Diffusion imaging can detect white matter (WM) alterations early in 
patients with PD, even in the absence of other imaging changes (Agosta 
et al., 2014; Duncan et al., 2016). We recently showed that PD patients 
with visual impairment, who are at risk of dementia but cognitively 
intact, also exhibit WM changes, particularly in interhemispheric con-
nections (Zarkali et al., 2020). Brain networks exhibit small-world to-
pology, favouring clusters of highly connected regions with relatively 
few high-cost, long-range connections (Bassett and Bullmore, 2006; 
Laughlin and Sejnowski, 2003). These long connections are critical for 
whole network integration (van den Heuvel and Sporns, 2013). One 
such important connection type are interhemispheric connections, 
which are preferentially affected in schizophrenia (Chang et al., 2019; 
Grazioplene et al., 2018), and neurodegenerative disorders such as 
Huntington’s disease (McColgan et al., 2017). 

The underlying pathological processes that determine which 
connection types are most affected in PD are not yet known, but dif-
ferences in regional gene expression may drive selective vulnerability 
for particular connections. Regional gene expression in health is linked 
with WM loss in Huntington’s disease (McColgan et al., 2018) and 
schizophrenia (Romme et al., 2017). In PD, differential expression of 
predetermined candidate genes has been associated with cortical atro-
phy (Freeze et al., 2019, 2018). However, grey matter atrophy is vari-
able and occurs relatively late in PD with cognitive impairment (Agosta 
et al., 2014; Hanganu et al., 2014; Melzer et al., 2012; Song et al., 2011). 
The regional transcriptome patterns associated with WM connectivity 
loss may provide insights into the selective vulnerabilities underlying 
the early stages of cognitive impairment in PD. 

Here we aimed to clarify the patterns of WM connectivity loss in PD 
patients with low visual performance, who are at higher risk of devel-
oping dementia, and shed light onto the pathological processes that 
drive this loss. We first classified WM connections into subtypes: con-
nections between cortical modules and subcortical structures (subcor-
tical-cortical), between cerebral hemispheres (interhemispheric), within 
hemispheres (intrahemispheric), and within cortical modules (intra-
modular). We examined how these connections differ in PD low visual 
performers and show that connection type determines vulnerability. 
Next, we investigated two potential drivers of selective vulnerability: 
connection length and regional gene expression. We calculated 
connection length in control participants to examine whether connec-
tions that are normally longer are more vulnerable to connectivity loss 
PD. Finally, we examined how differences in regional gene expression in 
the healthy brain are associated with WM vulnerability in patients with 
PD and visual dysfunction and whether different biological processes 
determine this WM loss. 

2. Materials and methods 

2.1. Participants 

100 patients with Parkinson’s disease (PD) and 34 unaffected con-
trols were included (Table 1). All patients satisfied the Queen Square 
Brain Bank criteria for PD (Daniel and Lees, 1993). The study was 
approved by the local ethics committee and participants provided 
informed consent. Whole brain fixel based analysis of this cohort has 
been previously published (Zarkali et al., 2020). 

Patients with PD were classified as high visual performers (n = 67) 
and low visual performers (n = 33), based on performance on two 
computer-tasks tasks of higher order vision: Cats and Dogs task and 
Biological motion task. The process of stimulus generation has been 
previously described in detail (Saygin, 2007; Weil et al., 2019, 2018, 
2017); examples of the stimuli are seen in Supplementary Fig. 1. Prior 
work from our group has shown that performance in these tasks is 
strongly correlated with dementia risk and worsening cognition at one- 
year follow up (Leyland et al., 2019; Weil et al., 2019, 2018). Perfor-
mance in these tasks has significant variability in patients with PD and 
controls with some overlap in perceptual sensitivity (Weil et al., 2018). 

Table 1 
Demographics and clinical characteristics in controls, PD high visual performers 
and PD low visual performers.  

Characteristic Controls 
n = 34 

PD high visual 
performers 
n = 67 

PD low visual 
performers 
n = 33 

Statistic 

Demographics 
Age (years) 66.4 (9.3) 62.2 (7.2) 68.7 (7.3) t ¼ 4.22 

p < 
0.001 

Male (%) 16 (45.7) 32 (47.8) 21 (63.6) x2 =

2.26 
p =
0.135 

Total intracranial 
volume (ml) 

1397.3 
(106.4) 

1462.6 
(124.8) 

1469.4 
(139.1) 

t = 0.25 
p =
0.805 

Mood 
HADS anxiety 3.8 (3.5) 5.9 (3.8) 6.2 (4.7) U =

1139.5 
p =
0.805 

HADS depression 1.7 (2.0) 3.5 (2.6) 5.0 (3.4) U ¼
1382.0 
p ¼
0.041  

Vision 
Contrast sensitivity 

(Pelli Robson) * 
1.8 (0.2) 1.8 (1.2) 1.7 (1.1) U ¼ 509 

p < 
0.001 

Acuity (LogMar) * − 0.08 
(0.2) 

− 0.09 (0.2) − 0.06 (0.1) U =
1349 
p =
0.074 

Colour (D15) 1.3 (1.2) 1.2 (0.9) 1.6 (1.7) U =
1227 
p =
0.088  

Cognition 
MOCA 28.8 (1.3) 28.3 (1.7) 27.1 (2.4) U ¼

763.5 
p ¼
0.011 

MMSE 29.0 (1.0) 29.0 (1.1) 28.8 (1.4) U =
942.5 
p =
0.208 

Mild Cognitive 
Impairment (MCI) 

– 11 (16.4) 15 (45.5) x2 =

8.239 
p =
0.004  

Disease Specific 
Years from diagnosis – 3.9 (2.6) 4.7 (2.8) t = 1.51 

p =
0.136 

UPDRS total score – 43.1 (18.7) 49.2 (26.0) U =
1221 
p =
0.399 

UPDRS motor score – 23 (10.1) 23.5 (14.3) U =
1134 
p =
0.837 

Hallucinations 
(within the last 
week)  

9 (13.4) 10 (30.3) x2 =

3.07 
p =
0.079 

LEDD – 427.7 (270.5) 491.0 (213.9) t = 825 
p =
0.240 

RBDSQ – 4.4 (2.7) 4.2 (2.2) U =
1118 
p =
0.929 

Smell (Sniffin sticks) – 7.9 (3.2) 6.7 (3.2) 

(continued on next page) 
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For this reason, and to capture patients with consistently poor perfor-
mance in high-level visual tasks, we classified as low visual performers 
patients with PD who performed worse than the group median perfor-
mance on both tasks (n = 33). All other patients with PD were classified 
as high visual performers (n = 67). Using this classification for visual 
performance we previously identified widespread white matter micro- 
and macro-structural abnormalities in PD low visual performers, in the 
absence of differences in clinically-based dementia risk scores or other 
cognitive tasks (Zarkali et al., 2020). The present study further extends 
this work by attempting to clarify the organisational and genetic factors 
that determine selective vulnerability of specific white matter connec-
tions to degeneration. 

Participants underwent clinical assessments of motor function, 
cognition, vision, ophthalmic disease, mood and sleep. Assessment of 
motor function was performed using the MDS-UPDRS (Goetz et al., 
2008). General cognition was assessed using the Mini-Mental State Ex-
amination (MMSE) and Montreal Cognitive Assessment (MoCA) (Crea-
vin et al., 2016; Dalrymple-Alford et al., 2010). Mild cognitive 
impairment (MCI) status in PD participants was assessed using the Lit-
van second level criteria for MCI in PD (Litvan et al., 2012). Visual acuity 
was evaluated using the LogMAR (Sloan, 1959). Colour vision was 
assessed using the D15 (Farnsworth, 1947) and contrast sensitivity using 
the Pelli-Robson test (Pelli et al., 1988). All participants underwent 
comprehensive ophthalmic assessment by a consultant ophthalmologist. 
This included slit-lamp ophthalmic examination and measurement of 
intra-ocular pressures using Goldman applanation tonometry (Leyland 
et al., 2019). Sniffin’ Sticks were used to test olfaction (Hummel et al., 
1997). Mood was assessed using the Hospital Anxiety and Depression 
Scale (HADS) (Bjelland et al., 2002) and sleep using the REM Sleep 
Behaviour Disorder Questionnaire (RBDSQ) (Stiasny-Kolster et al., 
2007). Levodopa dose equivalence scores (LEDD) were calculated for PD 
participants (Tomlinson et al., 2010). 

2.2. MRI data acquisition 

An overview of the study methodology is seen in Fig. 1. All MRI data 
were acquired on a 3 T Siemens Magnetom Prisma scanner (Siemens) 
with a 64-channel head coil. Diffusion weighted imaging (DWI) was 

acquired with the following parameters: b = 50 s/mm2 / 17 directions, 
b = 300 s/mm2 / 8 directions, b = 1000 s/mm2 / 64 directions, b =
2000 s/mm2 / 64 directions, 2x2x2 mm isotropic voxels, TE = 3260 ms, 
TR: 58 ms, 72 slices, 2 mm thickness, acceleration factor = 2. Acquisi-
tion time for DWI was approximately 10 min. A 3D MPRAGE (magne-
tization prepared rapid acquisition gradient echo) image (voxel size 1 ×
1 × 1 mm, TE: 3.34 ms, TR: 2530 ms, flip angle = 7◦) was also obtained 
and was used to compute intracranial volume using SPM12. 

2.3. Parcellation 

Cortical regions of interest (ROIs) were generated by segmenting a 
T1- weighted image using the Glasser atlas in FreeSurfer (Glasser et al., 
2016). This included 360 cortical regions (180 regions each hemi-
sphere). This atlas was chosen as it is based on a large number of par-
ticipants (210 healthy adults) which were precisely aligned and was 
generated by assessing simultaneously four neurobiological properties: 
architecture, function, connectivity or topography (Glasser et al., 2016). 
In a recent comparison between different parcellation methods, the 
Glasser atlas showed good performance across the board compared with 
other methods and has the advantage of a high spatial resolution (Arslan 
et al., 2018). 19 subcortical ROIs were generated from the built-in 
Freesurfer subcortical segmentations (Fischl et al., 2002) resulting to a 
total of 379 ROIs. 

2.4. Diffusion weighted imaging pre-processing 

Diffusion weighted images underwent denoising (Veraart et al., 
2016), removal of Gibbs ringing artefacts (Kellner et al., 2016), eddy- 
current and motion correction (Anderson, 2006) and bias field correc-
tion (Tustison et al., 2010). Diffusion tensor metrics were calculated and 
constrained spherical deconvolution (CSD) performed, as implemented 
in MRtrix (Hollander et al., 2016). FreeSurfer Glasser atlas (Glasser 
et al., 2016) ROIs were warped into diffusion space by registering the 
T1-weighted image to the diffusion weighted image using FLIRT (Greve 
and Fischl, 2009). Anatomically constrained tractography was then 
performed with 10 million streamlines (Smith et al., 2012) using the 
iFOD2 algorithm with the -backtrack option which allows tracks to be 
truncated and re-tracked in case of poor termination and the -cro-
p_at_gmwmi option which crops streamline endpoints as they cross the 
grey matter – white matter interface. Application of the spherical 
deconvolution informed filtering of tractograms (SIFT2) algorithm 
(Smith et al., 2015a) with dynamic seeding was then performed to 
reduce biases. SIFT2 utilises information from the fibre orientation 
distribution to determine a cross sectional area for each streamline and 
generate streamline volume estimates between regions whilst utilising 
the whole connectome (Smith et al., 2015a). The resulting set of 
streamlines was used to construct the structural brain network. 

2.5. Structural connectome construction 

For each participant, a structural map was generated by determining, 
for each pair of ROIs, whether they are connected by a streamline from 
the total reconstructed fibre streamlines; each individual streamline is 
then weighted by a cross-sectional area multiplier as implemented in 
SIFT2 (Smith et al., 2015a). The cross-sectional area multiplier for each 
streamline is calculated in SIFT2 so that the aggregated fibre volumes of 
all streamlines and their corresponding weights matches the one directly 
obtained from the diffusion signal throughout the white matter (Smith 
et al., 2015a). Connections were combined into 379 × 379 undirected 
and weighted connectivity matrices. We did not apply a threshold on our 
structural graphs as there is no consensus on the optimal threshold and 
the chosen threshold can significantly influence results (Garrison et al., 
2015; Qi et al., 2015); this is in line with the recommendation by the 
creators of SIFT2 who advise against the use of matrix thresholding 
which introduces an arbitrary threshold (Smith et al., 2015a). 

Table 1 (continued ) 

Characteristic Controls 
n = 34 

PD high visual 
performers 
n = 67 

PD low visual 
performers 
n = 33 

Statistic 

U = 868 
p =
0.081  

Image Quality 
metrics     

Coefficient of joint 
variationa 

0.7 (0.2) 0.7 (0.2) 0.7 (0.3) t = -1.14 
p =
0.161 

Entropy focus 
criteriona 

0.7 (0.04) 0.7 (0.03) 0.7 (0.03) t = -1.01 
p =
0.313 

Total Signal to noise 
ratiob 

7.7 (0.8) 8.2 (1.1) 8.0 (1.0) t = 1.00 
p =
0.317 

All data shown are mean (SD) except gender, MCI, and hallucinations. p values 
reported for the comparison between PD low visual performers and PD high 
visual performers. In bold significant results. HADS: Hospital anxiety and 
depression scale; MMSE: Mini-mental state examination; MOCA: Montreal 
cognitive assessment; UPDRS: Unified Parkinson’s disease rating scale; LEDD: 
Total Levodopa equivalent dose; RBDSQ: REM sleep behaviour disorder 
screening questionnaire. 

* Best binocular score used; LogMAR: lower score implies better performance, 
Pelli Robson: higher score implies better performance. 

a Higher values imply worse image quality, 
b Higher values imply better image quality. 
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2.6. Classifying WM connection types 

Cortical ROIs of the group-averaged connectivity matrix were par-
titioned into modules (non-overlapping groups of highly connected 
nodes) using the data-driven community Louvain algorithm (Blondel 
et al., 2008) in Brain Connectivity Toolbox (Bullmore and Sporns, 2009), 
1,000 permutations and default resolution parameter (γ) of 1.0, result-
ing in module partition number of 8 (Fig. 1A). 

We classified connections as subcortical-cortical: sum of connections 
between subcortical structures (thalamus, caudate, putamen, pallidum, 
nucleus accumbens, ventral diencephalon) and ipsilateral cortical 
modules; interhemispheric: between left and right cortical modules; 
intrahemispheric: between cortical modules within each hemisphere 
separately; and, intramodular: within each module. This classification is 
based on an unbiased, and basic concept of the key connection types. 
Between, within hemispheres and subcortical-cortical connections have 
different cytoarchitecture and myeloarchitecture and project to different 
cortical layers making this a biologically meaningful classification 
(McColgan et al., 2020; Molyneaux et al., 2007). Connections were 
normalised to controls using Z-score (within connection regional con-
nectivity was normally distributed across subject; Shapiro Wilk test used 
to assess normality) and tanh transformed to give a positive WM loss 
measure, where higher scores represent greater connection loss. 

We calculated average connection length in controls, defined as the 
average streamline length for every pair of brain regions and replicated 

using topological distance. 

2.7. Estimating regional gene expression 

To correlate regional expression data with connectivity strength, we 
calculated a connection strength score for each brain region for each 
connection type. This was defined as the sum of connection weights from 
this region to subcortical regions (subcortical-cortical score), to regions 
in the opposite hemisphere (interhemispheric) or regions within the 
hemisphere (intrahemispheric). These were normalised, tanh- 
transformed and an average was calculated across PD low visual per-
formers resulting in a single score for each connection type for each 
region. 

We used the Allen Institute for Brain Science (AIBS) transcriptome 
atlas to extract gene expression data (Hawrylycz et al., 2015). Data from 
six donors are available for the left hemisphere but only from two donors 
for the right hemisphere. To achieve good spatial coverage and limit the 
effect of interindividual differences, we assessed gene expression from 
left hemisphere samples only (180 regions) (Arnatkevic Iūtė et al., 
2019). Each sample was assigned to a region and expression levels for 
each gene per region were compiled into a 180 × 15745 transcription 
matrix (Arnatkevic Iūtė et al., 2019); the expression data as well as 
details on pre-processing can be found https://figshare. 
com/articles/AHBAdata/6852911. 

Fig. 1. Overview of the study methodology. 
A1. Anatomically constrained tractography 
was used to determine white matter stream-
lines from diffusion weighted imaging (DWI) 
data for each participant. A2. DWI data were 
combined with anatomical parcellation of 
379 brain regions using the Glasser atlas to 
generate a connectivity matrix for each 
participant. A3. Connection types were clas-
sified into interhemispheric (between hemi-
spheres), intrahemispheric (within a 
hemisphere), intramodular (within a cortical 
module) and subcortial-cortical (between the 
subcortical regions and a cortical module). 
A4. Connection strength in different 
connection types was compared between PD 
low visual performers and PD high visual 
performers. B1. Gene expression data were 
extracted from the Allen Brain atlas and 
genes passing threshold expression were 
chosen. B2. Allen atlas samples were mapped 
into the 180 cortical regions from the left 
hemisphere according to the anatomical 
parcellation and an average cortical regional 
gene expression was calculated for each 
gene. B3. Partial least squares regression was 
performed for interhemispheric and basal 
ganglia-cortical connections in PD low visual 
performers. The regional gene expression in 
PD low visual performers associated with 
interhemispheric and subcortical-cortical 
white matter loss was calculated based on 
normalised gene weightings of the second 
PLS component. B4. Enrichment analysis was 
performed for the downweighted and 
upweighted genes that were significantly 
associated with connection loss for both 
connection types. Enrichment analysis 
included Gene Ontology (GO) biological 
processes, Expression-weighted Cell-type 
Enrichment analysis (EWCE) and enrichment 
for specific gene lists for PD, Alzheimer’s, 
Dementia with Lewy Bodies.   
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2.8. Statistical analysis 

Group differences in demographics were examined using ANOVA for 
normally distributed variables and Kruskall-Wallis tests for non- 
normally distributed ones (statistical significance p < 0.05), with post- 
hoc t-test and Mann-Whitney tests respectively. 

Group comparison of connection strength was performed using a 
linear mixed model: age and gender included as covariates, comparisons 
of interest included PD versus controls and PD low visual performers 
versus PD high visual performers, false discovery rate (FDR) correction 
for multiple comparisons (44 connections: 8 subcortical-cortical, 16 
interhemispheric, 12 intrahemispheric, 8 intramodular), significance 
threshold p < 0.05. Additional comparisons were performed to assess 
effects of general cognitive measures (MOCA, MMSE), and two clinical 
risk scores for dementia (Liu et al., 2017; Schrag et al., 2017). 

Relationship between connection length and WM loss score was 
investigated using Spearman rank correlation, as both connection length 
and WM loss score were non normally distributed (normality assessed by 
Shapiro-Wilk test). 

For connection types with significantly reduced connectivity we 
assessed regional gene expression differences. We used Partial Least 
Squares (PLS) regression to investigate the association between WM loss 
in PD low visual performers and gene transcriptome, separately for 
interhemispheric and subcortical-cortical connections (more details in 
Supplementary Methods 2). The second PLS component (PLS2) 
explained the greatest amount of variance of WM connectivity strength. 
The statistical significance of the variance explained by PLS2 was tested 
by permuting the predictor variables 1,000 times based on sphere- 
projection-rotations (Alexander-Bloch et al., 2018). We used boot-
strapping to estimate the variability of each gene’s PLS2 weight and 
tested the null hypothesis of zero weight for each gene (false discovery 
rate q = 0.05 against 1000 permutations based on sphere-projection- 
rotations of the WM loss score cortical map). Genes surviving FDR- 
correction were ranked according to PLS2 weighting and were 
included in subsequent enrichment analyses; this thresholding was 
imposed to limit false positive rate in enrichment analyses by only 
testing for enrichment those genes that had a more positive or more 
negative weighting than that expected by chance, in keeping with prior 
studies (Morgan et al., 2019; Romero-Garcia et al., 2020; 2019). Genes 
with a negative weighting (downweighted, reflecting a lower expression 
in regions of reduced structural connectivity) and positive weighting 
(upweighted, reflecting a higher expression in regions of reduced 
structural connectivity) were ranked and assessed separately. 

2.9. Enrichment analysis 

Gene ontology (GO) enrichment analysis was performed using g: 
Profiler (Raudvere et al., 2019), significance threshold corrected p <
0.05, using the g:SCS method for multiple comparison correction which 
takes into account the set structure underlying gene sets annotated to 
terms of each organism (for example the overlap between gene ontology 
terms), providing a tighter threshold to significant results (Raudvere 
et al., 2019). Genes with a negative weighting (downweighted) and 
positive weighting (upweighted) were ranked and assessed separately 
for interhemispheric and subcortical-cortical connections. The reduce 
and visualize gene ontology tool REViGO was used to visualise signifi-
cant GO terms (Supek et al., 2011). 

To determine whether downweighted or upweighted genes associ-
ated with WM loss have higher expression of particular cell types we 
performed expression-weighted cell-type enrichment analysis (EWCE) 
(Skene and Grant, 2016). EWCE was performed with target lists 
comprising the top 20% of the downweighted and upweighted genes 
(according to their weighting on the second PLS component) for 
subcortical-cortical, and interhemispheric connection types. Each was 
run with 100,000 bootstrap lists, controlling for transcript length and 
GC content, using only major cell-type classes (e.g. “astrocyte”, 

“microglia”, etc) and using the Benjamini-Hochberg method for 
correction for multiple comparisons. Single-cell transcription data was 
derived from AIBS (Hawrylycz et al., 2015) and validated on another 
dataset (Habib et al., 2017). 

We assessed upweighted or downweighted genes for enrichment in 
specific gene lists using a hypergeometric overlap test. Gene lists that 
were assessed included: genes associated with a higher risk for PD, from 
a recent genome wide meta-analysis by Nalls et al. (Nalls et al., 2019) 
using a combination of both nearest genes and quantitative trait locus 
(QTL) nominated genes from the single nucleotide polymorphism (SNP) 
data. Genes associated with higher risk of Alzheimer’s disease and genes 
associated with Dementia with Lewy bodies were similarly chosen from 
recent genome wide studies (Jansen et al., 2019; Rongve et al., 2019). 

2.10. Cortical regional enrichment 

To assess which cortical regions were enriched for genes in PLS2, we 
used the ROI weights from the PLS analysis for each connection type. 

2.11. Robustness analyses 

To ensure robustness of our results we performed several replication 
analyses:  

• To ensure that the module count did not influence our results we 
repeated our analyses using 6 modules (γ = 0.8) and 10 modules (γ =
1.3) as well as a random partition. The random partition was ob-
tained by generated a random, undirected, weighted network with 
the same number of nodes and edges as our group averaged con-
nectome using the Brain Connectivity Toolbox (Bullmore and Sporns, 
2009). We then applied the community Louvain algorithm to the 
random network with the same parameters as described above. We 
used the resulting module allocations from the random module for 
module assignment in each participant’s connectivity matrix.  

• We replicated our analysis assessing the effect of length on white 
matter connectivity loss by assessing topological distance (shortest 
weighted path length), which takes into account not only distance 
but also the strength of each individual connection (Supplementary 
Results 3). 

• Recently, it has been suggested that conventional enrichment ana-
lyses of brain-wide transcriptomic data may lead to false positive bias 
for several GO terms due to gene-gene co-expression and spatial 
autocorrelation in regional neuroimaging data(Fulcher, 2020). To 
account for this, we only included significantly up- or down- 
weighted genes compared to 1000 spatially correlated sphere- 
rotations permutations in our enrichment analyses. Additionally 
we performed GO enrichment analyses for one random and one 
spatial-spin permutation of our WM loss score data for both inter-
hemispheric and subcortical-cortical connections and compared the 
generated GO terms to those of our main analyses.  

• As EWCE does not take into account gene ranking (unlike GO 
enrichment analysis) we wished to include only the most signifi-
cantly upweighted and downweighted genes in this analysis to 
ensure that the cell types most responsible are identified; therefore, a 
gene ranking cut-off was required. The chosen cutoff of top 20% was 
chosen as it allows for a sufficient number of genes (>50) to be 
included for both upweighted and downweighted genes for both 
connection types whilst ensuring that only those genes most signif-
icantly associated with white matter connectivity loss are included. 
We repeated all EWCE analyses using different cut-offs (top 10%, 
30% and 50%). In addition we validated all our EWCE findings in 
two separate, human-derived datasets (Habib et al., 2017; Hawrylycz 
et al., 2015). 
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2.12. Data availability statement 

The connectome and gene expression matrices, along with code to 
carry out the analyses can be found at https://github. 
com/AngelikaZa/ConnectomeLength. All data and statistics generated 
from this study are presented in the manuscript and Supplementary 
Material. All methods used open source software, all links are included 
in Supplementary Material. 

3. Results 

134 participants were included: 100 patients with PD (33 low visual 
performers; 67 high visual performers) and 34 controls. Importantly, PD 
low and high visual performers did not significantly differ in scan quality 
(Supplementary Results 1), intracranial volume, disease duration, motor 
severity or levodopa equivalent dose (Table 1). Mean connectome 
density was 59.8 (SD = 0.09); this did not significantly differ between 
PD low visual performers, PD high visual performers and controls (r2 =

0.058, p = 0.501). 

3.1. PD low visual performers show weaker connection strength 
preferentially in interhemispheric connections 

First, we examined how different connection subtypes differed be-
tween groups. Between PD and control participants, there were no sig-
nificant differences (FDR-corrected p-value: q < 0.05). In PD low visual 
performers, connection strength was significantly weaker for inter-
hemispheric connections (6/16 connections, 37.5%) compared to PD 
high visual performers. These included connections between the two 
occipital modules, two frontal modules and two motor/parietal mod-
ules, and connections from each frontal to contralateral motor modules 
(Fig. 2B, Table 2). Connection strength in subcortical-cortical 

connections was also weaker in PD low visual performers compared to 
PD high visual performers (1/8 connections 12.5%), with the connection 
between right subcortical and occipital/temporal module surviving 
FDR-correction (Fig. 2B, Table 2). 

In contrast, no significant group differences were seen in intra-
hemispheric connections and only one intramodular connection differed 
in PD low visual performers compared to PD high visual performers 
(8.3%): higher connection strength within the left motor module 
(Fig. 2B, Table 2). This observed preferential pattern of connectivity loss 
for interhemispheric and, to a lesser extent, subcortical-cortical con-
nections was preserved using different module counts (Supplementary 
Results 2); in contrast, we saw no significant group differences on 
replication analysis with random module allocations. 

General measures of cognition (MMSE and MOCA) as well as two 
clinically-derived scores for dementia risk (Liu et al., 2017; Schrag et al., 
2017) were not significantly correlated (after correction for multiple 
comparisons) with structural connectivity differences in any connection 
types. 

However, across participants with PD, a composite interhemispheric 
WM loss score (the sum of all WM loss scores across all interhemispheric 
connections, that showed the most significant differences in PD low 
visual performers versus PD high visual performers) was significantly 
correlated with MOCA performance (rho = 0.213, p = 0.034) but not 
MMSE (rho = 0.184, p = 0.067). 

3.2. Loss of connection strength in PD low visual performers is weakly 
associated with connection length in health 

To investigate whether connection length was a driver for selective 
vulnerability, we calculated average connection length of the four 
connection subtypes in controls. Length weakly but significantly 
differed across connection types (df(3, 88000), r2 = 0.066, p < 0.001): 

Fig. 2. Module assignment and connection types A. 
Left: Module assignment derived using the Louvain 
community detection algorithm on the group average 
control network. This resulted in 8 cortical modules: 
frontal, left motor, right motor-parietal, left 
temporal-parietal, right temporal, left occipital and 
right occipital-temporal. Right: Connections were 
divided into Interhemispheric: defined as the sum of 
streamline weights (connection strength) between 
modules in different hemispheres, Intrahemispheric: 
sum of streamline weights (connection strength) be-
tween modules in the same hemisphere, Intra-
modular: sum of streamline weights (connection 
strength) within the same cortical module, and 
Subcortical-cortical: the sum of streamline weights 
(connection strength) from subcortical regions to a 
cortical module. B. Hierarchy of connection vulner-
ability. Mixed linear model results for connectome 
analysis: patients with Parkinson’s (PD) low visual 
performers vs. PD high visual performers. Inter-
hemispheric connections are most affected, followed 
by subcortical-cortical connections, with intrahemi-
spheric and intramodular connections showing pre-
served connectivity strength. Figure illustrates the 
individual connections showing changes in connec-
tivity strength in PD low visual performers. The 
thickness of the line represents absolute effect size 
(difference in connectivity strength in PD low visual 
performers). Red: Reduced connectivity strength, 
Green: Increased connectivity strength, Grey: No 
significant difference in conncectivity strength. F: 
frontal, T: temporal; M: motor-parietal; V: occipital, 
B: Subcortical. (For interpretation of the references to 
color in this figure legend, the reader is referred to 
the web version of this article.)   
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subcortical-cortical connections were longest, followed by interhemi-
spheric, intrahemispheric and finally intramodular connections (distri-
bution of length per connection type in Supplementary Results 2). 

Connection length across all connection types showed a weak sig-
nificant correlation with WM loss score in PD low visual performers (rho 
= 0.049, p < 0.001) (Fig. 3B). The correlation between connection 
length in controls and WM loss scores in PD low visual performers were 
stronger within specific connection types: subcortical-cortical (rho =
0.122, p < 0.001), interhemispheric (rho = 0.191, p < 0.001), intra-
hemispheric (rho = 0.015, p = 0.031) and intramodular connections 
(rho = 0.123, p < 0.001) (Fig. 3C). To ensure that module selection was 
not influencing results, analyses were replicated using 6 and 10 modules 
(Supplementary Results 3). 

Topological distance also differed across connection types, showing 
similar correlation with WM loss scores (rho = 0.213, p < 0.001). 
(Supplementary Results 4). 

3.3. Divergent regional gene expression patterns are linked with 
interehemispheric and subcortical-cortical connectivity loss in PD with low 
visual performance 

Given that WM connectivity loss was only seen in interhemispheric 
and subcortical-cortical connections, we assessed gene expression pat-
terns related to WM loss in PD low visual performers for those connec-
tion types. For both, PLS2 explained the largest percentage of variance in 
WM loss in PD low visual performers (interhemispheric 13.8%, 
subcortical-cortical 9.5%; both permutation test p < 0.001). Therefore, 
we used PLS2 scores to rank genes surviving FDR-correction in permu-
tation testing (individual PLS2 weightings of each gene in Supplemen-
tary Table S3). 

We saw different GO term enrichment patterns for different 
connection types. Interhemispheric connections downweighted genes 
were enriched for the term smoothened signalling pathway (Fig. 4A), 
whilst for upweighted genes the most significant terms included organic 
hydroxy metabolic process, oxidation reduction process and alcohol 
metabolic process (Fig. 4A). (Table 3 for five most enriched terms (full 
list of enriched GO terms in Supplementary Table S3). For subcortical- 
cortical connections the most significant GO term enrichments 
amongst downweighted genes included myelination, ensheathment of 
neurons, glial-cell differentiation and galactosylcelcarmide and 

Table 2 
Differences in connection strength in patients with Parkinson’s disease and low 
visual performance for different connection types.  

Interhemispheric 
connections 

T β 95% CI p 
value 

q 
value 

Left occipital to right 
occipital-temporal 

¡2.837 ¡260.9 ¡441.1, 
¡80.7 

0.005 0.038 

Left occipital to right 
motor-parietal 

− 2.074 − 811.5 − 1578.5, 
− 44.6 

0.038 0.095 

Left occipital to right 
temporal 

− 1.779 − 6026.4 − 12666.9, 
614.1 

0.075 0.150 

Left occipital to right 
frontal 

− 1.209 − 13397.5 − 35111.2, 
8316.1 

0.227 0.322 

Left temporoparietal 
to right occipital- 
temporal 

− 1.733 − 357.3 − 761.5, 
46.8 

0.083 0.159 

Left temporoparietal 
to right motor- 
parietal 

¡2.746 ¡313.3 ¡436.9, 
¡89.7 

0.006 0.038 

Left temporoparietal 
to right temporal 

− 0.687 − 408.2 − 1572.8, 
756.4 

0.492 0.610 

Left temporoparietal 
to right frontal 

− 2.287 − 2607.4 − 4842.2, 
− 372.6 

0.022 0.065 

Left motor to right 
occipital-temporal 

− 2.19 − 596.8 − 1130.8, 
− 62.8 

0.029 0.080 

Left motor to right 
motor-parietal 

¡3.569 ¡108.3 ¡167.8, 
¡48.8 

0 0.000 

Left motor to right 
temporal 

− 1.404 − 788.8 − 1890.4, 
312.7 

0.16 0.282 

Left motor to right 
frontal 

¡2.72 ¡415.1 ¡714.2, 
¡116.0 

0.007 0.038 

Left frontal to right 
occipital-temporal 

− 2.398 − 5578 − 10137.8, 
− 1018.3 

0.016 0.058 

Left frontal to right 
motor-parietal 

¡3.048 ¡482.7 ¡793.2, 
¡172.3 

0.002 0.022 

Left frontal to right 
temporal 

− 2.378 − 13754.1 − 25090.6, 
2417.5 

0.017 0.058 

Left frontal to right 
frontal 

¡3.224 ¡92.881 ¡149.4, 
¡36.4 

0.001 0.015 

Subcortical-cortical 
connections 

t β 95% CI p 
value 

q 
value 

Left subcortical to 
occipital 

− 2.339 − 330.1 − 606.8, 
− 53.4 

0.019 0.060 

Left subcortical to 
temporoparietal 

− 2.447 − 92.5 − 166.6, 
− 18.4 

0.014 0.058 

Left subcortical to 
motor 

− 1.284 − 28.1 − 70.9, 14.8 0.199 0.302 

Left subcortical to 
frontal 

− 2.058 − 46.7 − 91.2, 
− 2.2 

0.04 0.095 

Right subcortical to 
occipital-temporal 

¡2.731 ¡128.5 ¡220.6, 
36.3 

0.006 0.038 

Right subcortical to 
motor-parietal 

− 1.857 − 36.7 − 75.5, 2.0 0.063 0.132 

Right subcortical to 
temporal 

− 1.298 − 178.3 − 447.6, 
90.9 

0.194 0.302 

Right subcortical to 
frontal 

− 2.042 − 42.2 − 82.7, 
− 1.7 

0.041 0.095 

Intrahemispheric 
connections 

t β 95% CI p 
value 

q 
value 

Left occipital to 
temporoparietal 

− 0.334 − 14.1 − 96.9, 68.7 0.738 0.833 

Left occipital to motor 0.218 25.5 − 203.7, 
254.7 

0.827 0.859 

Left occipital to 
frontal 

− 1.882 − 1383 − 2823.5, 
57.5 

0.06 0.132 

Left temporoparietal 
to motor 

1.361 50.6 –22.3, 
123.4 

0.174 0.294 

Left temporoparietal 
to frontal 

− 0.943 − 68.5 − 210.9, 
73.9 

0.346 0.461 

Left motor to frontal 2.473 110.2 22.8, 197.6 0.013 0.058 
Right occipital- 

temporal to motor- 
parietal 

0.264 10.1 − 65.1, 85.4 0.792 0.859 

Right occipital- 
temporal to 
temporal 

− 0.203 − 15.2 − 161.7, 
131.3 

0.839 0.859 

− 0.451 − 32.1 0.652 0.755  

Table 2 (continued ) 

Interhemispheric 
connections 

T β 95% CI p 
value 

q 
value 

Right occipital- 
temporal to frontal 

− 230.4, 
144.2 

Right motor-parietal 
to temporal 

− 0.896 − 71.9 − 229.1, 
85.4 

0.37 0.479 

Right motor-parietal 
to frontal 

1.313 46.5 − 22.9, 
115.9 

0.189 0.302 

Right temporal to 
frontal 

− 0.676 − 182.8 − 713.2, 
347.5 

0.499 0.610 

Intramodular 
connections 

t β 95% CI p 
value 

q 
value 

Left occipital 0.245 1 − 7.2, 9.3 0.806 0.859 
Left temporoparietal 1.58 5.3 − 1.3, 11.9 0.114 0.209 
Left motor 3.3 17.1 6.9, 27.2 0.001 0.015 
Left frontal 0.944 5.4 − 5.8, 16.6 0.345 0.461 
Right occipital- 

temporal 
− 0.005 − 0.1 − 4.9, 4.9 0.996 0.996 

Right motor-parietal 2.383 11.9 2.1, 21.8 0.017 0.058 
Right temporal 0.641 7.6 − 15.6, 30.8 0.522 0.621 
Right frontal 1.231 6.8 − 4.0, 17.5 0.218 0.320 

t: t value for the specific intercept on the mixed linear model (covariates: age and 
gender); q value: FDR corrected p value; 
* negative value indicates lower connection strength in PD low visual perfor-
mance compared with PD high visual performance. In bold values that are sta-
tistically significant (corrected for multiple comparisons) 
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galactolipid metabolic process (Fig. 5A). Upweighted genes in 
subcortical-cortical connections were enriched for terms including 
synaptic signalling, modulation of synaptic transmission, regulation of 
postsynaptic membrane potential, neurogenesis, and glutamatergic 
synaptic transmission (Fig. 5A). 

In contrast, results from enrichment analyses on a random and 
spatial-spin null model for interhemispheric and subcortical-cortical 
connections showed divergent results (See Supplementary Results 5 
for details). For interhemispheric connections, downweighted genes of 
the spatial-spin null model were most enriched in terms related to syn-
apse organisation and regulation and upweighted genes were most 
enriched in terms such as protein targeting and mitochondrion organi-
sation; both fully divergent from our main analyses. For subcortical- 
cortical connections, the most enriched terms for downweighted genes 
of the spatial-spin null model were electron transport chain, oxida-
tion–reduction process and small molecule metabolism, whilst 
upweighted genes were enriched in terms related to RNA metabolism 
and biosynthesis, again qualitatively different to our main results. De-
tails on the most enriched terms of the null models can be seen in 
Supplementary Results 5 and the full GO terms in Supplementary 
Table S6. 

3.4. Spatial variation of gene expression profile for loss of 
interhemispheric and subcortical connections 

We next explored the spatial pattern of each gene expression profile 

in the brain. We analysed each ROI PLS2 weights for both connection 
types; higher ROI weights reflect greater gene enrichment (Supple-
mentary Table S4 for raw ROI weights). For interhemispheric connec-
tions, regions with highest weights were predominantly in occipital, 
frontal, and parietal cortices (Fig. 4C). In contrast, for subcortical- 
cortical connections, regions with highest weights were predominantly 
in frontal, motor, and occipital cortices (Fig. 5C). 

3.5. Cell types and risk variants linked with WM connectivity loss in PD 
low visual performers 

We investigated whether the most upweighted and downweighted 
genes associated with interhemispheric and subcortical-cortical 
connection loss were enriched in specific cell types. Cell-type expres-
sion profiles were defined using human-derived single-nucleus data 
from AIBS and enrichment determined using EWCE. For interhemi-
spheric connections, we found that the top 20% most downweighted 
genes (158) enriched in glutamatergic neurons whilst the top 20% most 
upweighted genes (158) were not significantly enriched in any cells 
(Fig. 4B). For subcortical-cortical connections, we found that the top 
20% most downweighted genes (153 genes) enriched in oligodendro-
cytes while the top 20% most upweighted genes (293) enriched in 
glutamatergic and GABAergic neurons (Fig. 5B).These enrichment pat-
terns were preserved both when different proportions of the most 
upweighted and downweighted genes were used (i.e. top 10%, 30% and 
50%) and when cell-type profiles were defined using a different human- 

Fig. 3. Correlation between connection length and white matter connectivity loss in PD low visual performers. A. Distribution of connection length for different 
connection types. Average connection length was calculated for each connection in control participants. B. Correlation between connection length and white matter 
loss in PD low visual performers. Connection strength was normalised against control participants using Z-scores, then transformed into positive connectivity loss 
measures using a tanh transform. Average transformed connection strength score for PD low visual performers is plotted against connection-weighted path length for 
average control, and Spearman rank correlations were performed. Connections are color-coded according to type. C. Correlation between connection length and 
white matter loss in PD low visual performers for individual connection types. 
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derived single-nucleus dataset (Supplementary Results 5). 
Subsequently, we investigated whether the most upweighted and 

downweighted genes in interhemispheric and subcortical-cortical con-
nections were enriched for genes linked to increased risk of PD, AD or 
DLB. Upweighted genes for subcortical-cortical connections showed a 
trend for enrichment for genes associated with increased PD risk (15 
shared genes, p = 0.044 (uncorrected for multiple comparisons), Sup-
plementary Results 6) but not those associated with AD (p = 0.762) or 
DLB (p = 0.998). The subcortical-cortical downweighted and inter-
hemispheric up- and downweighted genes were not significantly 
enriched for any risk genes. 

4. Discussion 

Here we demonstrate the hierarchy of WM connection loss accom-
panying visual dysfunction in PD, an early marker of Parkinson’s de-
mentia, and shed light on the organisational and genetic factors that 
influence WM vulnerability. 

In PD low visual performers, we found a specific pattern of WM 
connection loss with preferential loss of primarily interhemispheric and 
to lesser extent, subcortical-cortical connections, but preserved intra-
hemispheric and intramodular connectivity. 

Given that both subcortical-cortical and interhemispheric connec-
tions serve topologically distant brain regions, we investigated whether 
connection length was a significant driver for the selective vulnerability 
of these connection types. We showed that normal connection length 
does correlate, albeit weakly, with WM loss in PD low visual performers, 
with longer connections being more affected. This is in accordance with 
imaging data showing WM changes within the corpus callosum, poste-
rior thalamic radiations and fronto-occipital fasciculi in PD with visual 
dysfunction (Zarkali et al., 2020) and pathology data showing vulner-
ability to PD dementia preferentially involving cells with long axonal 
projections (Hale and Lowry, 2011; Perry et al., 1985; Wu et al., 2014). 
However, the weak correlation of connection length to connectivity loss 
implies that the type rather than the length of connection, may be a more 
significant driver of connectivity loss. 

Different connection types reflect different neuronal populations; 
interhemispheric connections mostly comprise intratelencephalic neu-
rons, ipsilateral subcortical-cortical connections mostly comprise pyra-
midal tract neurons whilst short intramodular connections mostly 
comprise inhibitory interneurons (Harris and Shepherd, 2015; Moly-
neaux et al., 2007). These differentiate at different times during devel-
opment, project to different cortical laminar layers and show distinct 
gene expression profiles and levels of myelination (Anderson et al., 

Fig. 4. Enrichment analyses results for down- 
and up-weighted genes associated with inter-
hemispheric connection loss in PD low visual 
performers. A. Significant gene ontology (GO) 
terms for biological processes associated with the 
second component of the partial least squares 
analysis plotted in semantic space, where similar 
terms are clustered together (Left panel: down-
weighted genes; Right panel: upweighted genes). 
The top five most significant GO terms are 
labelled for each analysis. Redundant GO terms 
have been excluded. Markers are scaled based on 
the log10 q value for the significance of each GO 
term. Larger and darker circles are highly signif-
icant, while smaller and lighter circles are less 
significant (see colour bar). B. Expression- 
weighted cell-type enrichment analysis (EWCE) 
using the AIBS dataset. EWCE uses single cell 
transcriptomes to generate the probability distri-
bution associated with a gene list having an 
average level of expression within a cell type. 
Data are presented as standard deviations from 
the mean. Standard deviations from the mean 
indicate the distance of the mean expression of 
the target gene lists from the mean expression of 
the bootstrap replicates. Marked with * are sta-
tistically significant (FDR corrected) results. C. 
Region of interest weights for partial least squares 
regression analyses. Brain regions displayed on 
brain mesh. Size of region indicates size of region 
of interest weight. Figure plotted using BrainNet 
Viewer [45].   
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2010; Harris and Shepherd, 2015; Molyneaux et al., 2007). 
To investigate the biological processes driving selective regional 

vulnerability in PD low visual performers, we assessed the cortical gene 
expression profile of interhemispheric and subcortical-cortical connec-
tions. Additionally, given that changes in regional gene expression can 
reflect changes in cell type proportions between regions, we investigated 
whether genes associated with WM loss in PD low visual performers are 
more highly expressed in one cell type than another and found a distinct 
pattern of cell type-specific expression. 

We found that vulnerability to subcortical-cortical connection loss in 
PD low visual performers was associated with downweighted genes 
related to myelination and enriched in oligodendrocytes. Oligodendro-
cyte dysfunction could play a key role in WM loss in PD dementia, with 
recent evidence suggesting that PD heritability is enriched in oligo-
dendrocytes, in addition to cholinergic and monoaminergic neurons and 
enteric neurons (Bryois et al., 2020). Another explanation is that 
subcortical-cortical connections, which have large connection length 
but small topological distance, are heavily myelinated. Amongst these 
oligodendrocyte-rich regions, those with lower oligodendrocyte 

expression and more poorly myelinated in health (for example dopa-
minergic neurons (Sulzer and Surmeier, 2013)) could be more “at risk” 
in the presence of neurodegeneration. 

Upweighted genes associated with subcortical-cortical connection 
loss were enriched in terms related to synaptic signalling and chemical 
synaptic transmission, particularly glutamate; these genes were also 
enriched in GABAergic and glutamatergic neurons. Alpha-synuclein 
monomers play a role in synaptic function and neurotransmitter 
release (Abeliovich et al., 2000; Cabin et al., 2002) with oligomers 
involved in synaptic dysfunction (Diógenes et al., 2012; Rockenstein 
et al., 2014) and intrastriatal injections of alpha-synuclein are associated 
with reduced glutamate receptor activity (Durante et al., 2019). Our 
findings further support the importance of synaptic dysfunction in PD. 

In contrast, interhemispheric connections showed a different gene 
expression pattern, in keeping with a different neuronal population 
being affected. Downweighted genes associated with interhemispheric 
connection loss were enriched in a single GO term, smoothened sig-
nalling pathway, and in glutamatergic neurons. The smoothened sig-
nalling pathway is crucial for the brain development, particularly that of 
dopaminergic neurons and dysfunction, and has been previously 
implicated in Parkinson’s disease (Gonzalez-Reyes et al., 2012). In 
addition to its role within the nigrostriatal circuit, the smoothened sig-
nalling pathway has been recently shown to play a role in plasticity and 
neuronal regeneration in the adult brain (Petrova and Joyner, 2014; Yao 
et al., 2016) as well as local glial proteostasis. Indeed, impairment of the 
smoothened signalling pathway in a Drosophila model of Alzheimer’s 
disease leads to aging and reduced lifespan, while activation of the 
pathway results in reduced amyloid accumulation (Rallis et al., 2020). 
In the long distance neurons that form interhemispheric connections, 
local regulatory processes are particularly important, due to their 
morphology and size (Holt et al., 2019); lower expression of genes 
related to the smoothened signalling pathway may contribute to 
impaired local proteostasis, making them more vulnerable to aberrant 
protein aggregation and misfolding. 

Relatively higher expression, linked to interhemispheric WM loss, of 
genes involved in metabolic processes, such as organic hydroxy com-
pound metabolism, could reflect the added metabolic burden of main-
taining these long-distance connections, making these connections more 
vulnerable to degeneration. Indeed, highly connected brain regions or 
“hubs” are characterised by higher expression of metabolic and mito-
chondrial genes (Fulcher and Fornito, 2016; Vértes et al., 2016). 

Recent studies have implicated the role of the innate immune system, 
specifically microglia disfunction, in PD (Ouchi et al., 2005; Yun et al., 
2018). We did not find enrichment for microglia-specific genes associ-
ated with structural connectivity loss in our cohort, similar to recent PD 
heritability studies (Bryois et al., 2020). This suggests that factors other 
than background microglia expression, for example aberrant activation, 
drive degenerative losses of white matter in PD. 

Our findings are likely to be disease-specific. We showed relative 
enrichment of upweighted genes related to subcortical-cortical 
connection loss for PD but not AD risk genes, where different patho-
logical mechanisms are likely to drive WM loss. Although we did not find 
enrichment for DLB risk genes (where mechanisms may be linked), that 
gene list was derived from a small GWAS study (Rongve et al., 2019). 
Studies correlating imaging metrics with regional gene expression for 
other diseases show different results implying disease-specificity. For 
example, in schizophrenia, WM loss is related to genes involved in cell- 
to-cell signalling (Romme et al., 2017). In contrast, in Huntington’s 
disease, a form of neurodegeneration with a more similar phenotype of 
subcortical dementia to Parkinson’s disease, gene expression patterns 
associated with WM loss are more similar to those we found in PD low 
visual performers (McColgan et al., 2018). 

5. Limitations 

Gene expression data from the Allen atlas were derived from healthy 

Table 3 
Gene Ontology (GO) terms for biological processes associated with significantly 
Downweighted and Upweighted genes from the second component of partial 
least squares regression (PLS2).  

Interhemispheric connections 
Downweighted Genes 
GO term Description q value B N b 

GO:0007224 smoothened signaling 
pathway 

1.89E- 
02 

146 734 19 

Upweighted Genes 
GO term Description q value B N b 
GO:1901615 organic hydroxy compound 

metabolic process 
1.87E- 
07 

557 239 30 

GO:0006066 alcohol metabolic process 1.67E- 
06 

377 192 21 

GO:1902644 tertiary alcohol metabolic 
process 

9.84E- 
06 

20 19 4 

GO:1901617 organic hydroxy compound 
biosynthetic process 

3.14E- 
05 

268 134 14 

GO:0006695 cholesterol biosynthetic 
process 

7.50E- 
05 

71 125 8 

Subcortical-cortical connections 
Downweighted Genes 
GO term Description q value B N b 
GO:0042552 myelination 2.90E- 

06 
140 146 12 

GO:0007272 ensheathment of neurons 3.70E- 
06 

143 146 12 

GO:0008366 axon ensheathment 3.70E- 
06 

143 146 12 

GO:0019375 galactolipid biosynthetic 
process 

2.60E- 
03 

6 76 3 

GO:0006682 galactosylceramide 
biosynthetic process 

2.60E- 
03 

6 76 3 

Upweighted Genes 
GO term Description q value B N b 
GO:0035249 synaptic transmission, 

glutamatergic 
2.07E- 
04 

105 762 19 

GO:0022008 neurogenesis 2.31E- 
04 

1683 1378 187 

GO:0050804 modulation of chemical 
synaptic transmission 

3.77E- 
04 

457 762 45 

GO:0099177 regulation of trans-synaptic 
signaling 

4.01E- 
04 

458 762 45 

GO:0060078 regulation of postsynaptic 
membrane potential 

8.56E- 
04 

149 762 22 

The top five most significant GO terms are displayed for each connection type. 
Full GO terms are presented in Supplementary Table S5. 
q value: log10 of the FDR adjusted p value; B: Total number of genes associated 
with a specific GO term; 
b:Number of genes in the intersection ; N: Number of genes in the target set 
(query size). 
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donors without neuropsychiatric disease, and may differ in PD. Post-
mortem data suggests that patients with PD show different gene 
expression within the substantia nigra compared to controls (Mariani 
et al., 2016; Simunovic et al., 2009); we used cortical gene expression 
data to mitigate for this. Moreover, our main comparison of interest is 
between PD with visual dysfunction and PD with preserved vision. Due 
to data availability in the Allen atlas, we used only left hemisphere data. 
There is no reason to expect cortical differences in gene expression be-
tween hemispheres, but this could be examined in future work. We could 
not validate our gene expression findings using other transcriptome 
datasets as the two other available human transcriptome atlases (UK 
Brain Expression Consortium (Ramasamy et al., 2014) and Human Brain 
Transcriptome project (Kang et al., 2011)) were derived from only small 
number of cortical regions. 

Diffusion tractography is a relatively indirect marker of WM con-
nectivity. However, diffusion imaging is currently the only available 
technique to assess structural connectivity in vivo. We used constrained 
spherical deconvolution, which is more reliable in assessing crossing 
fibers (Smith et al., 2012) and the SIFT2 algorithm which is more 
representative of underlying biology (Smith et al., 2015a; 2015b). 
Although all imaging (both diffusion weighted and structural) were 
visually inspected for the presence of structural abnormalities and no 

significant vascular disease was seen, we did not systematically assess 
and control for the presence of white matter hyperintensities. Future 
studies should clarify the effect, if any, of white matter hyperintensities 
on structural connectivity measures. 

In this study, we used a modular approach to simplify the interpre-
tation of large numbers of brain connections, classifying connections as 
interhemispheric, subcortical-cortical, intrahemispheric and intra-
modular. This is a biologically meaningful approach (Molyneaux et al., 
2007), which was selected based on prior work (Zarkali et al., 2020). 
However, it is worth noting that summing connections from multiple 
regions may result in over- or under-estimation of between group 
differences. 

Participants with PD were scanned on their usual dopaminergic 
medications. It is unlikely that levodopa affects structural connectivity, 
as fractional anisotropy is not influenced by levodopa (Chung et al., 
2017). Finally, our study is cross-sectional. Longitudinal studies in pa-
tients with visual deficits who progress to dementia will provide further 
insights into the temporal order of WM loss and biological processes 
involved. 

Fig. 5. Enrichment analyses results for down- 
and up-weighted genes associated with 
subcortical-cortical connection loss in PD low 
visual performers. A. Significant gene ontology 
(GO) terms for biological processes associated 
with the second component of the partial least 
squares analysis plotted in semantic space, where 
similar terms are clustered together (Left panel: 
downweighted genes; Right panel: upweighted 
genes). The top five most significant GO terms 
are labelled for each analysis. Redundant GO 
terms have been excluded. Markers are scaled 
based on the log10 q value for the significance of 
each GO term. Larger and darker circles are 
highly significant, while smaller and lighter cir-
cles are less significant (see colour bar). B. 
Expression-weighted cell-type enrichment anal-
ysis (EWCE) using the AIBS dataset. EWCE uses 
single cell transcriptomes to generate the proba-
bility distribution associated with a gene list 
having an average level of expression within a 
cell type. Data are presented as standard de-
viations from the mean. Standard deviations 
from the mean indicate the distance of the mean 
expression of the target gene lists from the mean 
expression of the bootstrap replicates. Marked 
with * are statistically significant (FDR corrected) 
results. C. Region of interest weights for partial 
least squares regression analyses. Brain regions 
displayed on brain mesh. Size of region indicates 
size of region of interest weight. Figure plotted 
using BrainNet Viewer [45].   
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6. Conclusion 

We show that WM loss in PD patients with visual dysfunction, who 
are at risk of Parkinson’s dementia, exhibits a specific pattern, with 
interhemispheric connections preferentially affected. In addition, we 
show that WM loss in PD low visual performers is associated with 
distinct gene expression patterns, linked with different biological pro-
cesses and different cell types and invoking high metabolic burden as a 
driver for involvement for selective regions. These findings elucidate the 
earliest changes in WM connectivity of PD dementia and shed light onto 
the underlying pathological processes that may drive them. 
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