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Score for Coronary Artery Disease

INTRODUCTION

Advances in genetic research are leading to improved precision medicine in healthcare

An individual’s risk of developing disease results from a complex interaction between their environment and 
their genes. The collection and analysis of large amounts of data is now allowing us to understand these 
relationships in more detail than ever before and are aiding the development of data-driven approaches to risk 
prediction that will transform the way that healthcare is provided [1]. From the electronisation of health records 
to the introduction of wearable devices, developments in digitisation are allowing the collection of biomedical 
big data at an unprecedented scale.

At the same time, methods involving advanced analytics like machine learning are leading to a greater 
understanding of these data. The integration of these concepts into healthcare systems is paving the way for a 
new era of precision medicine, the goal of which is to use data to identify those at highest risk of developing 
disease so that interventions and treatments can be targeted at the groups that need them most. This will 
ensure that finite healthcare resources are used as efficiently as possible and that disease is caught early 
enough to improve patient outcomes.

Precision medicine is made increasingly possible because we now have the analytical methods and 
computational power necessary to understand big, complex datasets. These datasets contain clinical 
outcomes on a large number of people for a variety of diseases and include additional information on 
physiological, lifestyle and environmental factors such as age, sex and family history of disease. When these 
data are combined and analysed, sophisticated statistical models can find patterns in the combinations of risk 
factors that lead to disease, which can provide an estimate of an individual’s risk relative to others in their 
population with similar values across these factors. 

As we understand more about the role that DNA has to play in understanding disease risk, it is becoming 
increasingly important to include genetic or genomic information in these datasets. This is because progress in 
genomics means that this novel and potentially powerful type of data can be added into disease risk 
prediction models. The use of genomic data in risk prediction is now possible thanks to the confluence of three 
major scientific advances:

1. Bigger sample sizes in genome-wide association studies (GWAS) which lead to 
    greater statistical power to identify genetic variants involved with disease.
2. Better statistical methods to identify the most predictive set of variants to 
    estimate risk for a given disease.
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Developing a robust procedure for estimating a CAD PRS
In its essence, computing an individual’s polygenic risk score (PRS) for a given disease is straightforward. By 
multiplying the number of risk alleles a person carries by the effect size of each variant and then summing 
these across all risk loci [3] one can estimate an individual’s genetic liability for a given disease. However, 
identifying the alleles at loci that confer disease risk, estimating the size of the allele’s effect on disease and 
incorporating estimates of uncertainty in a PRS remaining challenging. Furthermore, the accuracy of a PRS 
depends on several conditions [4].

The first is that the GWAS providing the summary statistics for the score – known as the discovery set – 
should involve an independent set of samples to those on which the scores are being calculated. Secondly, the 
amount of variation in disease or trait liability that can be accounted for by the genetic variants used in the 
PRS, known as SNP heritability, will influence how predictive a PRS will be, which will also be affected by the 
genetic architecture of the disease. Finally, the sample size of the discovery GWAS will affect how well effect
sizes are estimated and therefore in turn affect its accuracy. The best performing PRSs use summary statistics 
from a discovery GWAS involving hundreds of thousands of independent individuals on a trait with high SNP 
heritability.

Identifying which SNPs have the best predictive power is a central challenge to developing a robust PRS. 
There are two main objectives to this effort. The first is to understand at what threshold of statistical 
significance SNPs should be removed from the score generation algorithm. Because there are correlations 
between the effect sizes of variants that are close to each other in the genome, the second objective is to 
explore how to combine evidence across multiple variants.

Fortunately, procedures have been developed to select subsets of SNPs that rely on looking only at GWAS 
summary statistics [5]. The simplest approach, known as clumping and thresholding (C+T), iterates 
between two methodological steps [6]. First, genetic variants are filtered, or clumped, so that only the variants 
with the highest effect size and that are not in linkage disequilibrium (LD) are used. In the second 
thresholding step, genetic variants with a P value larger than a chosen threshold are removed. This process is 
repeated for different LD windows and P value thresholds.

A more sophisticated Bayesian approach involves modelling LD to shrink each variant effect size to an extent 
that is proportional to the LD between SNPs [7]. This approach, implemented in the software LDPred, requires 
the definition of a tuning parameter ρ, which is a statement of the researcher’s prior belief on the proportion of 
genetic variants assumed to be causal.

Recently, a third method involving machine learning that combines C+T and the LASSO statistical procedure, 
called stacked clumping and thresholding (SCT) has been developed [8]. 

3. The availability of genome-wide data from hundreds of thousands of people linked with 
thousands of environmental and physiological measurement in the UK Biobank [2]. This 
magnificent data resource allowed the validation of the algorithms predictive power at an 
unprecedented scale.



In SCT, clumping and thresholding are systematically repeated over a four dimensional grid of parameters 
(comprising LD squared correlation and p-value thresholds). The algorithm generates over 100,000 alternative 
C+T variants and combines them through a LASSO-based penalized logistic regression.

Clinical utility and implications of CAD PRS use in the European population

Several studies have assessed the ability of PRS to identify individuals at high risk of developing polygenic 
diseases. For example, Inouye and colleagues [9] showed that men in the top 20% of PRS distribution reached 
a threshold of 10% cumulative coronary artery disease (CAD) risk by 61 years of age, ten years earlier than 
men in the bottom 20% distribution. 

Additionally it has been shown that CAD PRS has higher predictive performance than a range of the traditional 
risk factors (e.g. total cholesterol, family history of heart disease) used by physicians to decide primary 
prevention strategies [10]. In a second study, PRS-based models identified 8.0, 6.1, 3.5, 3.2, and 1.5% of the 
European population at greater than threefold increased risk for Coronary Artery Disease (CAD), Atrial 
Fibrillation (AT), Type 2 Diabetes (T2D), Inflammatory Bowel Syndrome (IBD), and Breast Cancer (BC), 
respectively. Most notably for CAD, the prevalence of been carrier of high PRS was shown to be 20-fold higher 
than the prevalence of carriers of the familial hypercholesterolemia mutations while conferring the same risk.

Validating and testing PRS is possible with the availability of Biobanks

The algorithms outlined above require a validation phase where different PRSs generated with alternative 
parameter values are validated against an external dataset (Validation dataset). The test phase involves 
computing PRS in a test population (Test dataset) and assessing its predictive power in order to confirm its 
predictive performance and to rule out any possibility of over-fitting that may have occurred during the 
validation step.

Development of PRSs for a number of diseases has been accelerated by the availability of the UK Biobank 
(UKB) dataset. This is a large prospective cohort study that enrolled around 500,000 individuals from across 
the UK, ranging in age from 40 to 69 years at the time of recruitment and whose genomes have been 
genotyped and imputed to more than 90 million variants. The astonishing size of the UKB genomic data means 
that researchers can no build suitably sized Validation and Testing datasets.

Current technological limitations in using PRS

Generating PRS is computationally intensive and so their potential to be used as a tool for precision medicine 
is currently undervalued. The computers required to generate PRS need hundreds of Gigabytes of RAM and 
complex computational infrastructures which are extremely difficult to implement and maintain. Additionally, 
deep bioinformatics expertise is required to run the entire pipeline, from generating genomic data, through 
quality control to result visualisation. For this reason, analytical laboratories are currently excluded from the 
possibility to use PRS on routine basis.



PRSs are constructed on the basis of SNPs and their effect sizes discovered through GWASs. One limitation 
of GWAS is that they are performed with samples genotyped with microarrays that do not cover the entire 
genome, but only a small portion of it. Therefore the causal SNP associated with a phenotype is rarely 
genotyped, instead the association is attributed to the genotyped SNP in LD with the causal one. However, 
different ethnic groups are characterised by specific LD patterns, so we can expect that for different ancestries 
the causal SNP could have a different SNP in LD. For this reason, the SNPs used in a PRS are highly 
dependent on the genetic structure (i.e., ancestry) of the initial population of the training GWAS. Since the vast 
majority of available GWAS is based on population of European descendent (79% of all GWAS partecipants), 
PRS constructed on these GWAS have the highest predictive power on individuals of the same ancestry. This 
represents the most critical limitation to genetics in precision medicine and increasing the representation of 
diverse populations has recently become a higher priority for the research community.

Validation and testing of a new PRS for CAD

To build a new PRS, we used the SCT algorithm of Privè and colleagues [8], implemented in R [11]. The 
algorithm uses summary statistics from a published GWAS [12] and genetic and clinical data from a Validation 
dataset. For this we used the interim release of UK Biobank (i.e. individuals genotyped through batches from 1 
to 22 (Table 1)). The UK Biobank fields we used to define cases of CAD are reported in Table 2. SCT uses 
per-SNP effect sizes and P values to perform repeated clumping and thresholding (C+T) over a four 
dimensional grid of parameters (comprising LD squared correlation, P value threshold, clumping window size,
and imputation quality).

CAD is a disease caused by the narrowing or blockage of the coronary arteries and is usually caused by 
atherosclerosis, a hardening of the arteries. Whilst environmental and lifestyle factors can modulate an 
individual's risk of getting CAD, there is also a genetic component, making a perfect candidate for the 
investigation of the how well PRS can predict disease.

A NEW POLYGENIC RISK SCORE FOR CORONARY ARTERY DISEASE

Table 1: Samples used to build the new CAD PRS. Here we show the makeup of 
the Discovery and Validation datasets used to build and test the CAD PRS. Note that 
individuals with a history of CAD at baseline were removed from the Validation 
dataset to allow the PRS to identify only those with incident CAD.

Cohort N total N CAD (prevalent | incident) 

Validation dataset
Testing dataset

129,853
130,253

7,912 (4,962 | 3,220)
2,268 (0 | 2,268)



Finding the PRS with the best predictive performance

We assessed the predictive performance of the new PRSs on an independent Testing dataset comprising the 
second release of UK Biobank (i.e. individuals genotyped in batches from 23 to 95; Table 1). For comparison, 
we also re-computed the published PRS panels from Khera [6] and Inouye [9] using summary statistics 
downloaded from the Broad Institute Cardiovascular Disease knowledge portal*.

*http://www.broadcvdi.org/informational/data
.

Overall, SCT generates 123,200 alternative C+T configurations, each of which is used to compute a 
corresponding per-individual PRS in the validation population. Per-individual PRS scores were generated as 
the sum of the genotype dosage of each risk allele at each SNP weighted by its respective effect size. These 
PRS scores are then used as the predictive variables in a LASSO-penalized logistic regression model with 
disease phenotype as the binary response variable, generating a regression coefficient for each C+T 
configuration. The stacking phase follows, where effect sizes and regression coefficients of the 123,200 
alternative C+T configurations are linearly combined to generate, for each disease, a final optimal panel of 
SNPs for the PRS. We define a PRS panel as a 3-column table of SNPs, effect alleles, and corresponding 
effect sizes, which were taken from the GWAS of Nikpay et al [12].

Table 2: Lists of UK Biobank fields and codes to define cases of Coronary Artery 
Disease.

Coronary Artery Disease (CAD)

UK Biobank Field Description Codes

20004 Self-reported Operation code 1070, 1095, 
1523

20002 Self-reported non-cancer illness 1075

41202 Diagnoses - main ICD10 I21X, I22X, 
I23X,

I241, I25241204 Diagnoses - Secondary ICD10

41200 Operative procedures - main OPCS4 K401-K404,
K411-K414,
K451-K455,
K491-K492
K498-K499, 

K502,
K751-K754,
K758-K759

41210

Operative procedures - secondary 
OPCS4



Using variants with small effect sizes improves the predictive performance of CAD PRS

Two PRS for CAD have recently been published. Khera and colleagues[6] used the LDpred algorithm [7] to 
develop a CAD PRS using 6.6 million SNPs, while Inouye and colleagues[9] aggregated three PRS for CAD to 
generate a metaPRS using around 1.7 million SNPs. With LDpred, Khera and colleagues obtained a PRS with 
the best predictive performance with a parameter value that indicates that 0.1% of the variants in the analysis 
are causal. This implies that only the 0.1% of the 6.6 million SNPs in the PRS should have an effect on the 
prediction, while the remaining 99.9% have an effect size close to zero (of about 3x106). 

Given that in this analysis the vast majority of SNPs are estimated to have minimal or no effect on polygenic 
risk, doubt has been cast on the utility of including this large fraction of low-weight SNPs in PRSs [13]. We 
addressed the effect of including different numbers of SNPs in a PRS by recreating the Khera PRS and 
comparing predictive power across progressively smaller subsets of SNPs (Table 3): the full PRS (6.6 million 
SNPs), a PRS made by the top 1% of SNPs with highest effect sizes (66,300 SNPs), a second PRS 
constituted by the top 0.1% of SNPs with highest effect sizes (6630 SNPs), as well as a PRS generated with 
genome-wide significant SNPs only (P value < 5x10−8, corresponding to 74 SNPs). AUC, or Area Under the 
Curve, a quantitative measure for the discrimination abilility of a PRS [14], and Positive Predictive Value (PPV) 
at 3% (i.e the percentage of CAD cases identified at the top 3% of PRS distribution) were calculated for each 
PRS in the testing dataset. A decrease in the number of SNPs used in a PRS is matched by a corresponding 
decrease in its discriminatory ability in both AUC and PPV (Table 4).

Specifically, we used each PRS panel to calculate a per-individual PRS score in the testing population. 
Per-individual PRS values were used as predictive variables in a logistic regression model, where the 
response variable (the variable to predict) was the disease phenotype. The logistic regression model 
comprised additional covariates as control variables such as: age, gender, genotyping array, and the first 4 
principal components (PCs) of ancestry. We assessed the predictive performance of each PRS panel by 
computing the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve.

PRS Panel SNPs in PRS AUC (95% CI) PPV 
(3%)

Cases in top 
3%

Khera full 1,031
Inouye full

SCT 
SCT+ khera (1) 

SCT+ Inouye (1) 

6,630,150
1,745,180
291,969

6,699,370 
1,920,136

0.805 (0.798 0.812) 
0.805 (0.799 0.812) 

0.808 (0.8 0.815)
0.808 (0.801 0.814)
0.810 (0.803 0.816)

12.35
12.5

13.06
12.99
13.36

1,031
1,044
1091
1,085
1,116

Table 3: List of the PRS for CAD assessed in this study. Khera full refers to the whole PRS for cad 
developed by Khera et al . Inouye full refers to the whole PRS for cad developed by Inouye et al . SCT 
refers to the PRS for CAD developed in this paper with the SCT algorithm. SCT + Khera refers to the 
PRSs generated by combining SCT and full Khera PRS (1). 



This finding demonstrates that even a set of low weight SNPs can play a crucial role for a more
accurate reclassification of individuals into the higher-risk CAD category.

(Table 3 cont.) SCT + Inouye refers to the PRSs generated by combining SCT and full Inouye PRS(1). 
For each PRS, Table 3 shows the number of genetic variants composing the PRS (SNPs in PRS), 
the predictive performances quantified as AUC values and 95% confidence intervals (AUC (95% CI)), 
the positive predictive values in the top 3% of PRS distributions (PPV (3%)), and the number of CAD 
cases in the top 3% of PRS distributions (Cases in top 3%). (1)For SNPs with effect sizes from both 
SCT and the second panel (khera or Inouye), effect sizes from SCT were taken.

Table 4: List of the PRS for CAD assessed in this study. Khera full refers to the whole PRS for CAD 
developed by Khera et al6. Khera 1% refers to the PRS generated with the 1% of genetic variants with 
highest effect sizes from Khera et al . Khera 0.1% refers to the PRS generated with the 0.1% of genetic 
variants with highest effect sizes from Khera et al . Khera 74 refers to the PRS generated with 
genome-wide significant SNPs only as described in Khera et al. For each PRS, Table 2 shows the 
number of genetic variants composing the PRS (SNPs in PRS), the predictive performances quantified 
as AUC values and 95% confidence intervals (AUC (95% CI)), the positive predictive values in the top 
3% of PRS distributions (PPV (3%)), and the number of CAD cases in the top 3% of PRS distributions 
(Cases in top 3%).

PRS Panel SNPs in PRS AUC (95% CI) PPV 
(3%)

Cases in top 
3%

Khera full
Khera 1%

Khera 0.1%
Khera 74

6,630,150
66,300
6,630

74

0.805 (0.798 0.812) 
0.798 (0.792 0.805) 
0.794 (0.788 0.801)
0.789 (0.797 0.784)

12.35
11.31
10.88
9.63

1,031
945
909
804

Development of a new CAD PRS with improved predictive performance

We next assessed the predictive performance of our new PRS in the test dataset. The new SCT PRS had 
higher predictive performance (AUC: 0.808, PPV at 3%: 13.06%) than the PRSs from Khera et al [6] (AUC: 
0.805, PPV at 3%: 12.35%) and Inouye et al[9] (AUC: 0.805, PPV at 3%: 12.5%; Table 3). Notably, the final 
CAD PRS we developed using SCT was composed of only c.300,000 genetic variants, a number that 
corresponds to only the 5% and 17% of the SNPs of CAD PRS from Khera and Inouye, respectively.

In light of our finding outlined above, that a larger number of SNPs - even if with low effect sizes - improve the 
predictive performance of a PRS, we asked whether integrating the large SNP sets from the Khera or Inouye 
studies to our CAD PRS could further improve its predictive performance.



Predictive performance of the newly developed CAD PRS: SCT-I

For the remaining analyses we used the new SCT-I CAD PRS which we showed to have the highest predictive 
performance (Table 3). We computed the PRS of the individuals in the Testing dataset and plotted the 
distributions of the scores for CAD cases and controls (Figure 1A). The distributions are both gaussian, with 
CAD cases showing a greater median PRS than controls (median: 0.52 and -0.03, respectively) and an AUC of 
0.81. 

We next evaluated the ability of the SCT-I PRS to stratify CAD risk separately for sub-populations of men and 
women in the testing dataset. We divided the two PRS distributions into percentiles and computed the 
prevalence of CAD in each percentile. Here we use disease prevalence in the test dataset as a measure of the 
risk of developing CAD. Risk stratification for men and women in the test dataset are shown in Figure 1C and 
D, respectively. CAD risk rises sharply as PRS percentile increases, ranging from 1.34% to 25.67% (for men) 
and from 0.26% to 8.62% (for women), for the lowest and highest percentiles, respectively. As previously 
shown, men have a higher CAD risk than women[9].

For each sex we estimated the relative increased risk, which is the ratio between the prevalence at the top 5% 
of the PRS distribution and the prevalence in the average of the distribution (defined as between the 40% and 
the 60% percentiles, dashed lines in Figure 1C and 1D). For men, the relative risk in the top 5% is 3 times 
higher than the average while for women this value rises to 4. This means that the CAD SCT-I PRS is able to 
detect individuals with a three fold relative risk of developing CAD which is comparable to that conferred by 
rare highly penetrant familial hypercholesterolemia mutations [15].

Above, we showed how the SCT-I PRS can stratify the empirical risk of CAD in a test population with known 
disease prevalence. However, the clinical value of a PRS is in its ability to predict the risk of disease. To 
assess the ability of the SCT-I PRS to predict CAD risk in the Testing dataset we compared the predicted 
prevalence values with observed ones. For each individual within the Testing dataset, the probability of having 
the disease was calculated using a logistic regression model with the per-individual PRS score as predictive 
variable. The predicted prevalence of CAD within each percentile of the PRS distribution was calculated as the
average probability in each percentile. For all percentiles, predicted CAD prevalence was plotted against the 
corresponding values of observed prevalence (Figure 1B). Values of observed and predicted CAD prevalence 
are in excellent agreement as demonstrated by the localization of the points of the bisector in Figure 1B. We 
also tested the level of agreement between the predicted and observed prevalence through the 
Hosmer-Lemeshow (HL) test. This is a goodness of fit test for logistic regression, especially for risk prediction 
models. Specifically, the HL test calculates if the observed prevalence matches the predicted prevalence in 
population subgroups represented by PRS percentiles. The non-signicant p-value generated by the HL test 
(Figure 1B) implies that there is no statistical evidence of a deviation between observed and predicted 
prevalence values, thus confirming the good fit of the calibration that can be observed in (Figure 1B).

We found that the addition of SNPs from Inouye to the SCT PRS led to a new CAD PRS (denoted as SCT + 
Inouye or SCT-I) with further improved predictive performance, as quantified by an increased value of the AUC 
(0.81) and the PPV at 3% (13.36%; Table 3). This finding highlights the highly polygenic nature of this common 
disease.



PRS is more effective at predicting CAD risk than family history

Family history of CAD is a well-recognized risk factor and prospective studies demonstrate a consistent 
association with the disease [16]. Family history can be easily and systematically queried in the clinical setting. 
As such, current prevention guidelines recommend that family history to be incorporated into the risk 
estimation process that guides treatment decisions [17]. In this section, we consider the relationship between 
two risk factors for CAD: family history and PRS. In particular we want to answer the following questions:

1. Can SCT-I PRS stratify risk in people with family history?
2. Is SCT-I PRS a better predictor than family history?
3. Does prediction performance increase if a combination of family history and PRS is
    Used?

We computed scaled per-individual distributions for CAD cases and controls for those individuals in the test 
dataset with at least one first-degree relative with a history of CAD. Risk distributions for cases and controls 
are shown in Figure 2A. As before, both distributions are gaussian with cases having a higher median value 
than controls (median: 0.60 and 0.08, respectively). This suggests that the good discriminatory ability of the 
SCT-I PRS is maintained even in individuals already considered at CAD risk based on family history.

We then evaluated the ability of the SCT-I PRS to stratify CAD risk in the sub-populations of men and women 
with at least one first-degree relative with a history of heart disease. As before, we calculated for both men and 
women the per-individual PRS distributions and CAD prevalence for each percentile of the PRS distributions. 
CAD risk stratification for men and women with family history of heart disease are shown in Figure 2C and D, 
respectively. Even with individuals considered at higher risk based on family history, the SCT-I PRS is able to
further stratify CAD risk over a range of values comprised between 2.10% and 33% (for men) and between 
0.56% and 10% (for women), for the lowest and highest percentiles, respectively. For both men and women, 
observed prevalence is higher in individuals with family history than in the general population for any percentile 
considered. For men with family history, the relative risk in the top 5% is 3 fold higher than the average while 
for women this value rises to 4.

Lastly, we assessed the predictive performance of family history, PRS, and the combination
of the two, by computing AUC. Figure 2B shows that PRS displays a higher AUC value than
family history and it is therefore a better predictor of CAD disease. When both risk factors are
combined, the predictive performances further improves.

These findings demonstrate that family history and PRS capture different components of the risk of CAD and 
family history cannot be considered in isolation without further PRS risk stratification.



SCT-I for CAD is a genetic risk factor that is independent and orthogonal to other clinical
risk factor for CAD such as LDL-cholesterol

Blood levels of LDL-cholesterol are commonly used by clinicians to assess risk of CAD. PRS and 
LDL-cholesterol levels are both continuous risk factors that can be used to stratify the risk of CAD in a sample 
population. Here, we compare the performance of the SCT-I PRS and LDL-cholesterol blood levels in risk 
stratification and prediction (Figure 3A). We calculated the two risk gradients as follows. PRS-based CAD 
stratification has been obtained by determining the per-individual PRS distribution and CAD prevalence for 
each percentile of the PRS distribution. LDL-cholesterol-based risk stratification has been calculated by using 
the UK Biobank LDL-cholesterol levels for each individual in the test population and dividing the corresponding
distribution in percentiles. For each percentile of each distribution, the prevalence of CAD has been calculated 
and taken as a proxy of CAD risk. Of note, LDL-cholesterol levels for individuals reported to use 
cholesterol-lowering medications have been corrected by multiplying LDL-cholesterol values by a correction 
factor of 1.56 [18].

With increasing values of the percentile, the empirical risk of CAD (green circles in Figure 3A) rises more 
sharply for PRS than for LDL-cholesterol (yellow circles in Figure 3A), from 0.79% to 16.31% (PRS) and from 
4.3% to 9.27% (for LDL-cholesterol), for the lowest and highest percentiles, respectively. Moreover, the relative 
risk of CAD, calculated as the ratio between the prevalence at the top 5% and at the average of the distribution 
(defined by the 40% and the 60% percentiles) is much higher for PRS than for LDL-cholesterol: 3.1 and 1.8, 
respectively. This finding demonstrates that PRS has a CAD risk stratification power that is 1.7 times higher
than that of LDL-cholesterol.

We then assessed whether PRS and LDL-cholesterol are independent risk factors. Figure 3B shows, for each 
individual of the testing population, the correspondence between its percentile value in the PRS and in the 
LDL-cholesterol distributions (yellow dots). It is not possible to distinguish any clear pattern of correlation, 
except for a slight increase in point density in the upper right and bottom left corners. The absence of a clear 
correlation between the risk factors is confirmed by the roughly zero slope of the linear model (yellow line in 
Figure 3B), as well as by the very small correlation (Pearson’s correlation coefficient ρ= 0.127). 

This finding demonstrates that PRS and LDL-cholesterol levels are orthogonal risk factors that capture 
different clinical and genetic components of the risk for CAD.

Lastly, we assessed the predictive performances of LDL-cholesterol (LDL-C), PRS (PRS), and the combination 
of the two (LDL-C+PRS), by means of AUC. Figure 3C shows that PRS displays an higher AUC value than 
LDL-cholesterol and it is therefore a better predictor of CAD disease. When both risk factors are combined, the 
predictive performances further improves only slightly.



Figure 1: Risk for CAD using the SCT-I PRS panel. A) Distributions (scaled to a mean of 0 and a
standard deviation of 1) of the per-individual PRS in the men and women testing populations. 
B) Comparison between the observed and predicted CAD prevalence. Observed prevalence was 
calculated as the per-percentile prevalence of CAD in the per-individual PRS distribution. Predicted 
CAD prevalence was calculated for each individual using a logistic regression model with per-individual 
PRS as predictive variables. Within each percentile of the PRS distribution, CAD probability was 
averaged and this returned the predicted prevalence of CAD. C) Prevalence of CAD per percentile of 
the per-individual PRS distribution calculated in men from the Testing population. 
D) Prevalence of CAD per percentile of the per-individual PRS distribution calculated in women from 
the Testing population. Dashed horizontal lines: CAD prevalence of the average of the PRS 
distributions (defined as between the 40% and the 60% percentiles) for men (dark green) and women 
(light green)



Figure 2: Risk for CAD using the SCT-I PRS panel together with Family history of CAD. 
A) Distributions (scaled to a mean of 0 and a standard deviation of 1) of the per-individual PRS score
for CAD cases and control individuals with at least one first-degree relative with a history of heart 
disease. B) AUC values on the Testing set computed using a logistic regression model including family 
history of CAD (FH), per-individual PRS calculated with the SCT-I PRS panel (PRS), or both (FH + 
PRS) as explanatory variables and presence/absence of CAD as the response. The model comprised 
additional covariates as control variables such as: age, gender, genotyping array, and the first 4 
principal components of ancestry. C) Prevalence of CAD per percentile of the per-individual PRS score 
distribution calculated in the Testing population for the men with at least one first-degree relative with 
history of heart disease. D) As C but for women. Dashed horizontal lines: CAD prevalence of the 
average of the men’s and women’s PRS distributions (defined as between the 40% and the 60% 
percentiles).



Figure 3: Predictive performance of the SCT-I PRS and LDL-cholesterol. A) Prevalence of CAD 
per percentile of the per-individual PRS (green circles) and LDL-cholesterol (yellow circles) 
distributions calculated in the testing population. B) Scatter plot of the per-individual percentiles of the 
PRS distribution plotted against the per-individual percentiles of the LDL-cholesterol distribution. 
Yellow continuous line: linear regression of the scatter plot. C) AUC values on the testing set of UKBB 
calculated with logistic regression models with LDL-cholesterol levels (LDL-C), per-individual PRS 
calculated with the SCT-I PRS panel (PRS), or both (LDL-C + PRS) as explanatory variables. The 
response variable of the logistic regression model was absence/presence of CAD. The logistic 
regression model comprised additional covariates as control variables such as: age, gender, 
genotyping array, and the first 4 principal components (PCs) of ancestry.



In this article we have described the development of a PRS for Coronary Artery Disease. We tested its 
prediction and risk stratification performances in the UK Biobank, which is the largest population dataset 
currently available. When compared with previously published PRS, the PRS showed highest predictive 
performance (Table 3). Additionally, we have demonstrated that PRS for CAD is able to identify a notable 
fraction of the UK Biobank population (5%) with a 3 fold or higher increased risk of developing CAD compared 
to the population average. Of note, a similar relative risk of CAD is observed in individuals carrying rare, highly 
penetrant familial hypercholesterolemia mutations. This large fraction of the population with a high polygenic
risk for the above diseases highlights the deep impact that PRS based-screening can have to
improve targeted prevention strategies.

The risk stratification ability of our newly developed PRS is maintained even in individuals already considered 
at risk, based on positive family history or high plasma lipid levels. This suggests that integrated models of 
PRS together with other lifestyle and clinical factors can enable clinicians to more accurately quantify the risk 
of the diseases and to consequently adjust prevention and screening strategies.

We have developed an easy to use, intuitive software suite to perform PRS analysis, which is now available to 
clinical laboratories and research groups as a fully automated, HIPPA and GDPR compliant and certified as a 
CE marked medical device. The software calculates Polygenic Risk Scores for a number of complex diseases 
and can analyse thousands of samples in parallel having the potential to improve health care prevention 
through its large scale implementation into public health practice.

CONCLUSIONS
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