Composite Liner **Solutions**

We bring innovation and experience that translates into customized designs focused on the achievement of operational objectives.

As a leading mill liner solutions provider, we specialize in delivering innovative products tailored to suit AG/SAG, Ball, and Rod Mills. Our goal is to optimize mill performance, enhance throughput, develop sustainable options, improve availability, and prioritize safety.

> Our solutions achieve maximum performance and operational efficiency, reducing the cost per tonne processed for our customers.

Composite liners use materials such as rubber, steel, and cast inserts; they offer different advantages against a variety of wear mechanisms such as corrosion, abrasion, and impact. Through multiple simulations, our engineering team can determine the most suitable profile and material to achieve mill optimization and throughput.

Linings® **Polywear R60A**

Rubber liner wear resistant and structural steel.

Its application is for ball mills and SAG

Linings[®] Polywear SL

Rubber lining with rolled steel and structural steel inserts.

It is used in Shell liners for SAG and Ball

Feed and discharge lids.

Linings® **Polywear SCL**

This liner uses wear resistant rubber, structural steel with high chrome inserts and rolled steel.

It is the ideal solution when you are looking to increase life span and process more mineral.

Composites offer the opportunity to save weight which can:

- Reduce power draw
- Increase charge in the mill
- Strategically move weight around the mill through design
- Increase size and reduce parts in the mill
- Can extend campaign life
- Can reduce ball requirements to achieve grind
- Match with steel to optimize wearlife and maintenance shuts

Benefits

It is differentiated by its geometry, materials and experience which translates into:						
Energy savings	- 3%	-	- 7%			
Tonnage Increase	+ 5%	-	+ 10%			
Life Expectancy	+ 30%	-	+ 50%			
Reduction of Stoppage	- 25%	-	- 50%			
P80 Reduction (ball mills only)	- 5%	-	- 10%			

^{*}Customised designs that contribute to lower costs per tonne processed

Raw Materials

Rubber Compound: NR/BR or NR

Properties	Specification	Test method	
Density	Kg/l	1.05-1.15	ISO 2781
Hardness	Shore A	60-70	ISO 48
Tensile Strength	MPa	min 17	ISO 37
Elongationat Break	%	min 450	ISO 37
Tear Resistance	kN/m	min 50	ISO 34 C
Dry Abrasion	mm3	max 40	ISO 4649

Steel: ASTM- A36

Properties	Grade B						
Chemical Composition	С	Mn	Р	S	Si		
	0.25	0.8 - 1.2 max	0.040 max	0.050 max	0.40 max		

Properties	F	R	А	Farmulant
Maahaniaal	Kg/mm ²	Kg/mm ²	%	Equivalent
Mechanical	24 min	41 min	18 min	DIN 17100 St 37-2

Metallic Insert: ASTM A532 White Cast Iron IID

Properties	Designation					
Trope rties		С	Mn	Si	Ni	Cr
	20% Cr	2.0-3.3	2 max	1.0 -2.2		18 -23
Chemical composition		Мо	Cu	Р	S	
		3.0 max	1.2 max	0.1 max	0.060 max	
Hardness		Brinell 660 ± 40 Test Method E10 (Brinell)				
Weld repair	Not permitted					
Heat treatment requirements	Hardened and stress relieved					
Micro structure	Carbides, martensite, bainite, austenite: and in exceptional cases minor amounts of graphite or pearlite					

Metallic Insert: 500 HBW Wear Resistant Steel

Properties	С	Mn	Si	Ni	Cr
	Max 0.3%	Max 1.6%	Max 0.7%	Max 1.5%	
Chemical Composition	Мо	В	Р	S	Max 1.4%
	Max 0.6%	Max 0.004%	Max 0.025%	Max 0.01%	
Hardness		Brinell	500 ± 40	Yest Method ISO 6506-1	

^{**}The values and results vary according to the operating conditions of each plant. However, the values presented are an average of the improvements achieved by our customers