WilkinsonEyre

Gresham St Paul's Sustainability Study - Carbon Footprint Profile

July 2020

INTRODUCTION

Gresham St Paul's is an excellent quality c. 20 year old building in the City of London that has been occupied throughout its life as office space. It has come to the end of its tenancy and therefore is undergoing an extensive refurbishment and extension project to return it to the market as a 'new' product, repositioned to achieve optimum long-term market returns.

This study compares, at a high level, the embodied and operational carbon footprint of Gresham St Paul's. It equates 'the project' refurbishment with a minimal option of keeping the existing building 'ticking over' and operational, and a knockdown and new build version of 'the project' i.e. delivering the same end product by starting from scratch.

This assessment is timely given the greater focus on embodied carbon internationally, and in the specific London development context, where c. 20 year old existing buildings are generally built to a logical structural grid, with 'current' methods of building, are regularly coming to the end of long (15-20 year) institutional lease/s and need re-thinking to extend their economic life.

This Carbon Footprint Profile has been undertaken by Stanhope & the extended Design & Construction Team on behalf of the client AFIAA. This process has seen a vast array of data introduced into an equation that calculates total carbon; embodied within the material, in the process of demolition & construction, and operation of the building. The outcomes of this analysis have been compared collectively, with cross-referencing between silos of information to accurately substantiate the eventual figures.

CONTRIBUTORS

AFIAA Client

Stanhope Development Manager

Mace Construction Contractor

Waterman Building Services & Structures

Cantilon Engineers Demolition Contractor

Alinea Quantity Surveyor

WilkinsonEyre Architect

WHOLE LIFE NET ZERO CARBON POLICY CONTEXT

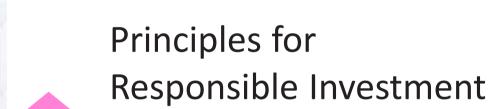
1.5° - 2.0° Limit
[to Global
Warming]

Legislation/Political

Climate Change Act 2008

CCC Net Zero May 2019

New London Plan 2019


Investment Risk Management

Three Global
Groupings of
major Financial
Institutions
responding to
Climate Change

Task Force on Climate-related Financial Disclosures

"The Task Force
Report's widespread
adoption will ensure
that the effects of
climate change become
routinely considered in
business and
investment decisions."

"...every real estate asset owner, and investor must now recognise they have a clear fiduciary duty to understand and actively manage ESG and climate-related risks as a routine component of their business thinking.."

Standards

Assessment Methodology

BS EN 15978

EU and UK Standard

Professional Statement
Whole Life Carbon Assessment

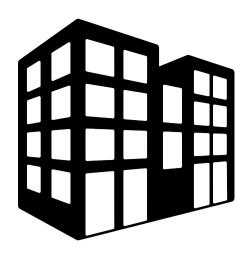
GLOBAL INITIATIVES GOVERNMENTAL & REGULATORY

SOCIETY & INDUSTRY

01300-WEA-XX-XX-PR-A-CARBON FOOTPRINT ANALYSIS

SIS Rev. 01

NT

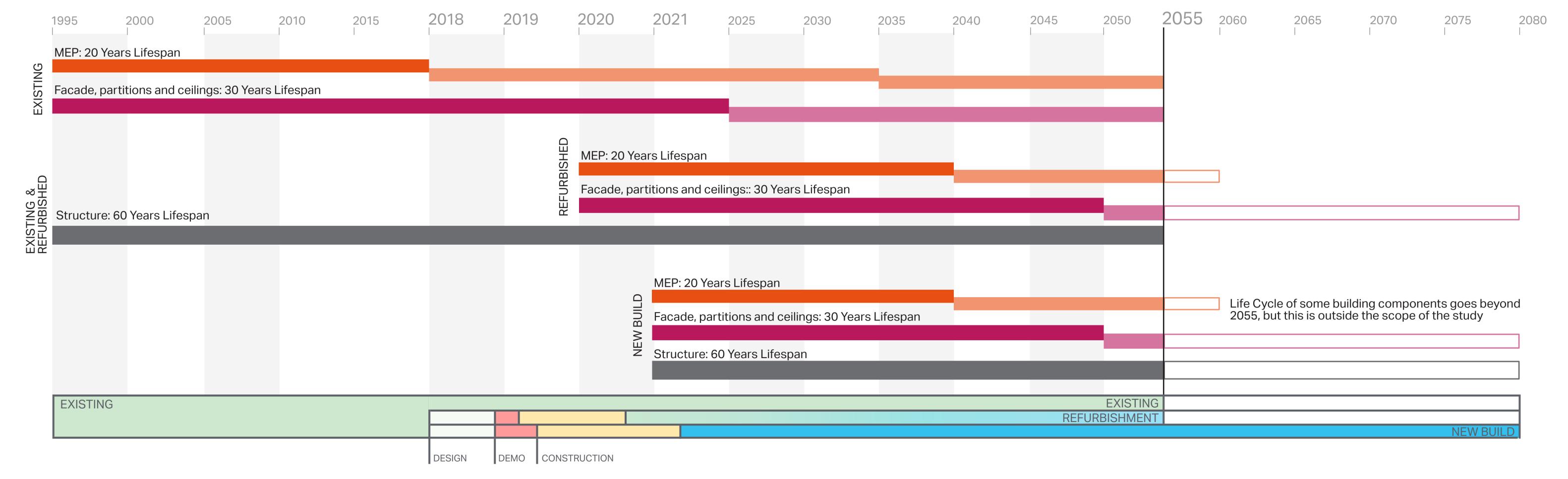

RATIONALE

- 1. Consider the environmental impact of Gresham St Paul's in the context of Climate Change & the ever present Climate Crisis.
- 2. Understand the embodied & operational carbon footprint of Gresham St Paul's.
- 3. Compare three plausible scenarios; Existing, Refurbishment (the Project) & New Build.
- 4. Review the key building components included in the Whole Life Cycle carbon study.

In line with minimum requirements set by best-practice guidance by RICS, these include:

- Sub-Structure, including piling, retaining walls, ground and basement slabs;
- Superstructure, including frame, floors, core, external facade
- In addition to RICS guidelines MEP, partitions, and ceilings included.
- 5. Understand the impact during phases of Construction, Operation and Demolition.

METRICS



Whole life emissions per unit of floor area (kgCO2e/m2)

Yearly emissions per building occupant (kgCO2e/person)

TIMELINES

CONTENTS

SCOPE AND ASSUMPTIONS

The scope of the assessment was set in alignment with industry-best guidance contained in the "Whole life carbon assessment for the built environment" published by RICS (2017). The minimum requirements for whole life carbon assessment are as follows:

LIFE STAGES

We considered the following Life Stages in the analysis - in line with RICS guidance (minimum requirements):

[A1–A3] Product stage

[A4-A5] Construction process stage

[B4] Replacement stage

[B6] Operational energy use

Additionally, we accounted for the CO2e emissions resulting from partial (Scenario B) or full Demolition (Scenario C) - which belong to the Stage [C1-C4] End of Life. These appear meaningful for the scope of the study.

BUILDING COMPONENTS

We considered the following Building Components in the analysis - in line with RICS guidance (minimum requirements):

- 1. Substructure
- 2. Superstructure, including:
- Frame, upper floors, roof, stairs and ramps.
- External walls and windows
- Internal walls and partitions (plus internal ceilings)

Additionally, we accounted for emission associated with building services/MEP equipment. These were estimated at high level, based on floor areas.

SCENARIO A: EXISTING

Description

The scope of works in this scenario is limited to cosmetic improvements to the common and office areas, as it is feasible to extend the life of the building because it has been well maintained. The mechanical and electrical systems however are coming to the end of their design life, and must be replaced in order to bring the building back to use.

Area:

NIA=14,595m² GIA=19,530m² GEA=20,235m²

SCENARIO B: REFURBISHMENT

Description

This scenario, offers a significant increase in the net lettable area of the building. The atria and corners at levels 5, 6 and 7 are infilled, levels 8, 9 are remodelled and an additional 10th floor is added to increase capacity. The building is positioned and sold in the market "as new" despite the primary structure and majority of the envelope being retained.

Area:

NIA=15,801m² GIA=22,450m² GEA=23,210m²

SCENARIO C: NEW BUILD

Description

This scenario demolishes the existing building and replaces it with a new build version of the refurbishment.

Area:

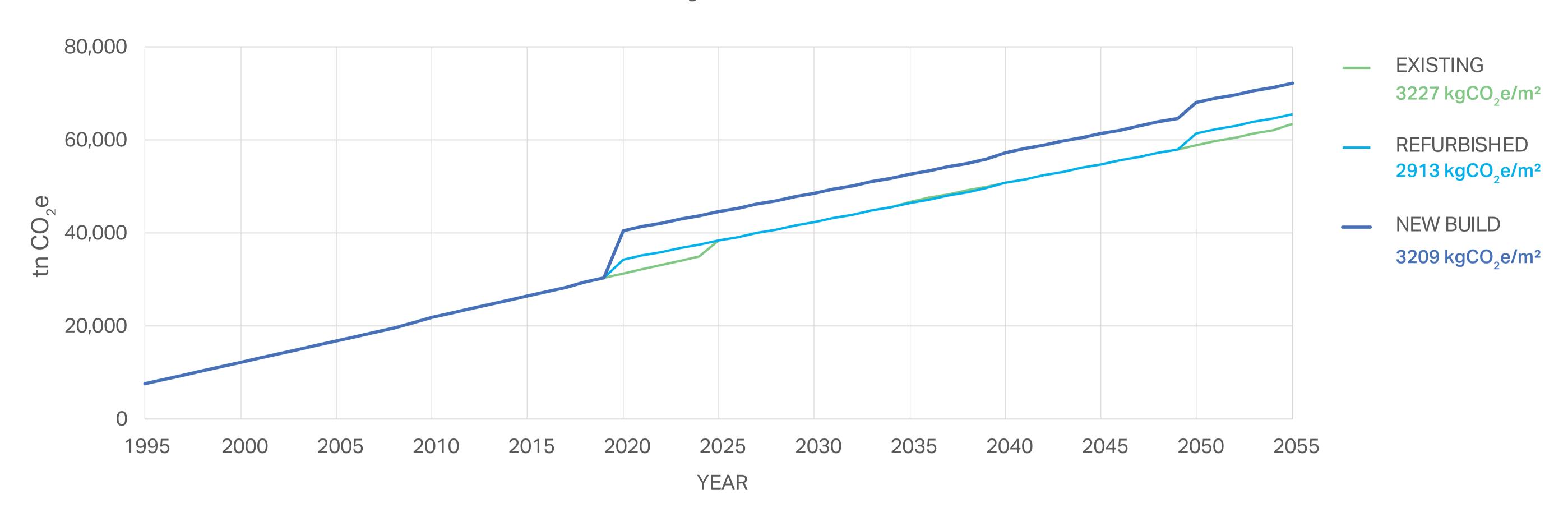
NIA=15,801m² GIA=22,450m² GEA=23,210m²

01300-WEA-XX-XX-PR-A-CARBON FOOTPRINT ANALYSIS

Rev. 01

NTS

CARBON FOOTPRINT ANALYSIS


					Scenario A: Existing		
MPONENT	A EXISTING (tn CO ₂ e)	B REFURB. (tn CO ₂ e)	C NEW BUILD (tn CO ₂ e)	LIFE CYCLE			
SUB-STRUCTURE	1815	-	+ 1815	60 years			
es, Pile Caps & Ground Beams, oncrete, Steel Reinforcement			+ Sub-Structure	А			
SUPERSTRUCTURE FRAME	2927	+ 1519	+ 4447	60 years			
Retained 1 to 9 - Demo Grd to 9th - Roof		+ New Structure 1-9					
Concrete, Steel Reinforcement, Steel Profiles			+ Structure B				
UPERSTRUCTURE FACADE	891	+ 87	+ 978	30 years	Substructure Steel	Concrete Frame	Stone Cladding
lazed Curtain Wall tone Cladding					Substructure	OOHOICE HAITIC	
SUPERSTRUCTURE INTERNAL	1430	+ 1687	+ 1765	30 years	Scenario B: Refurbished		
Ory-wall partitions Suspended Ceilings							
BUILDING SERVICES / MEP	329	+ 377	+ 706	20 years			
DEMOLITION & RE-CONSTRUCTION	-	+ 334	+ 546	-			
PERATIONAL ENERGY	934	806	806	yearly			
egulated + unregulated (yearly)				, control			
			Key Existing		Substructure Steel Scenario C: New Build		
			Existing		Scenario C. New Balla		
			Existing	Stone			
			Existing Existing				
			Existing	Lifts			
			New Sub New Cor				
			New Ste	eel			
			New Sto				
			New ME	P Services	Substructure Steel	Concrete Frame	Stone Cladding
			New Lift	ts			
2000 200	5 201	0 2018	3 2019	2020	2021 2025 2030 2035	2040 2045 2050	2055 2060 2065 207
990 2000 706							
995 2000 200							STING
995 2000 200						EXI: REFURBISH	STING MENT

STANHOPE Immace vaterman cantillon alinea WilkinsonEyre

CONCLUSION

Whole-Life Cycle Carbon Analysis

Whole Life Cycle Carbon Timeline

Graph Explanation

This graph charts the data representing the cumulative CO2e emissions resulting from the three scenarios (A - Existing, B -Refurbishment, C - New Build). This is shown over the 60 years reference period 1995-2055.

Both constant annual emissions due to energy usage from building and the spikes associated with replacement cycles (or demolition and reconstruction of certain components) are reported in the year of occurrence, in line with the expected lifespan set by RICS.

Conclusion

The graph illustrates that Scenario A (Existing) results in the lowest total emissions (tn CO2e) throughout a 60 year lifecycle.

The Refurbishment option (Scenario B) is associated a small spike due to the materials required to extend the structure to support the additional floor space and to refurbish the facade. The total carbon footprint over 60 years is ultimately very similar to that of Scenario A.

Scenario C (New Build) shows a dramatic spikes in emission associated with the complete demolition and re-construction. The total CO2e emissions over the 60-year period are compromised by this, however the long term operational efficiencies of the new building (including past 2055) would improve the environmental impact of this scenario.

Importantly, when emissions are considered per until of gross floor area (kgCO2e/m2) in line with the industry best-practice), Scenario B outperforms Scenario A and C over the lifecycle. This makes Refurbishment the best performing most carbon-efficient option.

All data and outcomes should be understood and considered inconjunction without equating the internal atmospheric conditions, cost or revenue implications of maintaining the building/s in its existing or proposed state.

01300-WEA-XX-XX-PR-A-CARBON FOOTPRINT ANALYSIS

Rev. 01

CONCLUSION

SCENARIO A

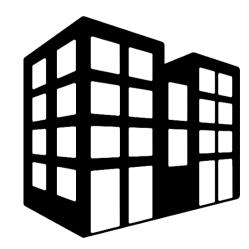
EXISTING

NIA: 14,595 GIA: 19,530 GEA: 20,235


Building occupancy: 1460

SCENARIO B REFURBISHMENT

NIA: 15,801 GIA: 22,450


GEA: 23,210 Building occupancy: 1970

SCENARIO C NEW BUILD

NIA: 15,801 GIA: 22,450 GEA: 23,210

Building occupancy: 1970

Total life-cycle emissions (1995-2055)

63,026 tnCO₂e

3227 kgCO₂e/m² GIA

Total life-cycle emissions (1995-2055)

65,391 tnCO₂e

2913 kgCO₂e/m² GIA

Total life-cycle emissions (1995-2055)

72,051 tnCO₂e

3209 kgCO₂e/m² GIA

Yearly emissions per occupant

719.5 kgCO₂e/person

Yearly emissions per occupant

553.2 kgCO₂e/person

Yearly emissions per occupant

609.6 kgCO₂e/person

NEXT STEPS

Response

1. High Level Review of the drawings and specifications

Deliverable: A written review of design choices, with an explanation of potential improvements and a presentation to the team.

2. Detailed analysis based on cost plan data plus drawings and specifications

Deliverable: Detailed Carbon 'Budget' including all cost plan elements providing an overall whole life carbon cost for the scheme (KgCO₂) plus an intensity figure (KgCO₂/m²). The scope would include a detailed list of reduction options, together with associated KgCO₂ figures. (NB: Operational energy data by MEP Engineer).

- 3. Item 2 can be augmented with carbon budget updates taken at key project stages, during construction, and post Practical Completion with a final whole life carbon assessment and lessons learned.
- 4. Whole Life Carbon comparison between Garrard House and Finsbury Circus
- 5. Whole Life Carbon Policy and Delivery Strategy for all Stanhope Projects

WilkinsonEyre

Wilkinson Eyre Architects
33 Bowling Green Lane
London, EC1R 0BJ

E: info@wilkinsoneyre.com T: +44 (0) 20 7608 7900 F: +44 (0) 20 7608 7901

www.wilkinsoneyre.com