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ABSTRACT
A wide range of Polygenic Risk Scores (PRS) have been developed for

Coronary Artery Disease (CAD) but these remain to be benchmarked in
populations with different genetic ancestries. At the same time, several novel
methods have been developed to leverage ancestry-specific genome-wide
association study (GWAS) summary statistics and linkage disequilibrium (LD)
maps to better characterize the association between genetic variants and disease
risk across populations.

In this report we outline how Allelica’s DISCOVER software was used to
develop, validate and calibrate multiple ancestry-specific PRSs for CAD.
DISCOVER implements modified versions of multiple PRS development
algorithms to identify the best performing panel for specific populations. We
show that by incorporating summary statistics from ancestry-specific GWAS PRS
can be developed with improved performance relative to scores developed on
single GWAS generated using individuals with largely European ancestry.
Importantly, across datasets we are able to identify at least one in ten individuals
at greater than 2 fold increased risk of CAD compared to the rest of the
population. Our analyses provide a foundation for the application of PRS as a
Risk Enhancing Factor in cardiovascular disease risk assessment by identifying
individuals at high genetic risk of CAD, regardless of their genetic ancestry.

KEY WORDS Polygenic Risk Scores; Coronary Artery Disease; ancestry;
genomics

I. INTRODUCTION
Polygenic Risk Scores, or PRS, have shown promise

as tools to identify significant proportions of the
population at high genetic risk of disease (1–4).
For example, Khera and colleagues showed that
individuals in the top 8 percentiles of the distribu-
tion of a PRS for Coronary Artery Disease (CAD)
had a three fold increase in risk of disease com-
pared to the remainder of the distribution, a risk
equivalent to carriers of rare mutations in Famil-
ial Hypercholesterolemia (FH) associated genes.
(1). However, carriers of FH mutations are rare at
the population level (∼0.4% of the population),
meaning that PRS can identify roughly 20 times
more people at high genetic risk than traditional
approaches based on gene panels.
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Recent work has also highlighted the potential
of PRS to be used to aid clinical management of
cardiovascular disease (CVD). Current approaches
to identify individuals at risk of disease are based
on applying algorithms such as the Pooled Co-
hort Equations (PCE) to clinical risk factors to cal-
culate an individual’s 10 year risk of disease (5).
Aragam and colleagues (3) demonstrated that a
significant proportion of individuals at heightened
risk of disease can be identified by PRS and, cru-
cially, that methods such as the PCE are unable
to capture these at risk individuals. Clinical guide-
lines for CVD management allow for so-called Risk
Enhancing Factors to be used to reclassify individ-
uals into higher risk strata despite intermediate or
borderline clinical risk. Given their ability to iden-
tify individuals who are at least two times the risk
of the population, and their demonstrated cost-
effectiveness (6), it is increasingly clear that PRS
satisfy the criteria to be considered a Risk Enhanc-
ing Factor for CVD.

Efforts are now underway to translate these re-
search findings into clinical practice. In order to do
so however, it is essential that PRS are able to be ap-
plied to individuals of all ethnicities and ancestries.
This has so far been challenging because the ma-
jority of genetic and clinical data available to build
PRS come from individuals of western European
ancestry (7, 8). When these scores are applied to
cohorts containing non-European ancestry individ-
uals, their performance is attenuated (9). Whilst
this is expected due to differences in Linkage Dis-
equilibrium (LD) and allele frequencies in different
populations as a result of population separation
since our ancestors left African 100-200,000 years
ago, the non-transferability of PRS across different
populations needs to be addressed before their
potential as clinical tools can be realised.

Approaches to improve the utility of PRS in dif-
ferent populations fall into two main camps. The
first is to build a PRS using GWAS summary statis-
tics and datasets (both validation and testing) from
the Target ancestry of interest. We will refer to this
as the single GWAS approach. Although PRS can
be optimised in different populations by utilising
ancestry-specific datasets throughout the pipeline,
the main drawback to single GWAS approaches
is their requirement for well powered, large and
deep GWAS summary statistics from the Target

population. As discussed above, these rarely exist
in practice for non-European ancestry datasets.

Novel methodology is available that can utilise
multiple sets of GWAS summary statistics in PRS
development (10–12). These multiple GWAS ap-
proaches can leverage several ancestry specific
GWAS and combine them with ancestry-specific
LD maps (13). Crucially, when combining these
smaller ancestry-specific GWAS with larger, well
powered (typically European) GWAS, such approaches
have the potential to better estimate both the
variants causal to disease and their effect sizes
(14), making them particularly appropriate to re-
searchers interested in improving the performance
of scores across different ancestry groups.

In this short report, we outline analyses to de-
velop PRS for CAD across different ancestries using
this second multiple GWAS approach. The aim of
this work is to provide robust evidence of the per-
formance of PRS in CAD across ancestries that can
be used to build a foundation for their use in clini-
cal tools for the prevention of CVD.

II. METHODS
A. Association Data
II.A.1 GWAS

We identified three large GWAS from the litera-
ture that did not include any individuals in the
downstream Validation and Testing datasets that
we used to develop multi-ancestry PRS. These
were the CardioGRAMplusC4D GWAS (15), the
Japanese 161k and the Japanese 52k studies (16,
17).

In the absence of publicly available South Asian
and African specific GWAS summary statistics, we
performed GWAS on separate subsets of individ-
uals from both ancestries in the UK Biobank us-
ing fastGWA (19). The South Asian GWAS com-
prised 932 cases and 4,043 controls and the African
GWAS comprised 91 cases and 3,230 controls.
fastGWA was used due to the computational ef-
ficiency of the generalized linear mixed model
(GLMM)-based method that it implements, which
has improved statistical properties when applied
to binary traits. In addition we also performed a
secondary GWAS on a subset of individuals from
the UK Biobank with European ancestry (26,135
cases and 433,131 controls).
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Table 1. Datasets used in this study. References starting with phs refer to datasets downloaded from DBGaP.

Dataset/Cohort Ancestry Cases Controls Reference

GenomeWide Association Studies

CardioGRAMplusC4D European,South Asian 60,801 123,504 Nikpay et al 2015 (15)

Japanese 161k East Asian 14,992 146,214 Sakaue et al 2021 (16)
Japanese 52k East Asian 15,302 36,140 Matsunaga et al 2020 (17)

Genomics and Clinical Datasets

MultiEthnic Study of Atherosclerosis African American 76 1,247 phs000209.v13.p3
(MESA) Hispanic 79 1,155

Chinese 30 615
European 162 1,950

UK Biobank African 227 2,329 Bycroft et al 2018 (18)
South Asian 2,004 8,482
East Asian 78 1,425
European 26,135 433,131

II.A.2 Finemapping

GWAS provide an assessment of the size and signif-
icance of the association of alleles and disease at
millions of sites across the genome. Because not all
potentially causal alleles will have been genotyped
or imputed in the original GWAS, the associated
variants from GWAS may only tag those causing
disease rather than be the actual disease causing

variants themselves. To identify putatively causal
variants, we applied a finemapping approach, im-
plemented by POLYFUN (12, 20) (15). This method
uses ancestry-specific LD scores and additional
data on the putative function of variants across
the genome to generate a set of finemapped sum-
mary statistics. We used the CardioGRAMplusC4D
summary statistics and functional information from

Table 2. Labels for the GWAS used in this study. Seven main GWAS were used in this study but were variously
filtered based on Minor Allele Frequency (MAF) in relevant the Thousand Genomes Project superpopulation
and/or for the top 2 million variants by P -value

GWAS Name Source/Ancestry No. Inds Filters

EUR-1 CardioGRAMplusCD4 184,305 MAF<0.01
EUR-1a CardioGRAMplusCD4 184,305 MAF<0.01; top 2M
EUR-1b CardioGRAMplusCD4 184,305 MAF<0.00001
EUR-2 EUR-1, finemapped 184,305 MAF<0.01
EUR-2a EUR-1, finemapped 184,305 MAF<0.01; top 2M
EUR-2b EUR-1, finemapped 184,305 MAF<0.00001
EUR-3 UK Biobank European 459,266 MAF<0.01
EUR-3a UK Biobank European 459,266 MAF<0.01; top 2M
EUR-3b UK Biobank European 459,266 MAF<0.00001
EUR-3c UK Biobank European 459,266 MAF<0.01†
AFR-1 UK Biobank African 3,321 MAF<0.01

EAS-1 Biobank Japan 161,206 MAF<0.01
EAS-2 OACIS (Japan) 52,442 MAF<0.01

SAS-1 UK Biobank South Asian 4,966 MAF<0.01
†The MAF in the summary statistics, rather than the TGP European superpopulation, was used to filter these

variants.
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Table 3. Datasets used to validate and test ancestry specific PRS. Where possible, independent datasets were
used as Validation and Testing datasets. If only one dataset was available, this was split to generate
approximately equal sized Validation and Testing datasets. An initial analysis using a limited set of South Asians
identified a best performing score that did not include the GWAS from the South Asian ancestry individuals
(SAS-1) from the UK Biobank. We therefore used all South Asian ancestry individuals from the UK Biobank as
Validation and Testing datasets.

Ancestry Stage Cases Controls Dataset / Cohort

African American Validation 372 3,924 UK Biobank
Testing 76 1,247 MESA

Hispanic/Latino Validation 38 579 MESA
Testing 41 576 MESA

East Asian Validation 62 1,222 UK Biobank
Testing 30 615 MESA

South Asian Validation 725 3,093 UK Biobank
Testing 726 3,094 UK Biobank

European Validation 81 975 MESA
Testing 81 975 MESA

Table 4. Details of the three external PRS that were used for benchmarking the multi-ancestry PRS.

Authors PRS Method Num. variants Reference

Bolli et al (2021) SCT/metaPRS 1,926,521 (4)

Khera et al (2018) LDPred 6,630,150 (1)

Inouye et al (2021) metaPRS 1,745,179 (2)

Gazal et al 2018 (21). The combination of GWAS
and finemapping datasets resulted in a final list of 7
different sets of summary statistics for downstream
analyses (Table 2).

II.A.3 Variant filtering

We applied a range of filters to the summary statis-
tics before running the main PRS development
pipeline (Table 2). For all non-European GWAS we
removed variants with a Minor Allele Frequency
(MAF) of <0.01 in the One Thousand Genomes
Project (TGP) (22) superpopulation matching the
relevant GWAS Discovery population. For the Eu-
ropean GWAS, we generated additional filtered
datasets that contained the top 2 million most sig-
nificant results, as well as a filtered set that filtered
only the rarest variants (Table 2).

B. Datasets
We compiled and harmonised a joint dataset

of individuals from publicly available datasets (Ta-
bles 1 and 3). These comprised the MultiEthnic

Study of Atherosclerosis (MESA), the Institute of
Personalised Medicine (IPM) subset of the eMerge
study, and the UK Biobank (18).

C. DISCOVER
We used a modified version of PRS-CSx (11,

23) within Allelica’s DISCOVER software to build
multiple PRS with different combinations of GWAS
summary statistics. We ran PRS-CSx with a range
of values for the global shrinkage parameter φ. If
φ is not specified, it is learnt from the data using
a fully Bayesian approach. We performed a small-
scale grid search (e.g., φ=1e-6, 1e-4, 1e-2, 1) to
find the optimal φ value in the Validation datasets.

D. Combining GWAS-specific PRS
panels
To build ancestry-specific PRS, we explored a

range of different combinations of between 2 and 4
sets of the ancestry-specific GWAS summary statis-
tics outlined above. The output of PRS-CSx is
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Table 5. The best performing multi-ancestry PRS in 5 different genetic ancestries. For each ancestry, we show
the source of the GWASs used to build the score, the number of variants in the score, the Odds Ratio per
Standard Deviation (ORxSTD) of the score in the Testing dataset, the proportion of the population at two fold risk
risk (2X%) and the 95% CI around the Odds Ratio for the proportion at 2X risk.

Allelica GWAS Source Ancestry Num ORxSTD 2X 2X
PRS Name Variants (95% CI) (%) (95% CI)

Allelica_CAD_HIS_2022 AFR-1;EUR-2b Hispanic 202,975 1.59 (1.25-1.87) 11 (1.95-4.03)

Allelica_CAD_AFR_2022 AFR-1;EUR-3c African American 260,855 1.37 (1.05-1.79) 16 (1.27-3.92)

Allelica_CAD_SAS_2022 EAS-2;EUR-1 South Asian 123,622 1.45 (1.33-1.59) 17 (1.45-2.47)
EAS-2;EUR-1

Allelica_CAD_EAS_2022 EAS-1;EUR-3 East Asian 260,536 1.60 (1.12-2.29) 18 (1.09-5.66)

Allelica_CAD_EUR_2022 EUR-1;EUR-2 European 285,231 1.57 (1.29-2.00) 25 (1.70-3.30)
EUR-3

a separate PRS panel for each GWAS summary
statistic dataset used. To combine these into a sin-
gle panel for downstream validation and testing,
we combined the constituent variant effect sizes
across panels using an inverse-variance-weighted
meta-analysis of the panel specific posterior effect
sizes.

Each resulting meta-PRS is labelled with the
GWAS datasets used to generate it (Table 2). For
example, the PRS labeled EUR-1_AFR-1 is the re-
sult of running PRS-CSx with the EUR-1 (Cardio-
GRAMplusCD4) and AFR-1 (UK Biobank African)
GWAS and combining the PRS using the method
outlined above.

E. PRS Validation and Testing
We used separate independent Validation and

Testing datasets to assess the performance of the
PRS across different genetic ancestries (Table 3).
For each PRS, we assessed the association with
CAD in ancestry-specific datasets by computing
the Odds Ratio per Standard Deviation (ORxSTD)
from a logistic regression using phenotype as the
dependent variable and standardised PRS, age,
sex, family history, and the first four principal com-
ponents of variation as independent variables.

The best performing PRS in each ancestry-specific
Validation dataset was then applied to a separate
ancestry-specific Testing population to compute an
independent assessment of its performance. We
used logistic regression to identify the proportion
of each ancestry group at two fold risk, adjusting
for age, sex and 4 principal components of an-

cestry (3). PRS were benchmarked in the Testing
population using the external datasets outlined in
Table 4.

To further assess the performance of the PRSs
in the Testing datasets, we additionally computed
Brier scores (24). Similar to the mean squared
error, Brier scores are a test of predictive model
calibration and comparisons of two Brier scores is
achieved by assessing the Brier skill score. This
statistic will be positive when the model to be
tested is better calibrated than the referencemodel.
We tested the calibration of the five ancestry spe-
cific scores against each of the three external PRSs.

III. RESULTS AND DISCUSSION
We developed 108 PRS for CAD using 21 differ-

ent combinations of ancestry-specific GWAS with
four different values of the φ shrinkage parame-
ter. These were applied to five different ancestry-
specific Validation datasets (Table 3) to identify the
best performing score in each ancestry. The results
are shown in Figure 1. The best performing scores
in the Validation dataset were applied to indepen-
dent Testing datasets to define a final assessment
of their predictive performance. The new ancestry-
specific scores were benchmarked against three
previously published scores and, with the excep-
tion of South Asians, showed an increased per-
formance across ancestries (Table 4 and Figure 1).
Area Under the Receiver Operator Curve (AUCs)
for the PRSs are shown in Figure 2 and Table 7.

The predictive performance (ORxSTD) of the
best scores ranged from 1.37 (1.05-1.79) in African
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Table 6. Brier scores for the best multi-ancestry scores and the three external PRS for comparison. A Brier score
of 0 equates to perfectly calibrated model and 1 is perfectly uncalibrated. In each ancestry, the best
multi-ancestry PRS (listed in the Best column and detailed in Table 5) has a smaller Brier score than the external
PRS. Table 7 shows the results of comparisons of these scores.

Ancestry Best Bolli et al Inouye et al Khera et al
(2021) (2018) (2018)

Hispanic 0.0565 0.0566 0.0566 0.0566

African-American 0.0523 0.0529 0.0528 0.0528

South Asian 0.1318 0.1326 0.1333 0.1333

East Asian 0.0420 0.0425 0.0423 0.0424

European 0.0669 0.0675 0.0671 0.0676

Table 7. Allelica's multi-ancestry PRS are better calibrated risk models than three published PRSs. For each
multi-ancestry PRS, we show the Area Under the Receiver Operator Curve (AUC) for the PRS in a model adjusted
for sex, the first four principal components of ancestry and family history, where available, together with and
comparisons of Brier scores (Brier skills scores from Table 6), a calibration metric, between each ancestry specific
score and three external datasets (Table 4). Positive values indicate that the test model, in this case the Allelica
score, is better calibrated than the reference score.

Allelica Ancestry AUC Bolli et al Inouye et al Khera et al
PRS Name (95% CI) (2021) (2018) (2018)

Allelica_CAD_HIS_2022 Hispanic 0.77 (0.72-0.81) 0.171 0.075 0.14

Allelica_CAD_AFR_2022 African American 0.69 (0.63-0.75) 1.128 1.101 1.099

Allelica_CAD_SAS_2022 South Asian 0.77 (0.74-0.79) 0.586 1.11 1.15

Allelica_CAD_EAS_2022 East Asian 0.78 (0.71-0.86) 1.117 0.862 0.912

Allelica_CAD_EUR_2022 European 0.71 (0.67-0.75) 0.773 0.260 1.041

American ancestry dataset to 1.60 (1.12-2.29) in
East Asians. Across ancestry groups the new multi-
ancestry scores outperformed published scores
(Table 5). The ORxSTD for previously published
scores presented here may differ from those re-
ported elsewhere. However, these comparisons
are based on benchmarking the PRSs on Testing
datasets comprising the same individuals with the
same phenotype definition, and the relative per-
formance represents a fair comparison within an
ancestry.

Our analysis of calibration using Brier scores
(Tables 6 and 7) demonstrated that all of the five
multi-ancestry PRS were better calibrated than any
of the external PRS. We hypothesise that this in-
crease in calibration performance was due to the
additional information from the ancestry-specific
effect sizes used in the Discovery GWAS of the
current approach.

We identified the proportion of each ancestry
at two fold increased risk compared to the the re-
mainder (Table 5). The analysis identified between
11% and 25% of individuals at two fold risk across
the different ancestry groups. Following the ap-
proach of Aragam et al (3) we also show the 95%
CI for the estimate of the Odds Ratio of 2. The
2X threshold represents that of well established
risk factors such as family history and Mendelian-
inherited genetic variants (25), as well other risk
enhancing factors such as diabetes and ethnicity
which are currently used to reclassify individuals in
the PCE (3, 26).

Adjusting PRS for subtle population structure
is an important step in assessing performance (27,
28). In Figure 3A we show the effect of ancestry
adjustment on the relative risk distributions gener-
ated for the multi-ancestry scores. We note that in
small, relatively genetically homogeneous popula-
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tions the effect of the adjustment on the relative
risk distributions is small. To visualise genetic diver-
sity, we projected individuals from each analysis
cohorts onto principal components from the Thou-
sand Genomes Project (TGP, Figure 3B). Out of
the cohorts used in this analysis, the Hispanic an-
cestry group showed the greatest diversity with
individuals spread across PC1 and PC2. This is
also shown by the effect of the ancestry adjust-
ment, which reduces the stratification of risk in the
Hispanic groups, potentially because of inflation
due to population structure rather than true signal.
In the absence of ancestry adjustment, the popu-
lation structure present in this group could lead to
inflation of the predictive performance. Through-
out, including in the calibration analysis we used
the ancestry-adjusted PRSs.

Finally, we note that we have used the point es-
timate for the ORxSTD in the Validation datasets to
identify the best multi-ancestry score. Whilst other
statistics are available (e.g. the AUCs shown in
Figure 2), the ORxSTD has direct clinical relevance.
Moreover, testing these scores in the independent
Testing datasets gives an unbiased assessment of
their performance against the external PRS. Whilst
the confidence intervals overlap between scores,
the results of the calibration analysis (Tables 6 and
7) demonstrate the potential of adding ancestry
specific GWAS to build stronger ancestry-specific
PRS.

IV. CONCLUSION
Identifying individuals at high risk of disease

is the first important step in the clinical manage-
ment and prevention of common disease. Here
we show that by using a CAD PRS we are able to
identify significant proportions of the population at
increased risk of disease. Importantly, these results
have been validated and calibrated on multiple US
populations and can be considered ready for use
in clinical management of CVD.
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Figure 1. Validation of 21 PRS in multiple ancestries. For each of the 21 multi-ancestry PRS, we chose the best
performing (highest ORxSTD) in each Validation population from each of the four replicate runs with different φ.
The best performing multi-ancestry PRS in each dataset was identified and then compared against three
published PRS.
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Figure 2. Validation of 21 PRS in multiple ancestries. For each of the 21 multi-ancestry PRS, we chose the best
performing (highest ORxSTD) in each Validation population from each of the four replicate runs with different φ.
This figure shows the Area Under the Receiver Operator Curve (AUC) for the PRSs. AUC was computed from a
model comprising PRS, four PCs, sex, age and family history of CAD, where available.
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Figure 3. (A) Assessment of the relative risk conferred by each percentile of the PRS distribution using the final
multi-ancestry PRSs. In each ancestry we show the distribution of relative risks for both ancestry adjusted and
un-adjusted PRS. Ancestry adjustment was performed using principal components as outlined in (29). The
horizontal red line denotes a relative risk of 1. (B) Visualisation of population structure in the ancestry specific
cohorts. Individuals from the Testing datasets (in grey) projected on the first two principal components of
ancestry from the Thousand Genomes Project (TGP). This analysis demonstrates the heterogeneity of
self-reported ancestry and the diverse genetic ancestry of the Hispanic ancestry group.
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