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Abstract 

Liner design and its material selection are of critical value to the performance of the autogenous grinding mill 
and its associated circuit. This study utilised advanced liner design methodology to develop a full AG mill liner 
package with focus on the shell and discharge end to generate and discharge the product stream. Balance 
between the AG milling and pebble crushing was also modelled with advanced numerical modelling tools to 
reduce the overall circuit specific energy. Strategic selection of liner material for grates was used to mitigate risk 
of major design revisions and provide performance validation in service before revising to align with reline and 
increased overall reliability needs. A suite of digital tools was developed and utilised to track, report and 
construct a machine learning model for long-term production forecasting purpose. Results yielded over 9.5% 
increase of AG mill throughput and 2.5% reduction of the overall circuit specific energy. The machine learning 
model constructed from the historical campaign data also showed high accuracy in predicting upcoming circuit 
performance. The outcome of this study has significantly increased the production performance and reliability 
of the AG milling circuit; as well as, long-term forecasting capability. 
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Introduction 

Bradken’s partner site was a major copper ore operation located in North America. The mill explored in this study 
was a 32-ft x 13-ft AG mill driven by a fixed speed motor at 76% critical speed. The mill operated bi-directionally 
with traditional bi-directional radial pulp lifters and top-hat high-low shell liners. The lining system were high-
chrome alloy with a total of 450 liners per set and a total mass calculated at 312,404 kgs. The mill utilised a 7-
axis 2500kg Russell reline machine. The mill was inspected regularly with planned stoppage and inspection at 42 
day intervals. The mill operated at an average throughput of 814tph across a typical liner campaign. 

In 2019, site explored an expansion project that would increase site production by 20ktpd. While several options 
were considered, including the conversion of mills to SAG operation, it was ultimate decided to increasing pebble 
crusher capacity. To maximise this available capacity, the upstream AG mills were required to increase 
production. 

This article outlines the design approach and optimisation completed to accomplish sites target objective. This 
includes advanced liner design initiatives supported by numerical modeling and the digital tools used to 
successfully forecast and guarantee those results. 

Method 

This project was executed following a solution focused collaborative approach where all major stakeholders were 
commissioned to provide equitable contribution to the discussion. A team was organised to include the primary 
contributors from each party to achieve the target outcome of increasing the partner sites AG mill discharge 
production. 

• Site: Management, metallurgists, operations. 

• Corporate Owner: Operational improvement, corporate metallurgist. 

• Bradken: Sales, regional design engineering, principle process engineer. 

The optimisation of components followed an iterative revisionist approach. Concepts were generated through 
collaborative discussion across the assembled team leveraging sites experience and supported by Bradken’s 
global experience and simulation capabilities. Designs were examined through numerical modelling for 
quantitative comparative justification. Parts were then manufactured and installed for continuous monitoring 
and validation in service. Practical results were compiled post-process and analysed coupled with further 
numerical modelling to validate and revise design features to improve performance. The revised designs were 
then implemented with a performance guarantee. The production data was used to generate an ensemble model 
performance predictor tool used to track and forecast the AG mills service results. 

 

Figure 1: Simplification of Iterative Approach 
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Discussion  

CONCEPT GENERATION AND JUSTIFICATION USING NUMERICAL MODELLING TOOLS 

Each region of the mill was examined independently for opportunities to optimise and in consideration of the 
overall target objective of increasing production. While production increase was the target outcome, revisions 
to maximise handler capacity and to reduce the number of liner components were also pursued to improve the 
total cost of ownership. The driving liner design initiative to suit the target objective of increase mill production 
was to convert the mill to uni-directional operation. This would allow for the implementation of Bradken’s Vortex 
discharge system proven in the industry to facilitate more efficient discharge. 

Discharge System Optimisation 

Early simulation work on the existing radial design showed potentially ineffective chamber evacuation and 
opportunity for backflow reclamation. These results suggested that regardless of an increase in chamber intake 
through a grate optimisation, the discharge system would not evacuate the chambers effective enough to 
achieve peak performance potential. The proposed Vortex discharge system would facilitate earlier discharge of 
pulp chambers reducing the opportunity for backflow as proven in practice across Bradken supplied sites globally. 

An identified limitation of the Vortex system was its challenges with maximising available open area. The vortex 
curvature of the lifters would consume potential slot area reducing the available area to maximise grate intake. 
To overcome this, a unique half-row double wide Vortex discharge system was explored. This removed 
alternating lifters on the grates and pulp lifters creating a significant increase in chamber volume and available 
slot surface area. 

The open area and grate design were a critical path to maximise available product stream after grinding. The 
total open area and discharge system determined the overall discharge throughput and backflow inefficiencies 
into the pulp chambers and mill. A comparative analysis was completed utilising a DEM-SPH coupled numerical 
framework to examine the discharge performance of the three concepts [Figure 2]. 

 

Figure 2: Optimised radial design, Vortex design, half-row double wide Vortex design DEM-SPH Simulations 

The optimised radial concept was designed to include the maximum possible open area achievable with a radial 
arrangement as a benchmark. 

A measurement plane was used to review the discharge flow rate results exiting the simulated AG mill. This 
allowed a quantitative comparative analysis of the throughput predictions obtained through the DEM-SPH 
numerical model [Figure 3]. 
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Figure 3: Mass in Pulp Chamber per Rotation [Radial (top), Vortex, Half Row Vortex (bottom)] 

The results showed the optimised radial design had significant chamber intake for its geometry, but could not 
effectively discharge its entire contents, backflowing approximately 11% into the chambers and 9% into the mill. 
The traditional Vortex efficiently discharged its entire chambers’ contents, but left potential opportunity for 
further discharge if chamber intake could be increased. The half-row Vortex succeeded in maximised chamber 
intake and also discharging efficiently with a minimal 2% backflow into the chambers. 

Effective slot placement was examined through DEM simulation and review. Slot placement was measured 
against the charge shape and size to ensure they were effectively placed to accept particles into the chamber 
[Figure 4]. Slots were also evaluated against whether they returned particles into the mill during the discharge 
cycle. This allowed slot placement to be balanced to maximise intake and minimise spill back. 

 

Figure 4: DEM Model Visual Overlay to Examine Slot Charge Capture 

While maximising open area, it was imperative to manage both transfer size and throughput. Collaborating with 
site, the first proposed grate design, REV A, included an increase in overall open area, but a reduced slot size. 
The desired outcome was to control the product size of the potential increased discharge stream to prevent 
excess recirculating load. The previous design had a consistent slot size of 3.75in and a total open area of 534in2 
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per grate. The REV A design had a top slot size of 3.5in and a small slot size of 2.0in with a total open area of 
671.5in2 per grate.  

Risk mitigation became a focus of discussion once the half-row double wide Vortex design was confirmed as the 
preferred grate. The risks included casting a high-chrome liner with drastic cross-sectional changes across large 
complex geometry. To mitigate risk, it was agreed with the customer to pursue the first set of Vortex grates in 
chrome-moly as similar size and complex geometry components had been supplied in this material across the 
industry. The chrome-moly would have a lower Brinell-hardness than high-chrome typically deployed in SAG 
operations due to the presence of steel grinding media. Along with the lower Brinell hardness, there was also an 
expectation of a reduction in wear life compared to the previously supplied high-chrome grates. The chrome-
moly liners would be used to validate the designs performance before being revised to meet the wear life. 

Bradken undertook a research and development project in parallel to explore casting these liners in high-chrome. 
An internal study was conducting by Bradken’s manufacturing team to simulate the stress, flow, solidification 
and heat treatment of the castings before pursuing. Once the casting process was verified, trial castings were 
poured and reviewed with 100% MPI testing. Two trial castings were then supplied to the customer for 
installation and monitoring in service before scaling to full supply. 

Shell Liner Optimisation 

A collaborative examination into shell design opportunities was undertaken with the partner site. The initial 
design proposal targeted opening mill available volume while minimising the deviation from the previously 
supplied liner design. A combined double wide shell liner was proposed to reduce total mill components and 
capitalise on available handler capacity. Several factors were considered in the initial proposal including leading 
face angle and lifter height both of which affect grinding dynamics and wear life performance. A lead face angle 
was revised from 15° to 5° to promote a high rate of impact grinding [Figure 5]. 

 

 
 

Figure 5: Original Profile Design (left) and Initial Proposed Design (right) 

INITIAL IMPLEMENTATION AND MONITORING FOR CONTINUED IMPROVEMENT 

After installing the first set of liners, Bradken conducted regular inspections of the mill as part of a continuous 
wear monitoring program. Scans were taken at each inspection and processed through Bradken’s Vision Wear 
Reporting (VWR) system. The continuous monitoring results were reviewed to validate the installed design in 
service and identify opportunities for continued development. 

The first installed package did not achieve the target mill production, but provided the data required to further 
optimise the system. Despite the significant increase in total open area, the system did not achieve the desired 
effect of increasing pulp chamber intake. The reduction in grate top sized slots had an adverse effect on the total 
mill discharge rate, not just the particle distribution.  
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POST-PROCESSING NUMERICAL MODELLING ANALYSIS AND REVISION 

The site data collected through the initial implementation phase was used in a variety of ways to improve liner 
design to achieve the required performance. It was also used to build the framework necessary to ensure a 
performance guarantee. 

Discharge System Optimisation 

To better normalise variables, it was agreed to revise the grate design to match the slot size and open area of 
the previous set. This facilitated a more impartial evaluation of the half row pulp chamber system. Bradken also 
utilised a DEM-SPH coupled numerical framework to examine the transient performance of various open area 
designs [Table 1]. The results showed the half-row double wide Vortex grate with a top sized slot of 3.75in and 
total open area of 534in2 outperformed the other revisions with an average discharge rate of 909tph [Figure 6]. 

Table 1: DEM-SPH Modelled Open Area Configurations 

Parameter GL2 Rev A Rev B Machined Rev C 

Slot Size [in2] 3.75 2.0/3.5 2.0/3.5 3.75 

Open Area per Grate [in2] 534 671.5 655.5 534 

Number of Parts 18 18 18 18 

Total Open Area [in2] 9,619 12, 087 11, 805 9,619 

 

 

Figure 6: DEM-SPH Results for Various Open Area Configurations 

Shell Optimisation 

Worn shell profiles were reconstructed from the scan data for DEM modelling and were simulated to evaluate 
total collision energy results. A probability density function of the collisions results was derived and measured 
against the recorded mill performance. A distinctive behaviour trend was identified in the total collision energy 
transitioning from impact to attrition grinding along with liner wear. The data was cross-referenced against 



 

6  |  SAG CONFERENCE 2023 VANCOUVER  |  SEPTEMBER 24–28, 2023 

recorded mill performance. A corresponding trend was identified between peak mill production and wear profile 
that suggested optimal grinding occurred during periods of high attrition grinding and less impact [Figure 7]. 
Utilising the developed collision energy probability approach a revised shell liner design was proposed. 

 

Figure 7: DEM Collision Energy Results Cross-Referenced with Recorded Performance During Service 

FINAL REVISION AND RESULTS 

Through the preliminary design, initial installation, continued performance monitoring, and post-processing 
analysis a final revised design was generated with enough data to support the provision of a performance 
guarantee [Figure 8].  

 

  

Figure 8: General Assembly of Final Revisions 
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The final design included: 

• Half-row double wide Vortex discharge system 

• Revised Vortex grates with 3.75in slots and 534in2 open area. 

• Two trial high-chrome Vortex grates for validation. 

• Revised uni-directional shell liners with 15° leading face angle to promote prolonged attrition grinding. 

PERFORMANCE GUARANTEE AND FORECAST MODEL 

Through Bradken’s continued optimisation process, enough data was gathered to provide the framework for a 
guaranteed performance improvement. The agreement required site to share the following metrics bi-weekly 
on a per minute basis for performance tracking: 

• Fresh feed – tph 

• Recycling feed – tph 

• Water feed – tph 

• Power draw – kW 

• Mill bearing pressure – kPa 

• f80 – mm 

• f50 – mm 

As well as the following geo-metallurgical data collected on a daily basis: 

• Rock quality designation (RQD) – % 

• Bond work index (BWi) – kwh/t 

• Ore density – t/m3 

In addition to monitoring these parameters for the performance guarantee, Bradken devised a machine learning 
based mill throughput prediction model to verify results and forecast future performance. 

Performance Guarantee Summary 

The initial study of the time series trend of data suggested that the water feed and recycle feed exhibited similar 
moving trends with the throughput results. The ore properties showed some correlation to throughput results. 
The mill bearing pressure showed a strong correlation to power draw. The statistics of the datasets are shown in 
Table 2. 
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Table 2: Statistics of Collected AG Mill Dataset and from DEM Modelling 

Variable 
Statistics 

Min Max Mean Standard 

Bearing Pressure – kPa 482.19 690.36 646.30 33.48 

F80 – mm 66.88 123.12 101.89 14.44 

Water Feed – t/h 228.78 1629.24 1172.16 196.03 

Recycle Rate – t/h 76.83 936.38 498.31 109.08 

Throughput – t/h 175.02 1074.44 819.38 132.16 

RQD – % 18.75 58.21 34.92 9.73 

BWi – kWh/t 12.39 15.66 14.25 0.51 

Rock Density – t/m3 2.57 2.72 2.61 0.11 

Total Normal (Impact) Collisional Energy - kJ 12.36 207.03 162.12 10.35 

Total Tangential (Abrasion) Collisional Energy - kJ 174.68 529.25 371.89 21.17 

Total Open Area – m2 8.03 11.16 9.44 1.13 

The average throughput was defined as the measured feed rate trimmed to remove the non-operational portion. 
The results exceeded the performance guarantee with an average performance of 891.4tph. 

Mill Throughput Model Development 

The decision tree-based ensemble method was selected for model development as it was highly suited for mill 
throughput prediction. It offered the most model flexibility, low over-fitting and high computation efficiency; as 
well as, feature importance ranking capability. 

Ensemble learning integrates multiple learning algorithm to obtain improved predictive results than using any of 
the single algorithm alone (T. G. Dietterich, 2002). Bagging, boosting and stacking are the three main categories 
of ensemble learning methods, and the boosting method is mostly commonly used. The boosting method 
continuously iterates and constructs evaluators for predictions, so each evaluator is inter-correlated, and the 
prediction result is determined by weighting and summing the results. The representative model of the boosting 
includes Adaboost (A. Shahraki, 2020) and gradient boosting tree (C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, 
2021). The extreme gradient boosting (XGBoost) algorithm (T. Chen et al., 2015) is an improved method 
developed based on the gradient boosting method. 

Predictive performance of XGBoost is based on a prediction score generated on each leaf node, and it is treated 
as the regression value of all samples on this leaf. Such prediction score is named as leaf weight, which is 
expressed as 𝑓𝑘(𝑥𝑖). Therefore, the overall regression result of the ensemble model is the sum of predicted 
scores on all trees, and prediction result of the model on i-th sample is, 

 �̂�𝑖
(𝑘)

= ∑ 𝑓𝑘
𝐾
𝑘 (𝑥𝑖)  (1) 

where 𝑓𝑘  represents the k-th decision tree, and 𝑥𝑖  represents the feature vector corresponding to sample i. 
Hence, the objective function of XGBoost is then, 

 𝑂𝑏𝑗 = ∑ 𝑙𝑚
𝑖=1 (𝑦𝑖 , �̂�𝑖) + ∑ 𝛺𝐾

𝑘=1 (𝑓𝑘) (2) 
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where, m represents the total amount of data imported into the k-th tree. 

The objective function above is simplified by iteration and Taylor expansion, and the sample i in the objective 
function is reduced to each leaf j for solution, and the objective function on the t-th tree is finally obtained as: 

 𝑂𝑏𝑗(𝑡) = −
1

2
∑

𝐺𝑗
2

𝐻𝑗+𝜆

𝑇
𝑗=1 + 𝛾𝑇 (3) 

where 

• the number of leaf nodes contained in the t-th tree is T,  

• j is the leaf node index, 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
, and 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

; 𝑔𝑖 and ℎ𝑖 are the first derivative and the second 

derivative of the 𝑦�̂�
𝑡−1 obtained on the loss function 𝑙 (𝑦𝑖

𝑡 , 𝑦�̂�
𝑡−1), respectively. 

 Gain =
1

2
[

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾    (4) 

where, L and R represent the left and the right side of the binary trees, respectively. 

XGBoost algorithm features high accuracy and flexibility, lower degree of overfitting, and is easier to compensate 
missing value and parallel computation. Nevertheless, XGBoost algorithm also performs repetitive indexing of all 
data for calculation of the information gain; and hence, this method generally requires larger memory, especially 
when processing high dimension or large amount of data. Therefore, the efficiency and scalability challenges of 
the XGBoost algorithm are prominent. 

Data Curation 

The mutual information method was initially utilized to investigate the level of correlation between each variable 
and the predicting metric. Compared with the F-test method, the mutual information method can find any 
relationship between features and predictors, including linear and nonlinear correlations (H. Casini, M. Huerta, 
R. C. Myers, and A. Yale, 2015). Error! Reference source not found. shows the estimated values of mutual 
information between each characteristic variable and the throughput. It was indicated that all characteristic 
variables are correlated to the throughput, with RQD exhibited largest correlation, and F80 exhibited least 
correlation.  

Table 3: Mutual Information Estimated Value Between Each Characteristic Variable and the Throughput 

Parameter Mutual Information Parameter Mutual Information 

Water Feed 0.454 BWi 0.447 

Recycle Feed 0.158 Rock Density 0.430 

Bearing Pressure 0.189 RQD 0.469 

F80 0.106 Total Normal Collisional Energy 0.254 

Total Open Area 0.413 Total Tangential Collisional Energy 0.426 
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Model Training 

The entire dataset was segmented into two groups, training, and validation. To improve the model training, 85% 
of the entire dataset was configured as training, and 15% was used for validation. 

Cross-validation is a commonly used method for machine learning modelling and parameter verification. The K-
fold cross-validation method was adopted in this study (T.-T. Wong and P.-Y. Yeh, 2019). Essentially, the original 
data was segmented into K groups, and a test set was constructed for each subset. The remaining K-1 subsets 
were then used as training sets. By this means, a total of K models and K model prediction scores are obtained. 
K-fold cross-validation can effectively avoid over-fitting and under-fitting. In this study, K was selected as 10 to 
obtain 10 sets of training models and evaluation scores. Here we use R2, and root mean square error (RMSE) to 
measure the effect of the learning model. 

 𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑚

𝑖=0

∑ (𝑦𝑖−�̄�)2𝑚
𝑖=0

= 1 −
𝑅𝑆𝑆

∑ (𝑦𝑖−�̄�)2𝑚
𝑖=0

 (5) 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑡 − �̂�𝑡

2)𝑁
𝑡=1  (6) 

  𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑡 − �̂�𝑡

2)𝑁
𝑡=1  (7) 

where,  

• 𝑦𝑖 is the true label,  

• �̂�𝑖 is the predicted result,  

• �̅� is the mean,  

• and 𝑁 is the number of samples. 

XGBoost is an ensemble algorithm based on the improvement of the gradient boosting tree, which is comprised 
of ensemble algorithm itself, the weak estimator, and other associated calculation processes. Similar to other 
decision trees and tree integration methods, XGBoost model features multiple hyperparameters, including the 
number of ensemble weak evaluators, the maximum depth of each tree in the weak evaluator, and the 
regularization parameters λ and γ. 

In order to facilitate the selection of the optimal hyperparameter combination, R2 and RMSE were used as 
evaluation indicators to optimize the hyperparameters using a combination of grid searching and cross-validation. 
Error! Reference source not found. shows selected XGBoost hyperparameters that need to be optimized and 
their corresponding grid search range. Readers are directed to the Appendix for detailed parameter definitions. 

Table 4: Prediction Model Hyperparameters and Grid Search Range 

XGBoost Hyperparameter 
Grid Search, Range 

(Min, Max, Step) 

N_estimators 100, 1000, 20 

subsample 0, 1, 20 

max_depth 1, 20, 20 
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eta 0.01, 1, 50 

gamma 0, 50, 50 

lambda 0, 50, 20 

alpha 0, 50, 20 

colsample_by tree 0, 1, 10 

colsample_by level 0, 1, 10 

colsample_by node 0, 1, 10 

Utilizing model hyperparameters shown in Table 4 for cross-validation, predictive performance of XGBoost 
model on test datasets was obtained. As shown in Table 5, XGBoost model already offers relatively high levels of 
predictive accuracy using the default hyperparameters, further improvement is to be obtained after the model 
optimization process discussed below. 

Table 5: Initial Predictive Performance Results for the XGBoost Model 

Variable 
Model Performance 

R2 RMSE 

R2 Max 0.8139 69.37 

RMSEmin 0.7981 65.01 

Hyperparameter Optimisation 

In order to further improve the model accuracy, reduce overfitting and enhance model generalization, it is 
essential to optimize the hyperparameter settings. This is performed by alternating the hyperparameter 
combinations as listed in Table 4. Resulting R2 scores or RMSE scores from current and new hyperparameter 
settings are compared to determine if any improvements have been achieved. Figure 9 shows that both R2 score 
and RMSE score converged with increasing number of estimators using hyperparameters in Table 4. It was 
indicated that the R2 score converged quicker than the RMSE score with a smaller number of estimators. 
Therefore, the following hyperparameter optimization process evaluation was based on the RMSE score below. 

 

Figure 9: Cross-Validation Learning Curves of the Current Hyperparameter Setting Based on R2 Score and 
RMSE Score 
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The principle of the hyperparameters optimization was set as: 

• RMSE score difference between the training set and the test set should be reduced with the new 
hyperparameter setting, 

• The RMSE score of the test set with the new hyperparameter setting should be decreased. 

By applying the above method and looping through the hyperparameter settings, the optimal hyperparameter 
combinations for both XGBoost was obtained. As shown in Figure 10 for the cross-validation curve of the XGBoost 
model, overfitting level has been greatly reduced compared with the original hyperparameter settings. Final 
RMSE score for the test set of optimized XGBoost model was observed to be around 67. 

 

Figure 10: Comparison Between the Original and Optimised Cross-Validation Curves for the XGBoost Model 

Ensemble Model Predictive Performance 

Once the XGBoost model completed training with hyperparameters selection using the initial 85% of the datasets, 
the model was tested against the validation dataset. Predictive results of the trained XGBoost model with the 
input parameters were obtained and compared with the validation dataset, and results are shown in Figure 11. 
It was observed that the XGBoost model predictions closely matched the moving trend of the validation dataset. 
However, there was a sudden reduction in the throughput observed, higher deviations between the predictive 
results and validation dataset were observed. 

The overall predictive performance of the trained XGBoost model on the validation dataset is shown in Error! 
Reference source not found.. Compared with the classic geo-metallurgical theory-based predictions (S. Morrell, 
2004), the method employed in this study showed improvements in both the qualitative trend and quantitative 
accuracy (B. Burger, K. McCaffery, I. McGaffin, A. Jankovic, W. Valery, and D. La Rosa, 2006).  
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Figure 11: Comparison Between XGBoost Model Predictions and the Validation Dataset 

Pearson Correlation on Predictive Performance 

Pearson’s correlation analysis (J. Benesty, J. Chen, Y. Huang, and I. Cohen, 2009) was additionally performed on 
the predictive performance to evaluate its the statistical significance. The Pearson correlation coefficient 𝑟 is 
defined as: 

 𝑟 =
∑ (𝑦𝑡−�̄�)(�̂�𝑡−�̄̂�)𝑁

𝑡=1

√∑ (𝑦𝑡−�̄�)2𝑁
𝑡=1 √∑ (�̂�𝑡−�̄̂�)2𝑁

𝑡=1

 (8) 

The probability density function of the Pearson correlation coefficient 𝑟 is defined as: 

 𝑓(𝑟) =
(1−𝑟2)

𝑁
2

−2

𝐵(
1

2
,
𝑁

2
−1)

 (9) 

where,  

• N is the sample quantity, 

• �̄̂� is the average prediction result 

• B is the Beta function. 

Results of the Pearson correlation analysis of the prediction performance are shown in Figure 12. The Pearson 
correlation coefficients between the predicted and validation dataset for the trained model is over 0.92. 
Additionally, the significant level is lower than the 5% threshold. Such result indicated that XGBoost trained 
model exhibited high reliability and generalization capability.  
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Figure 12: Pearson’ Correlation for Developed XGBoost Model Predictions 

Feature Importance Analysis 

Based on aforementioned comments, each studied mill operating parameter induces varied impacts on the mill’s 
throughput performance. XGBoost method offers the capability to quantify the feature importance for selected 
parameter. There are three methods for modelling the feature importance for XGBoost models, namely, weight, 
gain and cover. Weight is the total number of times that each feature appears in the model prediction or is used 
as a branch node; gain calculates the average information gain after a specific feature is used for the branch; 
cover represents the average number of all samples processed in each branch for a specific feature. In this study, 
the gain metric was selected to model the feature importance for studied parameters. 

The feature importance for each studied parameter was estimated by the gain metric and results are shown in 
Figure 13. Feed water was observed to exhibit highest gain percentage, followed by Total Tangential Collisional 
Energy, Total Open Area, Recycle Feed, Bearing Pressure, Total Normal Collisional Energy, F80, BWi, Ore Density, 
F50 and RQD. This result suggested that Water Feed showed most dominant impact on the mill’s throughput 
performance. This observation differs from the conventional grind curve approach which assigns less importance 
to the feed water. This may be due to the fact that the product stream generated by the grinding dynamics 
requires sufficient water feed to transport the product out of the mill. Liner wear (total collisional energy and 
open area) also exhibited relatively higher impact on the throughput compared with the ore properties.  

The above analysis has practical significance on mill operations. Appropriate level of the feed water is required 
to ensure that product discharge is achieved efficiently at maximum throughput. Additionally, optimal liner 
profile is required to maintain the total collisional energy at high level for the ore of specific properties. 
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Figure 13: Feature Importance Ranking Results based On Feature Gain in Developed XGBoost Model 

Conclusions 

Through the installation of Bradken’s liner package, and a continued development and collaborative approach, 
the performance objectives of the partner site were achieved. The shell liners were optimised using DEM-based 
collision energy with results from various configurations of worn shell liner reviewed against monitored wear 
performance to identify peak performance periods during service life. The discharge capacity was achieved by 
implementing a half-row double wide Vortex discharge end design, including optimised slot placement as 
developed based on DEM-SPH numerical modelling framework.  

The total liner package exceeded the performance guarantee producing an average throughput of 891.4tph and 
improved achieved 9.5% more than the previous per-Bradken liner set; as well as, a reduction in mill specific 
energy of 2.5%. The two high-chrome grates achieved the target wear life of 210 days in service and milled 
3.76Mt validating the design for full supply. 

The throughput performance of the AG mill was successfully predicted using an ensemble learning method. The 
developed XGBoost machine learning model was successfully correlated to the validation dataset. The developed 
XGBoost model also showed high reliability and generalization capability. Feature importance in the XGBoost 
model was also studied and results suggested that the water feed and liner wear exhibited higher impact on the 
mill’s throughput performance, followed by ore properties. This developed methodology has a potential to 
improve production planning process involving AG mill in the mineral processing circuit. 

FURTHER STUDY 

As a point of further study, Bradken is exploring developing a recycle rate prediction model to forecast potential 
downstream impacts of increased throughput performance. 
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