
California’s Mediterranean climate provides a global biodiversity hotspot,

creating habitat for hundreds of native plants, animals, and humans.

Unfortunately, land conversion is projected to outpace habitat protection (Cox

and Underwood 2011). Rapidly encroaching urban development threatens these

complex landscapes. Unoccupied Aerial Vehicles (UAVs) can be used as a tool to

generate high accuracy geospatial data products that inform land management

and development planning. This research at River Ridge Ranch (RRR) in

Springville, California, assesses the accuracy of UAVs for fine-scale landscape

mapping in an at-risk biodiverse area, and explores the effectiveness of

georeferencing methods in UAV derived data. The research addressed the

following questions:

1. How accurate are elevations produced from UAV-derived digital terrain

models (DTMs)?

2. Are human perceived slope classes a good predictor for DTM-derived slope

type?

3. Is it possible to recreate slope classes using Global Positioning System (GPS)

elevation, DTM elevation, and DTM slope using principal component

analysis (PCA) scores and K-Means clustering?

This research provides an assessment of the current state of surveying

practices in UAV landscape mapping and explores how the use of new

technologies, such as Post-Processing Kinematic (PPK), can enable the phasing

out of more costly surveying methods to better direct the practices of land

managers.
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Multinomial Logistic Regression

Significant results from the multinomial regression are provided in Table 2.

Only the July DTM slope model proved to be a good predictor for medium – type

2 - UAV-derived slope (=.01). There were no variables with significant values

for the in-field slope type of 3 (high slope). The slope type of 4 (severe slope)

was dropped from analysis as a reference category.

The classification accuracy chart (Table 3) shows that the in-field slope type of

1 (low slope) had a highest classification accuracy of 91.7% classification across

models. For type 2 – medium slopes - the models correctly classified slope

points across models with an accuracy of 86.2%. Type 3 – high slopes were least

accurate with only 54.5 percent correctly predicted across models. However,

severe slope (type 4) models were 86.2% accurate.

Figure 1. Image showing the pasture and mountain backdrop of RRR taken by author.

Figure 2. Shows a map of RRR along with the positions of all 115 GPS points.

GPS points were collected to represent higher accuracy elevations. Elevation

accuracy was quantified by comparing these points using the Root Mean Square

Error (RMSE) and Mean Absolute Difference (MAD) (Equations 1a and 1b) as

well as conducting a multivariate statistical analysis (Fonstad et al. 2013;

Hugenholtz et al. 2013; James and Robson 2014; Ishiguro, Yamano, and Oguma

2016).

Equations 1a and 1b. Shows the RMSE and MAD equations.

▪ Multinomial logistic regression was performed using IBM’s SPSS statistics

package inputting field slope type as the dependent variable, all slope

categorical data as factors and all scalar continuous elevation values as

covariates.

▪ PCA and K-Means clustering were chosen as multivariate statistical methods

to recreate field slope classes.

▪ SPSS was used to conduct the PCA.

▪ Clustering was performed using k-means clustering limited to 4 classes using

the PAST 2.7 statistical package. The clusters were brought back to the

original analysis to generate variable and factor mean values to determine the

correlation of clusters to slope classes (=.01)

Table 2.  Shows the significant models and corresponding values.

Table 3. Shows the logistic regression classification matrix.

PCA and K-Means

The K-means clustering method was performed using the SPSS statistics

package to conduct a PCA followed by clustering using PAST statistics software.

Notable from the output are the high and low positive loadings for each

component and variable. Interesting in this matrix are the high positive values of

GPS and elevation models in Factor 1 with low values in Factors 2 and 3. Also

worth noting are the low negative values of the PPK and PPK GCP slope models

in Factor 3. The mean scores per component in the PCA were calculated for

enhanced interpretation (Figures 4 and 5). In addition to the descriptive statistics

outlined above, the variable means by cluster and slope type were calculated to

determine their connection, if any.

Figure 5. 

Shows the 

mean PCA 

scores by in-

field slope 

type.

Methodology

Various methodologies and techniques were employed to best answer the

research questions. A total of 115 GPS points were collected across multiple dates

and field excursions to River Ridge Ranch in Springville, California USA

(Figures 1 and 2) from May 2018 to February 2019. The ranch covers 722 acres

with topography ranging from low sloping pasture to severe sloping hillsides. At

each GPS ground truth location the surveyor recorded perceived slope steepness

using the following classes: low (type 1, 0-15%), medium (type 2, 15-30%), high

(type 3, 30-45%) and severe (type 4, 45+%). Imagery was collected using an

eBee Plus manufactured by senseFlyTM flown at 400 feet above ground level

using autonomous flight planning software and fitted with the S.O.D.A. true-

color camera. Identical flight paths were flown (June & July 2018 and February

2019). The February flights were processed using PPK tools that enhance

location accuracy without the need for ground control points (GCPs). These were

compared with flights collected both with (February 2019) and without (June and

July 2018) ground control points. The imagery was mosaicked using

Pix4DMapperTM, a professional structure-from-motion (SfM) software that

combines individual images into one orthomosaic (Turner, Lucieer, and Watson

2012). Additional computer analyses including sink fill, elevation and slope value

extraction, and map creation were conducted using ESRI’s ArcGIS 10.6.

Table 4. Shows the clusters and 

corresponding in-field slope classes.

Cluster Slope Type

Cluster 1 Medium Slope

Cluster 2 Low Slope

Cluster 3 Severe Slope

Cluster 4 High Slope

Given the supposed high positional accuracy of the PPK and PPK GCP

models, the associated RMSE/MAD calculations were surprisingly high. The

inclusion of GCPs increased the accuracy by 10cm. This is a meaningful finding

as the more accurate these models are in representing the real world, the more

likely they can be used confidently as an efficient method of data collection to

inform land management and planning. The multinomial logistic regression

generated statistically significant results, finding that the USGS model was a

good predictor of low to low slope classification, while the July DTM slope

model was a good predictor of medium to medium slope classification. It was

also possible to generally recreate the slope classes using K-means clustering

limited to 4 classes to match the slope class breakdown. The comparison shows

that clusters roughly matched mean values for field slope classes and component

mean loadings. It was unexpected that the July model had a significant variable

showing predictor capabilities in the field slope class given that the July model

did not have GCPs and, therefore, was less accurately georeferenced than the

PPK and PPK GCP models. The same can be said about the USGS model as its

high RMSE and MAD values would be expected to lead to less accurate slope

models. However, the USGS slope model had a good predictor capability of low-

low slope. There were no predictor capabilities in the more accurate PPK and

PPK GCP models where one would expect to see such results.

This research is part of a broader MA thesis project focused on analyzing

UAV terrain mapping in complex environments. These results are preliminary.

Based on the results thus far, it appears that additional research could benefit

from the use of real time kinematic pairing, a GPS correction technology

providing real-time correction of location data for UAVs at the centimeter level.

Also, incorporating additional GPS points to the ranch study area could be

expected to enable a more statistically viable test to be performed on the dataset

and could potentially improve results given the large size and vertical change of

the study area. Although acquiring additional GCPs would enhance the imagery,

pursuing this strategy would have high resource costs due to the challenges of

collecting data over such an expansive study area comprised of varying and often

inaccessible terrain. All limitations considered, this study resulted in the

successfully navigation of multiple challenges in analyzing the current state of

georeferencing methods and use of sUAV remote sensing as a tool in landscape

preservation and conservation.
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Results and Discussion

Elevation Accuracy

The June Digital Surface Model (DSM) (MAD=1.89m) and July DSM/DTM

(MAD = 1.87m and 1.56m respectively) with no georeferencing were more

accurate than expected. The PPK DSM was less accurate with values of 3.07m

and 2.14m while the PPK DTM generated more accurate elevations of 1.09m

and 1.01m (RMSE and MAD respectively). Interestingly, the PPK DSM GCP

method produced an RMSE of 3.14m and 2.09m for the MAD, while the DTM

produced lower values of 1.01m and 0.91m for the RMSE and MAD. The USGS

10m elevation model produced the highest RMSE and MAD values with an

RMSE of 32.14m and 31.76m for MAD (Table 1).

Focusing on the slope model values as an easily identifiable class definition,

a pattern emerges between the values with Cluster 1 to Medium Slope (2), Cluster

2 to Low Slope (1), Cluster 3 to Severe Slope (4), and Cluster 4 to High Slope (3)

(Table 4). This conclusion is also supported by the mean FAC scores by cluster.

Cluster 1 was shown to be connected to higher elevation values, including mid

and high. Cluster 2 was predicted to represent low elevation model values, as

well as low slope values, which was also supported by the variable means

conclusion. Cluster 3 was predicted to represent mid elevation values, as well as

high slope values, which partially supports the variable means conclusion.

Finally, Cluster 4 was predicted to represent high slope values, as well as low

slope values, which partially supports the variable means conclusion as well.

Additionally, there is some disparity in the variable means between the high and

severe slope class correlation. It appears that there is potential misclassification of

high points into the severe slope cluster and vice versa, severe points into the

high slope cluster.

Table 1. Elevation RMSE and MAD values calculated across all models.

June June July July PPK PPK PPK GCP PPK GCP USGS

DSM DTM DSM DTM DSM DTM DSM DTM DEM

RMSE 2.46 3.49 2.96 2.12 3.07 1.09 3.14 1.01 32.14

MAD 1.89 2.83 1.87 1.56 2.14 1.01 2.09 0.91 31.76

Figure 4. 

Shows the 

mean PCA 

scores by 

cluster.

1a.

1b.

Slope Type Sig.

1 July DTM 0.03         

1 PPK GCP DTM 0.09         

1 USGS Slope = 1 0.09         

2 July Slope = 2 0.00         

Predicted Percent

Observed 1 2 3 4 Correct

1 22 1 1 0 91.7%

2 2 25 2 0 86.2%

3 2 4 18 9 54.5%

4 0 0 4 25 86.2%

Overall Percent 22.6% 26.1% 21.7% 29.6% 78.3%
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