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ABSTRACT 

It is crucial that we learn from halophytes to cope with a saline environment. Currently, climate change increases the 

chance of drought and heat which spread the processes of salt transmission and accumulation within the top horizons 

of arid and semiarid soil. Elevated salinization in arid and semiarid regions necessitates the development of economic 

and environmentally friendly saline agriculture to be comparable with the world population increase. Halophytes have 

the capability to combat various abiotic factors which occur in their surroundings, following different mechanisms to 

stress adverse effects. Investigating halophytes can be useful as the processes by which halophytes thrive and sustain 

productivity in saline environments can help in understanding appropriate modulation and adaptation of crop plants. 
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INTRODUCTION 

Historically, the fall of civilizations has been attributed in part to their inability to sustain food production on 

salinized lands. While estimates vary, over the next 30 years, an additional 500 million acres of new croplands may be 

required to feed burgeoning populations[1] and food production must double.[2] It has been estimated by the United 

States Department of Agriculture that globally, more than 10 million hectares are lost every year to salinity due to 

excessive irrigation, poor farming practices, and unsustainable water management. The depletion of clean water 

resources is projected to be one of humanity’s worst problems.[3] 

 

The United Nations Environment Programme reports 412 million hectares of saline soil and 618 million hectares of 

sodic soil, totaling 1030 million[4] hectares of salt-affected soils in drylands in different continents that have become saline 

due to primary and secondary salinization. Saline soil is characterized by the presence of soluble salts in the soil, which 

limits plant growth by holding water more tightly in the soil. The plants thus cannot extract it, resulting in dried-out crops 

that show significant signs of not getting enough water.[5] 

 

Proper plant growth and development is reliant on the ability to respond to environmental stressors, such as drought, soil 

salinity, and nutrient deficiency. Halophytes are plants that can withstand saline environments, often found in 

mangroves, salt marshes, and seashores. Having various abiotic factors that allow them to combat severe conditions 

in their surroundings, salt tolerance in halophytes is not well understood, but current understanding assumes 

different species have a range of different adaptations.[6] 
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Investigating halophytes can help scientists find ways to regulate conventional crop growth by analyzing the 

processes that allow halophytes to thrive in saline water. There is also potential for genetic transformation, as genes 

that are specifically geared towards allowing halophytes to respond to salt concentrations may allow for transgenic 

crops that have an adaptation to high salt concentrations. Halophytes may also be used as bioremediators (Qadir M et 

al., 1996) due to their potential to leach salts from soil. 

 

1. Halophyte-Based Agriculture 

Halophytes are capable of tolerating a wide range of salinities, even beyond seawater concentration (Yensen, 2006). In 

the early 1960s, Hugo and Elisabeth Boyko demonstrated that it may be possible to cultivate crops with seawater 

(Byoko and Byoko, 1964). However, the majority of agricultural crops are highly salt-intolerant, with 2 dS m-1   

causing a 19% reduction in beans, 14% in peppers, 12% in corn, and 12% in potatoes. To produce sufficient quantities 

of food and economic yield, two research directions were proposed: the cross-breeding of salt-tolerant species[7] and 

the domestication of halophytes. As it seemed promising, many research efforts worldwide were dedicated to the first 

option, but it proved too difficult a task as salt-tolerance is a multigenetic trait.[7,8] To date, most scientific literature still 

focuses on basic research questions with regards to salt- tolerance mechanisms, as they are still not well understood. 

 

1.1 Halophytes as Potential Fodder Crops 

Over the course of 3 years, 78 plant species that could be irrigated with 100% seawater and an additional 22 that 

could be irrigated with 10% were identified.[9] Atriplex nummularia, while highly salt-tolerant, is lacking as a food 

source and cannot be used as fodder. However, many other species of saltbush may be used as a complimentary 

nutrient source if combined with energy supplements—such as barley—for small ruminants.[10] Salt accumulation 

results in reduced nutritional value, so if halophytes are to be used as fodder, they must be fed to animals in 

combination with more nutritious crops. By testing ash content, Distichlis spicata and A. nummularia were 

identified as a potential fodder crops.[9,11] An experiment involving feeding S. bigelovii straw or seed meal to 

lambs showed that it could be used as a feed substitute in arid coastal regions where fresh water for crop irrigation 

is limited.[12] For other species of Salicornia, 40% of fish meal was replaced in the conventional fish meal diet, with 

no adverse effect on fish growth and body composition.[13] 

 

1.2 Halophytes as Potential Food Crops 

Halophytes also have the potential to be sold as gourmet vegetables. For centuries, some species of halophytes—

including Crithmum maritimum, Portulaca oleracea, Salicornia spp. and Aster tripolium—have been gathered and 

consumed for centuries. These species are known for their ability to synthesize simple and complex sugars, amino 

acids, quaternary ammonium compounds, polyols and antioxidants.[14,15] Several halophytes—such as Salicornia 

spp. and Aster tripolium— are already being sold as sea vegetables and salad crops on European markets at 

comparatively high prices (Böer, 2006) and others—such as Salsola soda, Crambe maritima and Beta maritime—

have great potential to be released into the market as well. Crithmum maritimum, prized for its antiscorbutic 

properties, has been collected by sailors along the maritime cliffs for years.[16] Inula crithmoides is a species 

traditionally consumed in Lebanon, and less commonly in other Mediterranean countries such as Spain and 

Italy.[17,18,19] 

 

Atriplex hortensis (red orach) and Tetragonia tetragonioides (New Zealand spinach) have been suggested as 

spinach replacements. Since ancient times, the former has been cultivated for its edible and is still grown in kitchen 
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gardens as a pot herb.[20,21] It is also remarkably similar in chemical composition to spinach (Carlsson and Clark, 

1983). 

Currently, quinoa, with its high tolerance for salinity, drought, frost and wind, and it’s exceptional nutritional 

quality, has become an increasingly popular food. It will likely contribute to food security in the future as 

conditions become more saline.[22] 

However, the potential for halophytes to contribute to reducing food insecurity does not mean that existing farming 

practices do not need to be reevaluated. Aster tripolium, a halophyte being cultivated in projects based in the 

Netherlands, Belgium and Portugal, exhibited microelement deficiency when indirectly induced by a higher pH 

(Ventura et al., 2013). 

 

There is a projected 1-1.5% increase in yield for major crops such as wheat, rice, and maize (Wingeyer et al., 2015) 

which is not enough to keep up with the increasing food demand. It has been recommended that halophytes be bred 

to improve their agricultural traits so they can become more economically viable. An estimated 2500-3000 species 

occur naturally in salt marsh habitats, which provides a gene bank from which development of economically viable 

cash crops is possible. However, this requires further research into the mechanisms via which halophytes are salt-

tolerant. Currently, seed germination of salt marsh species is thought to be determined by temperature, and their 

success is attributed to their ability to cope with high stem densities and high salt concentrations during growth. 

 

2. Salt Tolerance in Halophytes 

Halophytes can be obligate or facultative: obligate halophytes require constant salt for maximum growth, while 

facultative halophytes can grow with or without saline conditions. Though halophytes make up 1% of the world’s 

flora, they are remarkably diverse in terms of habitat, response to abiotic stresses, and distribution among taxa of 

flowering plants.[8] Based on the classification of halophytes as plants that are able to complete their life cycle at 

200 mM NaCl (Flowers and Colmer, 2008), there are 350 species of halophytes distributed in 20 orders and 256 

families.[8] 

  

Currently, mechanisms are separated into two groups: salt-tolerance and salt-avoidance. Salt- avoidance is usually a 

result of low salt permeability in the roots (salt exclusion) or the excretion of some of the penetrating ions and 

retention of others (salt evasion).[23,24] Analysis of glycophytes has shown that they also have very similar 

mechanisms but they are less effective and slower to to function.[25] Several studies have shown that tolerant plants 

may also tolerate other stresses including heavy metals and xenobiotics, which is a sign of great potential in further 

phytoremediation research. 

 

2.1 Ion Sequestration 

Over the course of evolution, halophilic plants have adapted to extreme air and soil dryness, intense salinization, 

and summer and low winter temperatures.[26] This is mostly due to their ability to localize ions in metabolically 

inactive organs and cellular compartments to synthesize compatible osmolytes and to induce antioxidant systems, 

which also allows them to tolerate the presence of toxic ions.[26,27] In order to maintain continuous water absorption, 

many halophytes store toxic ions—namely, Na+    and Cl−—in the vacuole to avoid cytoplasmic toxicity (Munns 

and Tester, 2008) It has been well established that under saline conditions, halophytes accumulate compatible 

osmolytes, such as proline, glycine, and polyphenols. Toxic ions are absorbed via secondary active  transport,  and  

plasma  membrane  transport  systems  either  include  or  exclude  Na+     ions  into  the cytoplasm, where 

transport systems sequester Na+   into the vacuoles.[28] 
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It can be thus assumed that salt and metal-tolerant plants share common physiological traits that create tolerance 

toward a wide range of abiotic factors.[26,29] Studies on the halophyte Mesembryanthemum crystallinum suggest 

that responses to salt and copper environmental stresses overlap.[30] 

 

2.2 Synthesis of Osmoprotectants 

Osmolytes are non-toxic highly soluble organic compounds. (Slama et al., 2015) Tolerance is also linked to the 

ability to synthesize osmoprotectants in order to maintain a favorable water potential gradient and to protect 

cellular structures (Lefévre et al., 2009). Under salty conditions, polyamines may be involved in the protection of 

cellular structures from oxidative damage (Bouchereau et al., 1999, Bose et al., 2014), but their specific mechanism 

is poorly understood .[31] Ultimately, due to heavy metal stress also resulting in water stress (Poschenrieder et al., 

1989; Nedjimi and Daoud, 2009) and oxidative damages to cellular structures,[31,32,33] halophytes’ ability to 

synthesize osmoprotectants may result in their ability to cope with heavy metals. 

 

2.3 Salt Excretion and Succulence 

Many halophytes also have salt tolerance mechanisms in their leaves, with salt glands, salt bladders, trichomes or 

succulent tissues that remove excess deleterious toxic ions from photosynthetically active tissues and regulate plant 

tissue ion concentration.[25,27,31] 

In halophytes containing salt excretion organs—most commonly Poaceae, Tamaricaceae, Chenopodiaceae, and 

Frankenaciaceae—more than 50% of salt ions entering the leaves can be excreted (Glenn et al. 1999).[27] Research 

studies have also shown that these glands may be able to secrete other metal ions.[34,35,36] Studies focused on 

specific halophytic species and salt marsh species encourage the notion that halophytes being used as potential 

bioremediators will be a more promising approach in the future. Further research should focus on the identification 

of additional salt-responsive genes that will further our understanding of salt-tolerating mechanisms. 

 

Succulence is a trait that increases the water content of plant tissues. Caused by an increased size of mesophyll cells 

and smaller intercellular spaces, osmotically active solutes maintain cell turgor pressure and dilutes the impact of 

toxic ions (Flowers et al., 1977). Succulent leaves also contain an increased number of larger-sized mitochondria, 

which helps in fulfilling the energy demands of ion sequestration. Some succulents—such as Halosarcia 

pergranulata, Mesembryanthemum crystallinum, and Sesuvium portulacastrum— sequester Na+   in vacuoles 

(Lokhande et al., 2013).[37] Others—such as Atriplex sp., Limonium atifolium, Spartina sp., Sporobolus spicatus, 

and Porteresia coarctata—also possess salt hairs and salt glands. 

  

Since tolerance is a multigenetic trait, it is likely that many processes are working simultaneously to result in salt-

tolerance. Thus, halophytes are likely to be naturally better at surviving in not only saline environments, but other 

stressful environments, which would make them better options for phytoremediation than the current salt-sensitive 

crops chosen for phytoextraction—such as sunflowers, corn, pea, and mustard.[38] 

3. Halophytes as Bioremediators 

Current chemical treatment of soils is inadequate and expensive. Using halophilic species as bioremediators has 

been nominated as an effective way to improve soil quality and a promising approach to reduce salt contents in the 

saline soils (Akhter et al., 2003; Salt et al., 1998, Qadir et al., 1996). Phytoremediation relies on the biological and 

physical characteristics of plants to remove pollutants from the environment or render them harmless. Potential 

applications include the removal of heavy metals, radionuclides, petroleum hydrocarbons, chlorinated solvents, 
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pentachlorophenol (PCP), and Polycyclic Aromatic Hydrocarbons (PAHs) through accumulation (phytoextraction 

and rhizofiltration) or dissipation (phytovolatilization), degradation (rhizodegradation and phytodegradation), or 

immobilization (phytostabilization).[39] 

 

However, phytoremediation is not as simple as planting halophytes and leaving them to do their work. Plants must 

be carefully selected and monitored to ensure proper growth, and due to limited knowledge of remediation 

mechanisms, extensive research is required to identify the suitability of specific plant species. 

In Pakistan, Leptochloa fusca (kallar grass) has been demonstrated to have the potential to leach salts from the 

surface (0–20 cm) and lower depths (>100 cm) of soils, resulting in a decrease of soil salinity, sodicity, and pH. 

Cultivation resulted in not only high productivity (Mahmood et al., 1994),[40] but in the first 3 years, kallar grass 

was able to improve the chemical composition of soil. After 5 years of growth, was able to maintain the soil 

fertility, showing increased vegetation growth. This proves that growing salt-tolerant plants can avoid the depletion 

of saline barren lands (Hollington et al., 2001).[41] 

Over the course of a 4-month period, Suaeda maritima and Sesuvium portulacastrum are able to accumulate salts in 

their tissues, 504 and 474 kg of NaCl, respectively, from 1 hectare in Pakistan.[42] In Egypt, Juncus rigidus and 

Juncus acutus were used to similar effect,[43] and three salt accumulator halophytes—Tamarix aphylla, Atriplex 

nummularia, and Atriplex halimus—in Jordan Valley. 

It is notable that when selecting halophilic species for bioremediation, species with a greater rate of salt uptake, 

tolerance to more than one environmental threat, and a large biomass would be required. Despite the evidence 

provided, further research is needed to identify specific utilization techniques. 

 

DISCUSSION 

It must be noted that seawater-based agriculture is not a sustainable solution to the ongoing environmental crisis. 

While a potentially promising temporary solution due to the large amount of seawater available, seawater irrigation 

will only further contribute to saline soil. The adaptation of halophytes to become more economically and 

nutritionally viable is a more sustainable solution, as it does not have any immediate detrimental effects on the 

environment. More research is needed, as the understanding of halophilic adaptations is poorly understood. 

 

CONCLUSION 

Halophytes show significant promise in our continued adaptations to our increasingly saline environment. Not only 

is there a significant basis for halophyte based agriculture—with high potential for halophilic fodder and food 

crops—but there is also a considerable amount of potential for halophytes to be used as bioremediators. Further 

research is needed to identify the best species for bioremediation and nutritional supplementation, with suggestions 

that crops may be bred or genetically modified to increase salt tolerance or halophytes may be bred to further their 

economic viability. 
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