
®

NodeSource’s

Ultimate Guide

to npm

WHITEPAPER

About Nodesource

We empower organizations of all sizes to successfully adopt and integrate Node.js by providing
products and services that enable teams to build, manage, and analyze mission-critical
applications. To learn more about NodeSource, visit https://www.nodesource.com

About N|Solid

N|Solid is an augmented version of the Node.js runtime. Solve immediate issues and identify
problems you don't know exist, today and tomorrow. Know your Node with N|Solid SaaS or
On-Prem. Get all the metrics, security and insights regardless of your subscription plan.

Copyright Information

© 2022, NodeSource, Inc. or its affiliates. All rights reserved.

Know your Node — Download N|Solid today!

NodeSource’s Ultimate

Guide to npm

Knowing your tools is essential; if you can't use the tools at your disposal, you're going to end
up spending more time struggling and less time creating, building, and deploying. The Node.js
ecosystem has done a fantastic job in providing tools that help speed development workflows
and streamline the process of writing and shipping code.

One of the most essential tools in the Node.js developer ecosystem is the npm CLI — it's one tool
that enabled Node.js to become what it is today. It still comes bundled with the core Node.js
project and is an instrumental part of developer workflows.

Knowing this, understanding the npm CLI is critically important to any team working with
Node.js today — and is why we've written this NodeSource’s Ultimate Guide to npm.

This series will cover what you need to know to use the npm CLI as a Node.js developer. We'll
split it into three significant chapters (or sections) for better consumption, namely:�

� Chapter 1: The Basics: Getting started with npm�
� Chapter 2: The Basics of Package.jso�
� Chapter 3: Understanding dependencies inside your Package.json

 2022 NodeSource, Inc nodesource.com 1

The Basics:

Getting started with npm

CHAPTER 1:

The Basics: Getting started with npm

Up and running with the primary tool for the world's
largest module ecosystem

The Essential npm Commands

Today, `npm` is a cornerstone of modern web development, whether used exclusively with
Node.js as a package manager or as a build tool for the front end.

Understanding npm as a tool —particularly the core concepts— can be difficult for beginners.
We've written up this guide for getting a grasp on npm, especially for those who are entirely new
to Node.js, npm, and the surrounding ecosystem.

When using npm, you're most likely using the command-line tool for most of your interactions.
Here's a detailed rundown of the commands you'll encounter and need to use most frequently.

The command is a step-by-step tool to build out the scaffolding for your project. It
will prompt for input on a few aspects in the following order:�

� The project's name: Defaults to the containing directory name�
� The project's initial version: 1.0.0 by default.�
� The project's description: �
� The project's entry point: Meaning the main file is to be executed when run�
� The project's test command: To trigger testing with something like �
� The project's git repository: Where the source code can be found�
� The project's keywords: Tags related to the project.�
� The project's license: This defaults to . Most open-source Node.js projects are .

npm init

Standard

ISC MIT

USING TO INITIALIZE A PROJECT npm init

 2022 NodeSource, Inc nodesource.com 2

https://github.com/standard/standard
https://choosealicense.com/licenses/isc/
https://choosealicense.com/licenses/mit/

If you're content with the suggestion that the command provides next to the
prompt; you can simply hit <Return> or <Enter> keys to accept it and move on to the next
prompt.

Once you run through the steps above, a file will be generated and
placed in the current directory. If you run it inside a directory that's not exclusively for your
project, don't worry! It won't do anything other than create a file.

You can move it to a directory dedicated to your project or create an entirely new one in such
directory.

npm init

npm init package.json

package.json

If you want to get on to building your project and don't want to spend the (albeit brief) time
answering the prompts that come from , you can use the flag on the
command to automatically populate all options with the default values.

npm init --yes npm init

$ npm init # This will trigger the initialization

$ npm init --yes # This will trigger automatically populated

initialization.

 2022 NodeSource, Inc nodesource.com 3

USING TO INSTANTLY INITIALIZE A PROJECT npm init --yes

Note: You can configure what these default values are with the npm configuration
commands, which we'll cover in the section "Automating Just a Bit More." npm init

Installing modules from npm is one of the most basic things you should learn to do when getting
started with npm. As you dive deeper, you'll begin to learn some variations on installing
modules, but here's the very core of what you need to know to install a standalone module into
the current directory:

In the above command, you'd replace with the name of the module you want to
install. For example, if you're going to install Express (the most used and most well known
Node.js web framework), you could run the following command:

<module>

The above instruction will install the module into in the current
directory and add it as a dependency inside the file. Whenever you install a
module from npm, it will be installed into the folder.

In addition to triggering an install of a single module, you can install all modules listed as
 and in the in the current directory. To

do so, you'll simply need to run the command itself:

express /node_modules
package.json

node_modules

dependencies devDependencies package.json

Once you run this, npm will begin installing all of the current project's dependencies.

$ npm install <module>

$ npm install express

$ npm install

 2022 NodeSource, LLC nodesource.com 4

INSTALL MODULES WITH
npm install

INSTALL MODULES AND SAVE THEM TO YOUR AS A DEPENDENCY package.json

As an aside, one thing to note is an alias for that you may see in the wild when
working with modules from the ecosystem. The alias is , where I take the place of

.

This seemingly minor alias is a small gotcha for beginners to the Node.js and npm ecosystems.
There's no standardized, single way module creators and maintainers will instruct how to install
their module.

npm install
npm i

install

Usage:

As with , the command has a flag or two that you'll find helpful in your
workflow — it'll save you time and effort concerning your project's file.

Before npm 5, when you ran to install a module, it was only added to the
 directory. Thus, if you want to add it to the project's dependencies in the
, you must add the optional flag (or) to the command. Nowadays,

since this is the default behavior, no flag is needed (although it's kept for compatibility purposes);
however, if for some reason you want to go back to the old usage (i.e., install only to the

 folder but not add it to the section) the

flag is what you're looking for.

npm init npm install
package.json

npm install
node_modules
package.json --save -S

node_modules package.json dependencies
--no save

Usage:

$ npm install <module>

$ npm i <module>

Where <module> is the name of the
module you want to install

Where <module> is the name of the module
you want to install - using the i alias for installation

$ npm install <module> --save

$ npm install <module> --no-save

Where <module> is the name of
the module you want to install - Kept for compatibility

Where <module> is the name
of the module you want to install - To avoid adding it as a
dependency

 2022 NodeSource, LLC nodesource.com

 2022 NodeSource, LLC nodesource.com

INSTALL MODULES AND SAVE THEM TO YOUR AS A

DEVELOPER DEPENDENCY

 package.json

INSTALL MODULES GLOBALLY ON YOUR SYSTEM

There's a flag that is nearly an exact duplicate, in terms of functionality, of the old flag
when installing a module: (or). There are a few key differences between the two:
instead of installing and adding the module to n as an entry in , it
will save it as an entry in the .

The semantic difference here is that are used in production — whatever your
project would entail. On the other hand, are a collection of the
dependencies used during the development of your application: the modules that you need to
use to build it but don't need when it's running. This could include testing tools, a local server to
speed up your development, etc.

 --save
--save-dev -D

package.jso dependencies
devDependencies

dependencies
devDependencies

 Usage:

The final and most common flags for that you should know are those used to
install a module globally on your system.

Global modules can be beneficial. There are numerous tools, utilities, and more for development
and general usage that you can install and set available for all the projects inside your
environment.

To install a module from npm in such a way, you'll simply need to use the flag when
running the install command to have it installed globally rather than locally (restricted to the
current directory).

npm install

--global

$ npm install <module> --save-dev # Where <module> is the
name of the module you want to install

 2022 NodeSource, LLC nodesource.com

Note: One caveat with global modules is that npm will install them to a system directory, not a
local one. With this as the default, you'll typically need to authenticate as a privileged user on
your system to install global modules. As a best practice, you should change the default
installation location from a system directory to a user directory.

 Usage:

$ npm install <module> --global # Where <module> is the
name of the module you want to install globally

$ npm install <module> -g # Where <module> is the name of the
module you want to install globally, using the -g alias

The basics of

Package.json

CHAPTER 2:

 2022 NodeSource, LLC nodesource.com

THE PROPERTY name

Identifying Metadata Inside
package.json

This chapter will give you a kickstart introduction to effectively using `package.json` with
`Node.js` and `npm.`

The file is core to the Node.js ecosystem and is a fundamental part of
understanding and working with Node.js, npm, and even modern JavaScript. This file is used as a
manifest, storing information about applications, modules, packages, and more.

Because understanding it is essential to working with Node.js, it's a good idea to grasp the
commonly found and most crucial properties of a package.json file to use it effectively.

package.json

The property in a file is one of the fundamental components of the
 structure. At its core, the is a string that is exactly what you would expect:

the name of the module that the is describing.

Inside your package.json, the name property as a string would look something like this:

name package.json
package.json name

package.json

There are only a few material restrictions on the property:

• Maximum length of 214 URL-friendly characters

• No uppercase letters

• No leading periods (.) or underscores (_) (Except for)

However, some software ecosystems have developed standard naming conventions that enable
discoverability. A few examples of this kind of namespacing are and the

 tooling.

name

 scoped packages

babel-plugin- for Babel
webpack-loader

The Basics of Package.json

 "name": "metaverse"

https://docs.npmjs.com/cli/v7/using-npm/scope
http://npmsearch.com/?q=babel-plugin
http://npmsearch.com/?q=-loader

 2022 NodeSource, LLC nodesource.com

THE PROPERTY version

THE PROPERTY license

THE PROPERTY description

The property is a crucial part of a , as it denotes the current version of
the module that the file is describing.

While the version property isn't required to follow semver (semantic versioning) standards, which
is the model used by the vast majority of modules and projects in the Node.js ecosystem, it's what
you'll typically find in the property of a file.

Inside your , the property as a string using semver could look like this:

version package.json
package.json

version package.json

package.json version

The license property of a file is used to note the module that the
 file describes. While there are some complex ways to use the licensed property

of a file (to do things like dual-licensing or defining your own license), the most
typical usage is to use an identifier. Some examples that you may recognize are MIT,
ISC, and GPL-3.0.

Inside your , the property with an MIT license looks like this:

package.json
package.json

package.json

package.json licensed

SPDX License

The property of a file is a string that contains a human-readable
description of the module. Basically, it’s the module developer’s chance to quickly let users know
what exactly a module does. The property is frequently indexed by search tools
like npm search and the npm CLI search tool to help find relevant packages based on a search
query.

description package.json

description

 "version": "5.12.4"

 "license": "MIT"

https://semver.org/
https://spdx.org/licenses/

THE PROPERTY Keywords

Inside your , the property would look like this: package.json description

The property inside a file is, as you may have guessed, a collection
of keywords that describe a module. Keywords can help identify a package, related modules and
software, and concepts.

The property is always an array, with one or more strings as the array's values; each
one of these strings will, in turn, be one of the project's keywords.

Inside your , the array would look something like this:

keywords package.json

keywords

package.json keywords

 "description": "The Metaverse virtual reality. The final
outcome of all virtual worlds, augmented reality, and the
Internet."

 "keywords": [

	"metaverse",

 "virtual reality",

 "augmented reality",

 "snow crash"

]

 2022 NodeSource, LLC nodesource.com

 2022 NodeSource, LLC nodesource.com

THE PROPERTY main

THE PROPERTY repository

FUNCTIONAL Metadata Inside
package.json

The property of a is a direction to the entry point to the module that the
 is describing. In a Node.js application, when the module is called via a required

statement, the module's exports from the file named in the property will be returned to the
Node.js application.

Inside your , the property, with an entry point of , would look like
this:

main package.json
package.json

main

package.json main app.js

The property of a is an array that defines where the source code
for the module lives. Typically, this would be a public GitHub repo for open source projects, with
the repository array noting that the type of version control is git and the URL of the repo itself. One
thing to note about this is that it's not just a URL where the repo can be accessed from, but the full
URL the version control can be accessed from.

Inside your , the property would look like this:

repository package.json

package.json repository

 "main": "app.js"

 "repository":
"type"

 "url"

{

 : "git",

 : "https://github.com/bnb/metaverse.git"

}

 2022 NodeSource, LLC nodesource.com

THE PROPERTY scripts

The property of a file is simple conceptually but complex functionally,
to the point that it's used as a build tool by many.

At its simplest, the property contains a set of entries; the key for each entry is a
name, and the corresponding value is a user-defined command to be executed. Scripts are
frequently used to test, build, and streamline the needed commands to work with a module.

Inside your , the property with a build command to execute
(presumably to transpile your application using TypeScript) and a test command using Standard
would look like this:

scripts package.json

scripts script

package.json scripts tsc

To run scripts in the property of a , you'll need to use the default
 command. So, to run the above example's build, you'd need to run this:

scripts package.json npm
run

Usage:

That said, to run the test suite with Standard, you'd need to run this:

Usage:

Notice that npm does not require the keyword as part of the given command for
some tasks like the , , and by default.

run script
test start stop

 "scripts":
"build"

 "test"

{

 : "tsc",

 : "standard"

}

$ npm run build

$ npm test

https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/standard

 2022 NodeSource, LLC nodesource.com

THE PROPERTY dependecies

THE PROPERTY devDependencies

The property of a module's is defined by the other modules
that this module uses. Each entry in the property includes the name and version
of other packages required to run this package.

dependencies package.json
dependencies

Inside your , the property of your module may look something
like this:

package.json dependencies

Note: You’ll frequently find carets (^) and tildes (~) included with package versions.
These are the notations for version range — taking a deep dive into these is outside the
scope of this guide, but you can learn more in our In addition, you
may specify URLs or local paths in place of a version range.

primer on semver.

"dependencies":
	"async": " ",

 "npm2es": " ",

 "optimist": " ",

 "request": " ",

 "skateboard": " ",

 "split": " ",

 "weld": " "

}

{

^0.2.10

~0.4.2
~0.6.0

~2.30.0
^1.5.1

^0.3.0
^0.2.2

The property of is almost identical to the
property in terms of structure. The main difference: while the property is used to
define the dependencies that a module needs to run in production,
property is commonly used to define the dependencies the module needs to run in development.

Inside your , the property would look something like this

devDependencies package.json dependencies
dependencies

devDependencies

package.json devDependencies

"devDependencies":
 "escape-html": " ",

 "lucene-query-parser": " "

{

^1.0.3

^1.0.1
}

https://nodesource.com/blog/semver-a-primer/

Understanding dependencies

inside your

Package.json

CHAPTER 3:

 2022 NodeSource, LLC nodesource.com

Understanding the different types of dependencies and other host
specs inside package.json

Having dependencies in your project's allows the project to install the versions
of the modules it depends on. By running an install command inside a project, you can install all
of the dependencies listed in the project's , meaning they don't have to be (and
rarely should be) bundled with the project itself.

The separation of dependencies needed for production and dependencies needed for
development is one of the majorly important aspects of . You're likely not to
need a tool to watch your CSS files for changes in production and refresh the app when they
change. But in both production and development, you'll want to have the modules that enable
what you're trying to accomplish with your project – things like your web framework, API tools,
and code utilities.

Furthermore, there are other lesser-known types of dependencies and specifications that help you
to customize your package for specific host environments, namely�

� peerDependencies: They are use to express compatibility with a host tool or library while not
requiring them inside the project. As of npm v7, they are installed by default�

� peerDependenciesMeta: Allows peer dependencies to be marked as optional so that
integration and interaction with other packages don't warn you about requiring all of them to
be installed�

� optionalDependencies: As its name suggests, it is used to avoid build failures when the
dependency cannot be found or fails to install. However, it would be best to handle the lack of
dependency inside your code.�

� bundledDependencies: Useful for cases when some special packages need to be preserved
locally by including them inside the tarball file generated after publishing your project�

� Engines: It can be used for specifying the node and/or npm versions your stuff works on.

package.json

package.json

package.json

 2022 NodeSource, LLC nodesource.com

� OS: Your module will run on an array of allowed and/or blocked (if prepended with a bang "!"
sign) operating systems�

� CPU: Similar to the previous one. An array of allowed or blocked CPU architectures the code
was designed for.

What would a project's look like with and
?

Let's expand on the previous example of a to include some.

package.json dependencies
devDependencies

package.json

One key difference between the dependencies and the other common parts of is
that they're both objects with multiple key/value pairs. Every key in ,

, and peerDependencies is is a package's name, and every value is the
version range that's acceptable to install (according to semver).

package.json
dependencies

devDependencies

{

"metaverse"

"0.92.12"
"The Metaverse virtual reality. The final

	outcome of all virtual worlds, augmented reality, and the

	Internet."

"index.js"
"MIT"

{

"~3.1"

"^1.0.0"
"~3.3"

"~1.9"

{

^1.0.2

^1.0.0
~1.1.7

	"name": ,

	"version": ,

	"description":

,

	"main": ,

	"license": ,

	"devDependencies":
		"mocha": ,

		"native-hello-world": ,

		"should": ,

		"sinon":
	},

	"dependencies":
		"fill-keys": " ",

		"module-not-found-error": " ",

		"resolve": " "

	}

}

 2022 NodeSource, LLC nodesource.com

*Semver is a specification outlining a method of encoding the nature of change between
releases of a "public interface". You can read more about "Semver" You also may find
useful " ".

here
ABC's of JavaScript and Node.js

The ecosystem surrounding npm is continuously evolving. There are always going

to be hard problems to solve – things like security, licensing, management, module
optimization, and more.

Tools like NCM - NodeSource Certified Modules are aiming to directly help alleviate these
problems in a secure and reliable way, directly in N|Solid. That said, there will never be one
right answer to any individual’s or organization’s direct needs, but rather many answers to
solve the problems – that we face both now and in the future – on a case-by- case basis.

We have to help you on your journey as a developer, install and start
enjoying advanced knowledge and control over your application. process in Node.js
#KnowyourNode

If you’ve got any specific questions you’d like to ask, feel free to reach out to us at
@NodeSource on Twitter – we’d love to hear your thoughts and feedback on NodeSource’s
Ultimate Guide to npm.

amazing features N|Solid

What next?

https://nodesource.com/blog/semver-a-primer/
https://nodesource.com/blog/ABC-of-JavaScript-and-Nodejs
https://nsrc.io/3u8X2ib
https://nodesource.com/products/nsolid

