
ARTICLE

Organisational and neuromodulatory
underpinnings of structural-functional connectivity
decoupling in patients with Parkinson’s disease
Angeliki Zarkali 1✉, Peter McColgan2, Louise-Ann Leyland1, Andrew J. Lees3, Geraint Rees 4,5 &

Rimona S. Weil1,5,6

Parkinson’s dementia is characterised by changes in perception and thought, and preceded by

visual dysfunction, making this a useful surrogate for dementia risk. Structural and functional

connectivity changes are seen in humans with Parkinson’s disease, but the organisational

principles are not known. We used resting-state fMRI and diffusion-weighted imaging to

examine changes in structural-functional connectivity coupling in patients with Parkinson’s

disease, and those at risk of dementia. We identified two organisational gradients to

structural-functional connectivity decoupling: anterior-to-posterior and unimodal-to-trans-

modal, with stronger structural-functional connectivity coupling in anterior, unimodal areas

and weakened towards posterior, transmodal regions. Next, we related spatial patterns of

decoupling to expression of neurotransmitter receptors. We found that dopaminergic

and serotonergic transmission relates to decoupling in Parkinson’s overall, but instead,

serotonergic, cholinergic and noradrenergic transmission relates to decoupling in patients

with visual dysfunction. Our findings provide a framework to explain the specific disorders

of consciousness in Parkinson’s dementia, and the neurotransmitter systems that

underlie these.
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Dementia associated with Parkinson’s disease (PD) is
characterised by changes in cognition and perception,
including visual hallucinations, delusions and fluctuations

in attention1,2. It is often preceded and accompanied by visual
dysfunction3–5 and linked to hypometabolism in posterior brain
regions6. High-order visual dysfunction, in particular, is asso-
ciated with worse cognition at 1-year follow up7. Although PD is
characterised by Lewy body inclusions, the neural correlates of
cognitive impairment in PD and specifically the structural and
functional changes remain unclear8.

Perception and action, whether in health or disease, depends
on connections between brain regions. In general, it is assumed
that there is a relationship between the strength of a structural
connection between two brain areas and the strength of the
corresponding functional connection9. However, it has recently
emerged that this relationship between structural–functional
connectivity is not uniform across the healthy human brain but
organised with clear hierarchical and cyto-architectural princi-
ples9. Specifically, there is close structural–functional coupling
(SC–FC coupling) in primary sensory (unimodal) cortices, with
divergence at the apices of processing hierarchies (transmodal
association cortices), in networks such as the default mode net-
work (DMN)10–12. One theory for this is that relative decoupling
in higher-order areas allows abstract reasoning, protected from
the more granular signalling in earlier stages of sensory proces-
sing13. Changes in SC–FC coupling occur during brain matura-
tion10 but also in psychiatric14,15 and neurological disease16–19,
and maybe particularly relevant to cognition: individual differ-
ences in coupling reflect differences in cognition20,21 and higher
SC–FC coupling in prefrontal cortex is associated with improved
executive function10. Therefore, loss of SC–FC coupling might be
expected in PD, especially in subtypes linked with higher risk of
dementia.

Neuroimaging studies have provided important insights sepa-
rately into structural and functional connectivity alterations in
PD22–24. Diffusion-weighted imaging revealed structural altera-
tions in tracts including the corpus callosum and thalamo-cortical
connections in PD with cognitive impairment25–29 and those with
visual dysfunction (higher dementia risk)30. Resting-state func-
tional MRI (rsfMRI) studies have identified changes in functional
connectivity between frontal and visuospatial regions31,32 and
frontal regions and the posterior cingulate7,32 in PD with cog-
nitive impairment. These studies provide useful insights into the
network-level dysfunction contributing to cognitive impairment
in PD, however, the question of how structural changes impact on
brain function is unresolved. We hypothesised that the relation-
ship between structural–functional coupling across the brain
would be systematically modified in PD and that this pattern of
decoupling would occur along with one of two hypothesised
directions: (1) across the unimodal–transmodal hierarchical gra-
dient of SC–FC decoupling that is seen in health with more
transmodal regions becoming even more decoupled in PD10–12,33;
or (2) along the anterior-to-posterior (A–P) axis with decoupling
more prominent in posterior regions. This hypothesis was based
on the posterior distribution of metabolic and connectivity
changes seen in PD 25,30,34–36.

We used rsfMRI and diffusion-weighted imaging to investi-
gate changes in whole-brain structural connectivity–functional
connectivity coupling (SC–FC coupling) in 88 patients with PD
(of whom 33 had visual dysfunction and higher dementia risk)
and 30 age-matched controls. We found widespread decoupling
in PD compared to controls but a more focal pattern affecting
the insula in PD with visual dysfunction compared with those
with normal visual function. Next, we evaluated the specific
pattern of decoupling in PD and found that this occurred across
both a unimodal–transmodal and anterior–posterior axes.

Finally, we examined whether changes in SC–FC coupling are
related to underlying differences in expression of specific neu-
rotransmitters in an exploratory analysis. Although PD is clas-
sically associated with the altered dopaminergic transmission,
recent evidence implicates other neurotransmitter systems:
cholinergic transmission37–39 is affected in PD dementia and
both reduced occipital GABA levels40 and altered noradrenergic
transmission41 have been implicated in cognitive impairment in
PD. We show that dopamine transmission, although central to
motor aspects of PD, may have a less important role in PD
dementia, as neurotransmitter systems other than dopamine
were correlated with the SC–FC decoupling found in PD with
visual dysfunction.

Results
To characterise how structural–functional connectivity (SC–FC)
coupling changes in PD, we quantified the degree to which a
brain region’s structural connectivity relates to coordinated
fluctuations in neural activity between-regions. For each partici-
pant, two weighted, undirected connectivity matrices were
derived using the same parcellation42 comprised of 400 cortical
brain regions: a structural connectivity matrix derived from
diffusion-weighted imaging and a functional connectivity matrix
derived from resting-state functional MRI (rsfMRI) data. SC–FC
coupling was measured as the Spearman rank correlation between
the structural and functional connectivity profiles of each region.
An overview of the study methodology is seen in Fig. 1.

A total of 118 participants were included: 88 patients with PD
and 30 controls. Patients with PD were further classified
according to their performance in two higher-order computer-
based visual tasks which have been previously shown to correlate
with worsening cognition over time7. This resulted in 33 PD low
visual performers and 55 PD high visual performers.

MRI quality and pre-processing were visually and quantita-
tively evaluated. Excluding cases with low-quality structural MRI
or high head motion on rsfMRI resulted in the exclusion of
14 subjects from our original cohort, leading to the final sample of
88 PD and 30 controls.

Importantly, the three groups did not significantly differ in
scan quality, gender and years in education (Table 1). As in
previous work43,44, performance in visual tasks correlated with
cognition but not on low-level vision tests such as visual acuity.
Details of neuropsychological performance in Supplementary
Table 1. PD low and high visual performers were well-matched
in disease duration, severity and levodopa equivalent dose
(Table 1).

Widespread structural–functional connectivity decoupling
occurs in PD. First, we examined how the relationship between
structural and functional connectivity changes in PD. All parti-
cipants showed statistically significant correlations between
structural and functional connectivity (correlation coefficient
range= 0.28–0.74, all pspin < 0.001). Similarly to other stu-
dies10,45, controls showed variation in SC–FC coupling across the
cortex, with higher coupling in primary sensory and medial
prefrontal cortex and lower coupling in lateral temporal and
frontoparietal regions (Fig. 2A). This pattern was preserved in
PD; however, SC–FC coupling was globally reduced in PD par-
ticipants compared to controls (mean 0.484 in PD vs 0.544 in
controls, p= 0.002) (Fig. 2B, C).

When we examined SC–FC coupling in all nodes across the
whole brain, 8 nodes showed significantly reduced coupling in PD
compared to controls (adjusting for age and gender, FDR-
corrected over 400 nodes q < 0.05). The nodes showing SC–FC
decoupling in PD had a posterior distribution: bilateral superior
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and middle occipital gyri and right cuneus, precuneus and
calcarine gyrus (Fig. 2D and Table 2).

When we compared overall coupling, averaged across the whole
of the brain network, PD low visual performers did not show
significant decoupling compared to PD high visual performers
(mean 0.469 in PD low visual performers vs 0.492 in PD high
visual performers, p= 0.415) (Fig. 2C). In contrast, changes in PD
low visual performers were more focal (Fig. 2B) with bilateral
insula and the right calcarine gyrus showing significant decoupling
compared to high visual performers (Fig. 2D and Table 2). Higher
SC–FC coupling within the right calcarine gyrus was related to
higher MOCA scores in PD participants (r= 0.307, q= 0.011)
(Supplementary Fig. 3). There was no significant correlation
between MOCA scores and SC–FC coupling in the left or right
insula (left: r= 0.099, q= 0.361; right: r= 0.062, q= 0.567).

To ensure that results were not influenced by parcellation
choice, we replicated our SC–FC analysis in another parcellation
with similar results (Supplementary Figs. 4 and 5). Group
differences in PD vs controls and PD low vs PD high visual
performers in our cohort for structural and functional con-
nectivity separately are found in Supplementary Fig. 6.

Defining structural and functional gradients of macroscale
cortical organisation in health. Next, we assessed whether the
spatial variability in structure–function decoupling aligns with
fundamental properties of cortical organisation. Using diffusion
map embedding for non-linear dimensionality reduction46, we
derived structural and functional gradients of cortical organisa-
tion for each control participant’s structural and functional

Fig. 1 Overview of the study methodology. A Analyses were conducted using a whole-brain parcellation including 400 cortical regions42. B Structural
connectivity (SC) and functional connectivity (FC) matrices were derived for each participant from diffusion-weighted imaging (DWI) and resting-state
functional MRI (rsfMRI) data, respectively. SC: Darker colours indicate higher normalised streamline counts; FC: lighter colours indicate higher Fisher-z
normalised Spearman correlation values between every possible pair of brain regions. C For each participant, regional connectivity profiles were extracted
from each row of the structural or functional connectivity matrix (example here shown by green dashed line) and represented as vectors of connectivity
strength from a single network node to all other nodes in the network. Structural–functional connectivity coupling (SC–FC coupling) was then measured as
the Spearman rank correlation between non-zero elements of regional structural and functional connectivity profiles. SC–FC coupling was then compared
between groups. D Gradients of connectivity covariance were constructed for each individual’s structural and functional connectivity matrices using
diffusion map embedding, a non-linear compression algorithm that sorts nodes based on affinity (normalised angle was used as a measure of affinity). We
focused our analyses on the first 2 principal structural and functional gradients; the scores of each node for the first 2 gradients are shown in the kernel
density plot (blue: structural, red: functional gradients). Gradient scores and SC–FC coupling may be projected back to the cortical surface. We then
correlated functional and structural gradient scores with SC–FC coupling for each region.
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connectivity matrix respectively. Similar to the previous stu-
dies33,45,47,48, we focused our analyses on the first two principal
gradients. The first principal gradient explained 14.3% of the
variance for structural and 27.5% for functional gradients and the
second principal gradient 11.9% for structural and 17.5% for
functional gradients.

We assessed the dimension of variance in connectivity that the
first two gradients represented in healthy controls. The first
principal gradients (structural and functional) were anchored on
one end in frontal and the other end on occipital regions (Fig. 3A:
structural and Fig. 3B: functional gradients). To confirm this A–P
alignment, we performed correlations (df= 400) between the
weighting of each brain region in the first gradient (using the
mean value across the control group only) and the corresponding
A–P axis coordinate for that region. This showed a significant
negative correlation for the first structural [ρ=−0.626 (inter-
individual range: −0.651, −0.572), pspin < 0.001] and functional
gradient [ρ=−0.592 (interindividual range: −0.684, −0.267),
pspin < 0.001] (Fig. 3A, B).

In contrast, the second principal gradients in control
participants were anchored in unimodal regions (primary sensory
cortex) on one end and transmodal regions on the other end
(Fig. 3C structural and 3D functional gradients). To confirm this,
we assigned each brain region to a level of hierarchy according to
its corresponding functional network, moving from unimodal
(level 1) to transmodal areas (level 4)49. We then performed
correlations (df= 400) between the weighting of each brain
region in the second principle gradient and its hierarchy level.
Both the structural [ρ= 0.478 (interindividual range: 0.372,
0.518), pspin= 0.003] and functional second principal gradients

[ρ= 0.663 (interindividual range: 0.239, 0.749), pspin= 0.001]
significant correlated with this unimodal–transmodal axis
(Fig. 3C, D).

Structure–function decoupling occurs across gradients of
macroscale organisation in health and is accelerated in PD.
Next, we examined the relationship between macroscale gradients
and SC–FC coupling using a spatial permutation test. This gen-
erates a null distribution of randomly rotated brain maps that
preserve the spatial covariance structure of the original data (the
resulting p-values are denoted pspin)50.

In controls, variation in SC–FC coupling significantly corre-
lated with the first principal gradients, with stronger coupling in
posterior regions and weaker in anterior ones (structural: ρ=
−0.169, pspin= 0.011, functional: ρ=−0.2, pspin= 0.042; Fig. 4A,
B). Coupling also significantly correlated with the second
principal gradients: unimodal sensory regions exhibited relatively
strong SC–FC coupling but transmodal regions exhibited weaker
coupling (structural: ρ=−0.144, pspin= 0.007, functional: ρ=
−0.203, pspin= 0.009; Fig. 4C, D).

This gradual decoupling in SC–FC across the A–P and
unimodal–transmodal axes seen in controls, was amplified in
PD and even more so in low visual performers. Greater SC–FC
decoupling was seen along the A–P axis for both structural
(PD high visual performers ρ=−0.276, pspin < 0.001; PD low
visual performers ρ=−0.307, pspin < 0.001; Fig. 4A) and func-
tional gradients (PD high visual performers ρ=−0.271, pspin <
0.001; PD low visual performers ρ=−0.349, pspin < 0.001;
Fig. 4B). Similarly, greater decoupling was seen along the

Table 1 Demographics and clinical assessments.

Characteristic Controls
n= 30

PD high visual performers
n= 58

PD low visual performers
n= 30

Statistic

Age (years) 66.8 (9.3) 66.8 (9.3) 64.4 (8.0) 0.001b

Male (%) 13 (43.3) 13 (43.3) 48 (54.5) 0.334
Years of education 17.7 (2.5) 17.7 (2.5) 17.1 (2.9) 0.098
Vision
Contrast sensitivity (Pelli–Robson)a 1.8 (0.2) 1.8 (0.2) 1.7 (0.1) <0.001b

Acuity (LogMar)a −0.08 (0.2) −0.08 (0.2) −0.08 (0.1) 0.441
Colour vision (D15) 1.3 (1.3) 1.1 (0.8) 1.6 (1.8) 0.334

General cognition
MOCA 28.8 (1.3) 28.8 (1.3) 27.9 (2.4) 0.003b

MMSE 29 (1.1) 29 (1.1) 28.9 (1.3) 0.573
Mood
HADS anxiety 3.7 (3.4) 3.7 (3.4) 5.9 (3.1) 0.023b,c

HADS depression 1.9 (1.4) 1.9 (1.4) 4.1 (3.1) <0.001b,c

Disease-specific measures
Years from diagnosis – 3.7 (2.6) 4.5 (2.6) 0.061
UPDRS total score – 44.2 (25.5) 49.9 (26.8) 0.315
UPDRS motor score – 23. 2 (14.1) 24.3 (14.8) 0.785
LEDD – 411.1 (273.5) 479.4 (201.2) 0.099
RBDSQ – 4.4 (2.7) 4.0 (2.1) 0.832

Image quality metrics
Coefficient of joint variationd 0.69 (0.3) 0.69 (0.3) 0.67 (0.2) 0.925
Entropy focus criteriond 0.59 (0.1) 0.59 (0.1) 0.59 (0.1) 0.167
Total Signal to noise ratioe 1.89 (0.2) 1.89 (0.2) 1.85 (0.2) 0.314
Mean framewise displacemente 0.17 (0.1) 0.17 (0.1) 0.19 (0.1) 0.056

All data shown are mean (SD) except gender.
In bold characteristics that significantly differed between groups.
HADS Hospital anxiety and depression scale, MMSE Mini-mental state examination, MOCA Montreal cognitive assessment, UPDRS Unified Parkinson’s Disease Rating Scale, LEDD Levodopa Equivalent
Dose, RBDSQ REM sleep behaviour disorder scale.
aBest binocular score used; LogMAR: lower score implies better performance, Pelli–Robson: higher score implies better performance.
bStatistically significant difference between PD and controls.
cStatistically significant difference between PD high visual performers and PD low visual performers.
dHigher values imply worse image quality.
eHigher values imply better image quality.
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unimodal–transmodal axis (structural: PD high visual performers
ρ=−0.161, pspin= 0.040; PD low visual performers ρ=−0.207,
pspin= 0.001; Fig. 4C and functional gradients: PD high visual
performers ρ=−0.241, pspin= 0.005; PD low visual performers
ρ=−0.268, pspin= 0.001; Fig. 4D).

Relationship between structural–functional connectivity
decoupling in PD and neurotransmitter receptor gene expres-
sion. Finally, to assess the role that neuromodulatory systems may
have in SC–FC decoupling in PD, we investigated the relationship
between maps of gene expression for neurotransmitter receptor

genes (derived from post-mortem human brains) and SC–FC
coupling changes in: (1) PD vs controls and (2) PD low vs high
visual performers. We found that decoupling in PD showed a
statistically significant moderate correlation with regional differ-
ences in gene expression of dopaminergic, serotoninergic and
cholinergic receptors (Fig. 5A and Table 3). Specifically, decou-
pling in PD was associated with reduced expression of DRD2 and
three serotonin receptors (HTR2A, HTR2C, HTR4) and increased
expression of a cholinergic (CHRNA4) and serotoninergic receptor
(HTR1E) (Table 3).

In contrast, changes in SC–FC coupling in PD low visual
performers (compared to high visual performers) were not

Fig. 2 Structural–functional connectivity coupling in controls and changes in patients with Parkinson’s disease (PD). A Spatial pattern of
structural–functional connectivity (SC–FC) coupling in controls. The coupling between regional structural and functional connectivity profiles varied widely
across the cortex. Primary sensory and medial prefrontal cortex exhibited relatively high structure–function coupling, while lateral temporal and parietal
regions showed relatively low coupling. B Spatial pattern of SC–FC decoupling in PD. Regional changes in SC–FC coupling (correlation coefficient plotted,
with age and gender correction) are presented in PD vs controls (top) and PD low visual performers vs PD high visual performers (bottom). C SC–FC
coupling changes averaged across all nodes of the network. Average SC–FC coupling (Spearman’s rank correlation) across the whole-brain network (400
nodes) is compared between controls, PD high and PD low visual performers. S–F: structural connectivity–functional connectivity. * denotes statistically
significant results (p-spin < 0.05). Both PD low and PD high visual performers showed significantly reduced global coupling than controls (PD low visual
performers mean 0.469 vs 0.544 in controls, p= 0.002; PD high visual performers mean 0.492 vs 0.544 in controls, p= 0.005). There was no significant
difference between PD low and PD high visual performers (p= 0.415). D SC–FC coupling changes for each node across the brain. Whole-brain
comparisons of SC–FC coupling were performed for every node across the whole brain between PD vs controls (top) and PD low visual performers vs PD
high visual performers (bottom), age and gender included as covariates. Only nodes surviving FDR correction (q < 0.05) are presented.
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significantly correlated with changes in dopaminergic but rather
to cholinergic (CHRNA2, CHRNA3, CHRNA4), serotoninergic
(HTR1A, HTR5A) and noradrenergic (ADRA2A) receptors
(Fig. 5B, Table 3 and Supplementary Table 3 for the full
neurotransmitter gene expression results.).

Discussion
We provide evidence of significant differences in SC–FC coupling
in patients with PD and shed light onto the organisational and
neuromodulatory principles that drive this decoupling.

In patients with PD, we found a spatially widespread de-
coupling of SC–FC correlations. In contrast, PD low visual per-
formers, who are at higher risk of dementia, exhibited more focal
decoupling compared to PD high visual performers, with the
insula preferentially affected. SC–FC decoupling in PD follows
specific gradients of hierarchical organisation: anterior–posterior
and unimodal–transmodal. These same gradients governed spatial
variation in SC–FC coupling in healthy controls but became more
pronounced in PD and even more so in PD low visual performers.

We found that structural–functional connectivity decoupling
in PD follows a unimodal-to-transmodal gradient. Several studies
in health have shown stronger SC–FC coupling in unimodal
sensory cortex and relative decoupling in transmodal association
cortex coinciding with improvements in executive ability and
abstract reasoning10,11,33. Our second principal gradients simi-
larly reflected a unimodal-to-transmodal hierarchy and were
correlated with SC–FC in controls. This provides further support
to the tethering hypothesis that association cortex is untethered
from molecular gradients of early sensory cortex51, now using for
the first time, gradients derived from diffusion-weighted imaging.

We show that in PD, structural and functional connectivity
became more decoupled in regions higher along the unimodal–
transmodal hierarchy. This supports the central role of the DMN in
PD-associated cognitive impairment which has been highlighted by
rsfMRI studies52–54, pathological evidence55 and, more recently,
network lesion mapping56. Transmodal regions, such as the DMN,
where SC–FC are, normally, less closely aligned may be more

vulnerable to the presence of neurodegeneration. Decoupling in
these higher-order regions could explain the higher prevalence of
neurocognitive deficits seen in PD, such as hallucinations and
delusions, with a release of these regions from the normal con-
straints of sensory processing. Although in health a weaker SC–FC
coupling may be beneficial allowing for more adaptive and flexible
cognition, in the presence of neurodegeneration it may make
transmodal regions more vulnerable. The numbers of patients with
hallucinations and delusions in our cohort were too low to formally
test whether these symptoms correlate with greater decoupling, but
this would be an avenue of interest for future work.

In addition, we saw a striking increase of SC–FC decoupling
along the A–P axis (first principle gradients) in PD. This corre-
lation was observed in controls but became more pronounced in
PD and even more so in low visual performers. An
anterior–posterior spatial gradient has been observed at the gene
expression level in the adult human brain57–59 and pre-
natally60,61. Specific gene expression patterns across this gradient
could confer vulnerability in the presence of degeneration. The
A–P gradient however does not only reflect transcriptional dif-
ferences but also changes in cortical microstructure with increase
in neuronal number and density and decrease in neuron and
arbour size across the A–P axis58. The increased neuronal
population in more posterior regions may make them more
vulnerable to transneuronal alpha-synuclein spread.

Finally, we shed light onto the neuromodulatory systems
associated with SC–FC coupling in PD overall and in those
individuals at higher risk of cognitive decline. Unsurprisingly, the
reduced dopaminergic transmission was associated with SC–FC
decoupling observed in PD compared to controls. In contrast, we
found no correlation of dopaminergic receptor expression and
decoupling in PD low visual performers, suggesting that neuro-
modulators other than dopamine may have a more important
role in the development of cognitive impairment.

Altered serotoninergic transmission was also associated
with SC–FC decoupling in PD participants, in keeping with evi-
dence from positron emission tomography62, biochemical63 and

Table 2 Nodes showing structural–functional connectivity decoupling in PD compared with controls and in PD low vs high visual
performers.

Reduced SC–FC coupling in PD vs controls

Region Coordinates in
MNI space

SC–FC coupling in controls SC–FC coupling in PD Network q value

x y z

Superior occipital gyrus L −16 −89 33 0.601 (0.169) 0.458 (0.177) Visual 0.026
Middle occipital gyrus L −26 −70 31 0.659 (0.106) 0.564 (0.144) DAN 0.050
Middle occipital gyrus R 43 −79 10 0.647 (0.147) 0.509 (0.181) Visual 0.034
Calcarine R 16 −66 19 0.738 (0.053) 0.615 (0.178) Visual 0.050
Cuneus R 14 −78 34 0.706 (0.043) 0.541 (0.175) Visual 0.005
Superior occipital gyrus R 16 −87 36 0.659 (0.148) 0.506 (0.187) Visual 0.014
Angular gyrus R 53 −53 26 0.630 (0.145) 0.462 (0.222) DMN 0.040
Precuneus R 6 −52 23 0.418 (0.239) 0.362 (0.203) DMN 0.040

Reduced SC–FC coupling in PD low vs high visual performers

Region Coordinates in
MNI space

SC–FC coupling in PD high visual performers SC–FC coupling in PD low visual performers Network q value

x y z

Insula L −36 4 11 0.355 (0.237) 0.163 (0.288) VAN 0.012
Calcarine R 22 −59 6 0.586 (0.125) 0.480 (0.164) Visual 0.012
Insula R 35 −21 14 0.588 (0.198) 0.392 (0.114) Sensorimotor 0.012

SC–FC coupling structural connectivity–functional connectivity coupling. Shown as mean (std).
DAN dorsal attention network, DMN default mode network, VAN ventral attention network, L left, R right.
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post-mortem studies64 showing serotoninergic degeneration in
PD. In contrast, in PD low visual performers SC–FC decoupling
was more prominent in regions with increased serotoninergic
receptor expression, specifically HTR1E and HTR5A. Although
the function of these receptors is not yet fully described, HTR5A
is thought to have a role in cognition65, with 5HT-5a antagonists
improving cognition in animal models66.

In addition, regional differences in nicotinic cholinergic receptors
were associated with SC–FC decoupling with changes in both PD
overall and PD low visual performers. Cholinergic cell involvement
is well recognised in PD and linked to the development of dementia,
with a progressive reduction in nicotinic receptors in parallel to
dementia severity67. This reduction in PD could be more prominent
in regions typically rich in nicotinic receptors in health.

Fig. 3 Structural and functional gradients of cortical organisation in controls. The first two principal gradients derived from the averaged control structural
and functional connectivity matrices are presented. Gradient scores are projected back onto the cortical surface. The first principal structural (A) and
functional (B) gradients showed a dissociation between the posterior and anterior regions. The second principal structural (C) and functional (D) gradients
showed a dissociation between unimodal and transmodal regions. Top and bottom 10% of the average control gradients highlight regions with similar (same
colour) and distinct (red vs blue) connectivity profiles. For the first structural and functional gradients, top 10% of regions are more posterior and bottom
10% more anterior. For the second structural and functional gradients, top 10% of regions are more transmodal and bottom 10% more unimodal. On the
right, we plot the correlation between the gradient score (control-averaged) and the A–P axis coordinate for the first principal gradients, and the Network
Hierarchy level for the second principal gradients (each dot represents a single region of the average control connectome). A–P: Anterior–Posterior (lower
values representing more posterior regions, higher values more anterior regions), Network Hierarchy level: level 1 sensory and sensorimotor networks, level
2 dorsal attention and salience networks, level 3 frontoparietal and limbic networks, level 4 default mode network (DMN).
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Finally, we found that SC–FC decoupling in PD low visual
performers was more pronounced in regions with reduced
expression of the noradrenergic receptor ADRA2 in health (q=
0.041). Interestingly, ADRA2 gene polymorphisms were recently
identified in a genome-wide association study of PD patients
(associated with increased insomnia at baseline)68. Nor-
epinephrine and its receptors have also been linked to PD69–71,
although not previously in relation to cognitive impairment.

Several methodological considerations need to be taken into
account when interpreting the results of our study. Structural
connectivity was estimated using streamlines from diffusion
tractography which is susceptible to false positives and false
negatives72. To provide the best possible estimate of structural
connectivity, we used multi-shell data and improved post-pro-
cessing, including constrained spherical deconvolution73 and
SIFT274. Functional connectivity estimates were derived from
rsfMRI data which are also susceptible to the artefact, particularly
motion. To mitigate this, we adopted rigorous quality assurance
and strict exclusion criteria75. Time of day and medication usage
influence rsfMRI76; all participants were scanned in the ON state,
receiving their usual dopaminergic medications and at the same

time. Although we optimised both our structural and functional
connectivity estimates, these remain indirect measures of brain
structure and function which needs to be taken into account
when interpreting the results of our study. We used parcellated
data to allow for group comparisons, however functional
boundaries vary across individuals77 which could lead to mis-
alignments when comparing structural–functional connectivity
relationships. We used gene expression data from healthy human
brains, therefore results relating to neurotransmitter receptor
gene expression should be interpreted with caution. In addition,
although significantly correlated, regional variation in gene
expression explained only a moderate fraction of the variance in
SC–FC coupling (absolute value of correlation coefficients
between 0.133 and 0.308), suggesting that additional factors other
than neurotransmitter receptor gene expression have a role in the
changes in SC–FC coupling in PD. However, our study could
provide insights informing subsequent validation studies in PD
brains or animal models. Finally, our study examines cross-
sectional data, using visual dysfunction as a surrogate marker for
dementia risk. Although this provides useful insights, longitudinal
studies in PD patients who progress to dementia are likely

Fig. 4 Structural–functional connectivity decoupling in PD follows macroscale cortical gradients. Structural–functional connectivity (SC–FC) coupling is
significantly associated with the first principal structural (A) and functional gradients (B), which align with the anterior–posterior axis (visualised on the
top: lower gradient values represent more anterior regions, higher gradient values more posterior regions). The correlation between mean SC–FC coupling
and gradient value is plotted for each brain region in controls (grey), PD high visual performer (pink) and PD low visual performers (red) with ρ denoting
the Spearman correlation coefficient. This correlation was seen in all groups but was more pronounced in PD than control participants and even more so in
PD low visual performers (who are at higher risk of dementia). SC–FC coupling also reflected a brain region’s position along the second principal structural
(C) and functional gradients (D), which reflect a unimodal-to-transmodal axis (visualised on the top: lower gradient values represent more unimodal
regions, higher gradient values more transmodal regions). The correlation between mean SC–FC coupling and gradient value is plotted for each brain region
in controls (grey), PD high visual performer (pink) and PD low visual performers (red) with ρ denoting the Spearman correlation coefficient. Again this
relationship was more pronounced in PD low visual performers then PD high visual performers followed by control participants. The significance of regional
correlations was evaluated using nonparametric spatial permutation testing.
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to provide further insights into the temporal order of
structural–functional connectivity decoupling in PD.

Our findings show that structural–functional connectivity
coupling is severely disrupted in PD across the cortex, with even
more pronounced decoupling in temporal lobe structures in low
visual performers (who are at higher risk of dementia). We show
that structural–functional connectivity decoupling in PD follows
the same macroscopic organisational principles that guide SC–FC
coupling in healthy individuals but with accelerated decoupling.
Finally, we clarify the neuromodulatory correlates of SC–FC

decoupling in PD. Altogether, our findings propose a framework
to explain SC–FC decoupling in PD and offer insights to possible
therapeutic targets.

Methods
Participants. We included 88 patients with PD and 30 unaffected controls,
recruited to our London centre. All patients with PD fulfilled the Queen Square
Brain Bank Criteria78. All participants with diffusion-weighted imaging and rsfMRI
scans passing predefined quality control criteria (see “Methods: Data acquisition &
Quality assurance” section) were included. The study was approved by the local
ethics committee and participants provided written informed consent.

Fig. 5 Correlation between regional cortical expression of neurotransmitter receptor genes and structural–functional connectivity decoupling in PD.
Spearman correlations between regional cortical expression of adrenergic, cholinergic (muscarinic and nicotinic), and dopaminergic receptors and
difference in structural–functional connectivity coupling seen between PD and controls (left) and PD low visual performers vs PD high visual performers
(right). Full gene names in Supplementary Table 2. Results colour coded according to receptors: red: adrenergic, green: cholinergic, purple: dopaminergic,
blue: serotoninergic receptors. Bars with stronger (rather than fainter) colours indicate statistically significant relationships (FDR-corrected p > 0.05).

Table 3 Neurotransmitter receptor genes correlating with the change in structural–functional connectivity coupling in PD.

Genes correlated with structural–functional connectivity decoupling in PD compared to controls

Gene symbol Ligand Correlation coefficient q value

CHRNA4 Acetylcholine 0.210 <0.001
DRD2 Dopamine −0.165 0.006
HTR1E Serotonin 0.140 0.027
HTR2A Serotonin −0.239 <0.001
HTR2C Serotonin −0.251 <0.001
HTR4 Serotonin −0.234 <0.001

Genes correlated with structural–functional connectivity decoupling in PD low visual performers compared to PD high visual performers

Gene symbol Ligand Correlation coefficient q value

ADRA2A Norepinephrine −0.133 0.041
CHRNA2 Acetylcholine 0.211 <0.001
CHRNA3 Acetylcholine −0.194 0.001
CHRNA4 Acetylcholine 0.180 0.002
HTR1E Serotonin 0.237 <0.001
HTR5A Serotonin 0.308 <0.001

Note that correlation coefficients of absolute values between 0.1 and 0.4 represent moderate correlation in our dataset. In all cases, gene expression levels were significant in spatial permutation testing
(p-spin < 0.001).
CHRNA Nicotinic Cholinergic Receptor (Alpha), DRD Dopamine Receptor D, HTR 5-Hydroxytryptamine Receptor, ADRA Alpha-1A adrenergic receptor.
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Participants with PD were classified according to their performance in two
computer-based higher-order visual tasks. The Cats and Dogs task measures
tolerance to visual skew, with images of cats and dogs distorted by varying skew
along the X axis and threshold of visual skew determined using psychophysical
testing (two-alternative forced-choice, 90 repetitions) (as described previously4,7,43

and see example stimulus in Supplemental Fig. 1). The biological motion task
measures sensitivity to the perception of a moving person from moving dots at the
position of the major joints. Increasing the number of moving dots makes the task
more difficult, and the number of additional dots tolerated is determined
psychophysically, as previously described44 and see Supplemental Fig. 1 for
example stimulus. These visual tasks were chosen as they provide robust measures
of higher-order visual function and have been shown by our group to be associated
with a higher risk of PD dementia and worsening cognition over time4,7,44.

To capture patients with consistently poor performance in these high-level
visual tasks, we classified patients as poor visual performers if they performed
worse than the group median in both tasks (n= 33 low visual performers). All
other patients with PD were classified as high visual performers (n= 58) as in the
previous work4,79,80. Details on task performance in the two experimental tasks are
seen in Supplementary Fig. 2. Thirty unaffected age-matched controls were
recruited from spouses and a volunteer database; controls were matched to the PD
group as a whole.

The Mini-Mental State Examination (MMSE)81 and Montreal Cognitive
Assessment (MoCA)82 were used as measures of general cognition. Additionally,
two tests per cognitive domain were performed83: Digit span84 and Stroop colour85

for attention, Stroop interference85 and Category fluency86 for executive function,
Word recognition task87 and Logical memory84 for memory, Graded naming
task88 and Letter fluency for language, and Visual object and space perception
battery89, and Hooper visual organisation test90 for visuospatial function. Visual
acuity was assessed using LogMAR91, colour vision using Farnsworth D1592, and
contrast sensitivity using Pelli–Robson93. The Hospital Anxiety and Depression
Scale (HADS) was used to assess mood94. PD participants underwent assessments
of motor function using MDS-UPDRS95, sleep using the REM Sleep Behaviour
Disorder Questionnaire96 and smell using Sniffin’ Sticks97. Levodopa dose
equivalence scores (LEDD) were calculated for PD participants98.

Data acquisition and quality assurance. All MRI data were acquired on a 3T
Siemens Magnetom Prisma scanner (Siemens) with a 64-channel head coil.
Diffusion-weighted imaging (DWI) was acquired with the following parameters: b0
in both AP and PA directions, b= 50 s/mm2/17 directions, b= 300 s/mm2/8
directions, b= 1000 s/mm2/64 directions, b= 2000 s/mm2/64 directions, 2 × 2 × 2
mm isotropic voxels, TE= 3260 ms, TR= 58 ms, 72 slices, 2 mm thickness,
acceleration factor = 2. DWI acquisition time was ~10 min. Resting-state func-
tional MRI (rsfMRI) was acquired with the following parameters: gradient-echo
EPI, TR= 70 ms, TE= 30 ms, flip angle= 90°, FOV= 192 × 192, voxel size= 3 ×
3 × 2.5 mm, 105 volumes, 7-min session. During rsfMRI, participants were
instructed to lie quietly with their eyes closed and avoid falling asleep; this was
confirmed by monitoring and post-scan debriefing. A 3D MPRAGE (magnetisation
prepared rapid acquisition gradient-echo) image (voxel size= 1 × 1 × 1mm, TE=
3.34 ms, TR= 2530 ms, flip angle= 7°) was also obtained. Imaging for all parti-
cipants was performed at the same time of day, with PD participants receiving their
normal medications.

Both modalities underwent rigorous quality assurance. Prior to diffusion
processing, all volumes of raw datasets were visually inspected and each volume
evaluated for the presence of artefact; only scans with <15 volumes containing
artefacts99 were included. As a result, 3 PD and 1 control participants were
excluded from the original patient cohort.

Quality of rsfMRI data was assessed using the MRI Quality Control tool100. As
rsfMRI can be particularly susceptible to motion effects we adopted stringent
exclusion criteria75. Specifically, participants were excluded if any of the following
was met: (1) mean framewise displacement (FD) > 0.3 mm, (2) any FD > 5 mm, or
(3) outliers >30% of the whole sample. This led to 12 participants being excluded
(11 PD, of whom 5 low visual performers, and 1 control), resulting in 88 patients
included in the dataset presented here.

Parcellation. An overview of the study methodology is seen in Fig. 1. 400 cortical
regions of interest (ROIs) were generated by segmenting each participant’s T1-
weighted image using the Schaefer parcellation42. We replicated SC–FC coupling
analyses using the Glasser parcellation101. Parcellations over 200 nodes increase
reliability in gradient construction, particularly those derived from functional
connectivity102. We used the same parcellation to construct functional and
structural connectivity matrices for each participant (Fig. 1A).

Structural connectome construction. Pre-processing of DWI images was per-
formed in MRtrix3.0103. Diffusion-weighted images underwent denoising104,
removal of Gibbs artefacts105, eddy-current and motion correction106, and bias
field correction107. Diffusion tensor metrics were calculated and constrained
spherical deconvolution performed108. The raw T1-weighted images were regis-
tered to the diffusion-weighted image using NiftyReg109 and five-tissue anatomical
segmentation performed using the 5ttgen script in MRtrix.

Subsequently, we performed anatomically constrained tractography with 10
million streamlines110 using the iFOD2 tractography algorithm111 and dynamic
seeding with streamlines truncated at the grey-white matter interface. We applied
the spherical deconvolution informed filtering of tractograms (SIFT2) algorithm74

to reduce biases. The resulting set of streamlines was used to construct the
structural brain network. Connections were weighted by streamline count and a
cross-sectional area multiplier74 and combined to a 400 × 400 undirected, weighted
matrix (Fig. 1B). As recommended by the authors of SIFT2, we did not apply a
threshold to structural connectivity matrices74.

Functional connectome construction. rsfMRI data underwent standard pre-
processing using fMRIPrep 1.5.0112. The first 4 volumes were discarded to allow for
steady-state equilibrium. Functional data was slice-time corrected using 3dTshift
from AFNI113 and motion-corrected using mcflirt114. Distortion correction was
performed using a TOPUP implementation115. This was followed by co-
registration to the corresponding T1-weighted image using boundary-based
registration with six degrees of freedom116. Motion correcting transformations,
field distortion correcting warp, BOLD-to-T1w transformation and T1w-to-
template (MNI) warp were concatenated and applied in a single step using
antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.

Physiological noise regressors were extracted applying CompCor117. Sources of
spurious variance were removed through linear regression (six motion parameters,
mean signal from white matter and cerebrospinal fluid), followed by calculation of
bivariate correlations and application of Fisher transform. Given the
contentiousness of global signal regression118 and potential to distort group
differences119, we did not regress global signal.

Functional connectivity between ROIs was quantified as the Pearson correlation
coefficient between mean regional BOLD time series. To minimise the effect of
spurious connections whilst avoiding arbitrary thresholds, we used structural
connectivity to inform functional connectome construction. Specifically, we
discarded functional connections between ROIs that were solely based on time
series correlation in the absence of anatomical connection. For each participant, a
400 × 400 weighted adjacency matrix was constructed representing the functional
connectome (Fig. 1B).

Structural–functional connectivity coupling analysis. We extracted regional
connectivity profiles for each participant’s structural and functional connectivity
matrix, as vectors of connectivity strength from a single node to all other nodes in
the network. SC–FC coupling for each node was then measured as the Spearman
rank correlation between the non-zero elements of the regional structural and
functional connectivity profiles10,120,121 (Fig. 1C).

Gradient analysis. We derived cortical gradients separately from structural and
functional connectivity matrices, using diffusion map embedding. This identifies
spatial axes of variation in connectivity across different areas, whereby cortical
vertices that are strongly interconnected are closer together and vertices with little
or no inter-connectivity are farther apart45,46. We used normalised angle as a
metric of similarity (values between 0 and 1, with 1 denoting identical angles, and 0
opposing angles). The normalised angle between two nodes i and j (A(i, j)) is
calculated as shown in equation 1 below:

A i; jð Þ ¼ 1�
cos�1 cos sim xi; xj

� �� �

π
ð1Þ

where cos sim is the cosine similarity function. First, we generated a group-level
gradient component template from the average structural and functional con-
nectivity matrices of all participants. We performed Procrustes alignment to align
the gradient components of each individual to the group template122. Gradient
components defined in connectivity space were mapped back onto the cortical
surface (Fig. 1D). For each derived gradient, we calculated the variance explained
by dividing the gradient’s eigenvalue with the sum of the eigenvalues for all gra-
dients102. Gradient analyses were performed using BrainSpace102.

To assess the correspondence of the first structural and functional gradients
with the A–P axis, we calculated the correlation between A–P axis coordinates for
each brain region42 and its corresponding gradient coefficient. To ensure that the
second structural and functional gradients represented a unimodal–transmodal
gradient we assigned functional communities to levels of hierarchy (level 1: sensory
and sensorimotor networks, level 2: dorsal attention and salience networks, level 3:
frontoparietal and limbic networks, level 4: default mode network (DMN))45,47,49.
We then calculated the Spearman correlation coefficient between a node’s level of
hierarchy and gradient coefficient.

Neurotransmitter receptor gene expression. Expression profiles for genes of
noradrenergic, cholinergic (nicotinic and muscarinic), dopaminergic and ser-
otoninergic receptors were obtained using data from the Allen Human Brain Atlas
(AHBA)57. We used the recently described rigorous method of pre-processing by
Arnatkevicĭūtė et al.123 to extract gene expression data from AHBA and map them
to the 400 cortical regions of our parcellation, using abagen124. Each tissue sample
was assigned to an anatomical structure of the 400 cortical regions, using the
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AHBA MRI data for each donor. Data were pooled between homologous cortical
regions to ensure adequate coverage of both the left (data from six donors) and
right hemisphere (data from two donors). Distances between samples were eval-
uated on the cortical surface with a 2 mm distance threshold. Probe to gene
annotations were updated in Re-Annotator125. Only probes where expression
measures were above a background threshold in more than 50% of samples were
selected. A representative probe for a gene was selected based on highest intensity.
Gene expression data were normalised across the cortex using scaled, outlier-robust
sigmoid normalisation. 15,745 genes (of 20,737 initially included in the Allen atlas
gene expression data) survived these pre-processing and quality assurance steps.
Expression profiles for 31 pre-selected genes (Supplementary Table 2) encoding
receptors for norepinephrine, acetylcholine, dopamine and serotonin were then
extracted for each of the 400 cortical regions of our parcellation.

Statistics and reproducibility. Demographics, clinical and imaging characteristics
were compared between PD high visual performers, low visual performers and
controls using ANOVA for normally distributed and Kruskal–Wallis for non-
normally distributed variables (Shapiro–Wilk test for normality), with post-hoc
testing using t-tests and Mann–Whitney respectively. Statistical significance
defined as p < 0.05.

For group comparisons between SC–FC coupling and gradient component
scores we used general linear model, with age and gender as covariates and
comparisons of interest: (1) PD vs controls and (2) PD low visual performers vs PD
high visual performers. We controlled for multiple comparisons using the False
Discovery Rate (Benjamini–Hochberg method, q < 0.05) across 400 nodes.

The significance of correspondence between SC–FC coupling and gradient
coefficients was estimated using a spatial permutation test, which generates
randomly rotated brain maps whilst preserving spatial covariance50. We performed
1000 random spatial permutations126 and calculated Spearman correlation
coefficient between extracted regional SC–FC values and gradient coefficient to
build a null distribution. The permutation-based p-value (pspin) was calculated as
the proportion of times that the null correlation coefficients were greater than the
empirical coefficients50,126.

Spearman correlations were performed between regional differences in SC–FC
coupling between (1) PD vs controls and (2) PD low vs high visual performers.
This was expressed as the vector of the difference in SC–FC coupling between
groups (PD vs controls and PD low visual performers vs PD high visual performers
for each of the 400 cortical nodes), visualised in Fig. 2B, and the regional expression
level of each of the chosen 31 neurotransmitter receptor genes at each of the 400
cortical nodes. Results were FDR-corrected for multiple comparisons, q < 0.05,
across 31 genes. Spatial permutation testing, as described above (1000 spatial
permutations of the SC–FC regional differences for both PD vs controls and PD
low vs PD high visual performers) were performed to ensure that the correlation
between gene expression levels and SC–FC coupling was higher than expected by
chance and had not arisen spuriously due to spatial autocorrelation127. Analyses
were performed in Python 3 (Jupyter Lab v1.2.6).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Imaging and clinical data used in this study will be shared upon reasonable request to the
corresponding author. All data and statistics generated from this study are presented in
the manuscript and Supplementary Data 1–5.

Code availability
All methods used open source software, and all links to the relevant software are included
in Supplementary Methods (URLs). Code used in the analyses described in this paper is
available here: https://github.com/AngelikaZa/SCFC.
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127. Fulcher, B. D., Arnatkevicĭūtė, A. & Fornito, A. Overcoming bias in gene-set
enrichment analyses of brain-wide transcriptomic data. Preprint at bioRxiv
https://doi.org/10.1101/2020.04.24.058958 (2020).

Acknowledgements
A.Z. is supported by an Alzheimer’s Research UK Clinical Research Fellowship (2018B-
001). P.M.C. is supported by the National Institute for Health Research. G.R. is sup-
ported by the Wellcome Trust. R.S.W. is supported by a Wellcome Clinical Research
Career Development Fellowship (201567/Z/16/Z). We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the Quadro P6000 GPU used for this
research. We acknowledge the use of the UCL Myriad High Performance Computing
Facility (Myriad@UCL), and associated support services, in the completion of this work.
This research was also supported by the National Institute for Health Research Uni-
versity College London Hospitals Biomedical Research Centre.

Author contributions
A.Z.: conceptualisation, data curation, methodology, software, investigation, formal
analysis, writing—original draft, writing—review & editing, visualisation. P.M.C.: con-
ceptualisation, methodology, resources, writing—review and editing. L.A.-L.: project
administration, data curation, writing—review and editing. A.J.L.: conceptualisation,
methodology, writing—review & editing. G.R.: conceptualisation, methodology, writing
—review and editing. R.S.W.: conceptualisation, methodology, funding acquisition,
project administration, supervision, writing—review and editing.

Competing interests
R.S.W. reports speaker fees from GE. The remaining authors declare no competing
interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-
020-01622-9.

Correspondence and requests for materials should be addressed to A.Z.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01622-9 ARTICLE

COMMUNICATIONS BIOLOGY |            (2021) 4:86 | https://doi.org/10.1038/s42003-020-01622-9 | www.nature.com/commsbio 13

https://doi.org/10.5281/zenodo.3726257
https://doi.org/10.5281/zenodo.3726257
https://doi.org/10.1101/2020.04.24.058958
https://doi.org/10.1038/s42003-020-01622-9
https://doi.org/10.1038/s42003-020-01622-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Organisational and neuromodulatory underpinnings of structural-functional connectivity decoupling in patients with Parkinson’s disease
	Results
	Widespread structural–nobreakfunctional connectivity decoupling occurs in PD
	Defining structural and functional gradients of macroscale cortical organisation in health
	Structure–nobreakfunction decoupling occurs across gradients of macroscale organisation in health and is accelerated in PD
	Relationship between structural–nobreakfunctional connectivity decoupling in PD and neurotransmitter receptor gene expression

	Discussion
	Methods
	Participants
	Data acquisition and quality assurance
	Parcellation
	Structural connectome construction
	Functional connectome construction
	Structural–nobreakfunctional connectivity coupling analysis
	Gradient analysis
	Neurotransmitter receptor gene expression
	Statistics and reproducibility

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




