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Score for Breast Cancer

INTRODUCTION

Advances in genetic research are leading to improved precision medicine in healthcare

An individual’s risk of developing disease results from a complex interaction between their environment and 
their genes. The collection and analysis of large amounts of data is now allowing us to understand these 
relationships in more detail than ever before and are aiding the development of data-driven approaches to risk 
prediction that will transform the way that healthcare is provided [1]. From the electronisation of health records 
to the introduction of wearable devices, developments in digitisation are allowing the collection of biomedical 
big data at an unprecedented scale.

At the same time, methods involving advanced analytics like machine learning are leading to a greater 
understanding of these data. The integration of these concepts into healthcare systems is paving the way for a 
new era of precision medicine, the goal of which is to use data to identify those at highest risk of developing 
disease so that interventions and treatments can be targeted at the groups that need them most. This will 
ensure that finite healthcare resources are used as efficiently as possible and that disease is caught early 
enough to improve patient outcomes.

Precision medicine is made increasingly possible because we now have the analytical methods and 
computational power necessary to understand big, complex datasets. These datasets contain clinical 
outcomes on a large number of people for a variety of diseases and include additional information on 
physiological, lifestyle and environmental factors such as age, sex and family history of disease. When these 
data are combined and analysed, sophisticated statistical models can find patterns in the combinations of risk 
factors that lead to disease, which can provide an estimate of an individual’s risk relative to others in their 
population with similar values across these factors. 

As we understand more about the role that DNA has to play in understanding disease risk, it is becoming 
increasingly important to include genetic or genomic information in these datasets. This is because progress in 
genomics means that this novel and potentially powerful type of data can be added into disease risk 
prediction models. The use of genomic data in risk prediction is now possible thanks to the confluence of three 
major scientific advances:

1. Bigger sample sizes in genome-wide association studies (GWAS) which lead to 
    greater statistical power to identify genetic variants involved with disease.
2. Better statistical methods to identify the most predictive set of variants to 
    estimate risk for a given disease.
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Developing a robust procedure for estimating a breast cancer PRS
In its essence, computing an individual’s polygenic risk score (PRS) for a given disease is straightforward. By 
multiplying the number of risk alleles a person carries by the effect size of each variant and then summing 
these across all risk loci [3] one can estimate an individual’s genetic liability for a given disease. However, 
identifying the alleles at loci that confer disease risk, estimating the size of the allele’s effect on disease and 
incorporating estimates of uncertainty in a PRS remaining challenging. Furthermore, the accuracy of a PRS 
depends on several conditions [4].

The first is that the GWAS providing the summary statistics for the score – known as the discovery set – 
should involve an independent set of samples to those on which the scores are being calculated. Secondly, the 
amount of variation in disease or trait liability that can be accounted for by the genetic variants used in the 
PRS, known as SNP heritability, will influence how predictive a PRS will be, which will also be affected by the 
genetic architecture of the disease. Finally, the sample size of the discovery GWAS will affect how well effect
sizes are estimated and therefore in turn affect its accuracy. The best performing PRSs use summary statistics 
from a discovery GWAS involving hundreds of thousands of independent individuals on a trait with high SNP 
heritability.

Identifying which SNPs have the best predictive power is a central challenge to developing a robust PRS. 
There are two main objectives to this effort. The first is to understand at what threshold of statistical 
significance SNPs should be removed from the score generation algorithm. Because there are correlations 
between the effect sizes of variants that are close to each other in the genome, the second objective is to 
explore how to combine evidence across multiple variants.

Fortunately, procedures have been developed to select subsets of SNPs that rely on looking only at GWAS 
summary statistics [5]. The simplest approach, known as clumping and thresholding (C+T), iterates 
between two methodological steps [6]. First, genetic variants are filtered, or clumped, so that only the variants 
with the highest effect size and that are not in linkage disequilibrium (LD) are used. In the second 
thresholding step, genetic variants with a P value larger than a chosen threshold are removed. This process is 
repeated for different LD windows and P value thresholds.

A more sophisticated Bayesian approach involves modelling LD to shrink each variant effect size to an extent 
that is proportional to the LD between SNPs [7]. This approach, implemented in the software LDPred, requires 
the definition of a tuning parameter ρ, which is a statement of the researcher’s prior belief on the proportion of 
genetic variants assumed to be causal.

Recently, a third method involving machine learning that combines C+T and the LASSO statistical procedure, 
called stacked clumping and thresholding (SCT) has been developed [8]. 

3. The availability of genome-wide data from hundreds of thousands of people linked with 
thousands of environmental and physiological measurement in the UK Biobank [2]. This 
magnificent data resource allowed the validation of the algorithms predictive power at an 
unprecedented scale.



In SCT, clumping and thresholding are systematically repeated over a four dimensional grid of parameters 
(comprising LD squared correlation and p-value thresholds). The algorithm generates over 100,000 alternative 
C+T variants and combines them through a LASSO-based penalized logistic regression.

The genetic architecture of breast cancer

Breast cancer (BC) is the most common cancer diagnosed among women in Western countries. The risk of 
developing BC is linked to both non-genetic and genetic factors, with the former referring to any circumstance 
that is not inherited, such as nutrition, environmental toxins, or the use of hormone replacement therapy (HRT).

From a genetic perspective, BC has a complex genetic structure depending on two classes of genetic variants: 
rare mutations with high penetrance such as the BRCA1 and BRCA2 genes, as well as multiple common BC 
susceptibility loci that have been discovered through GWAS. The polygenic nature of BC makes it a perfect 
candidate to investigate of how well PRS can predict a common cancer.

Validating and testing PRS is possible with the availability of Biobanks

The algorithms outlined above require a validation phase where different PRSs generated with alternative 
parameter values are validated against an external dataset (Validation dataset). The test phase involves 
computing PRS in a test population (Test dataset) and assessing its predictive power in order to confirm its 
predictive performance and to rule out any possibility of over-fitting that may have occurred during the 
validation step.

Development of PRSs for a number of diseases has been accelerated by the availability of the UK Biobank 
(UKB) dataset. This is a large prospective cohort study that enrolled around 500,000 individuals from across 
the UK, ranging in age from 40 to 69 years at the time of recruitment and whose genomes have been 
genotyped and imputed to more than 90 million variants. The astonishing size of the UKB genomic data means 
that researchers can no build suitably sized Validation and Testing datasets.

DEVELOPMENT OF A BREAST CANCER PRS WITH IMPROVED PREDICTIVE 
PERFORMANCE

We developed a new BC PRS by applying the SCT algorithm described above in a Discovery dataset 
comprising a subset of individuals from the UK Biobank, and assessed its predictive performance in an 
independent Test dataset, also from the UK Biobank. This new SCT PRS displayed higher predictive 
performance (AUC: 0.766, PPV at 3%: 20.20%) than other published BC PRSs, (e.g. Khera et al[6] (AUC: 
0.65, PPV at 3%: 15.8%) and from Mavaddat et al[9] (AUC: 0.66, PPV at 3%: 18.0%) (Table 1).



Predictive performance of the newly developed BC PRS

We computed the PRS of the individuals in the Test dataset and plotted the distributions of the scores for BC 
cases and controls (Figure 1A). The distributions are both gaussian, with BC cases showing a greater median 
PRS than controls (median: 0.51 and -0.04, respectively) and an AUC of 0.677.

Table 1: List of the PRS compared to Allelica’s SCT PRS for breast cancer 
Khera refers to the PRS for BC developed by Khera et al[6]. Mavaddat refers to the 
PRS for BC developed by Mavaddat et al[9]. SCT refers to the PRS for BC 
developed in this paper with the SCT algorithm. For each PRS, we show the number 
of genetic variants composing the PRS (SNPs in PRS), the predictive performances 
quantified as AUC values and 95% confidence intervals (AUC (95% CI)), the positive 
predictive values in the top 3% of PRS distributions (PPV (3%)), and the number of 
BC cases in the top 3% of PRS distributions (Cases in top 3%).

To assess the ability of the SCT BC PRS to predict BC risk in a Test population we compared the predicted 
with observed prevalence values. For each individual in the Test dataset, the probability of having the disease 
was calculated using a logistic regression model with the per-individual PRS score as predictive variable. The 
predicted prevalence of BC within each percentile of the PRS distribution was calculated as the average 
probability in each percentile. For all percentiles, predicted BC prevalence was plotted against the 
corresponding values of observed prevalence (Figure 1B). The values of observed and predicted BC 
prevalence are in excellent agreement as demonstrated by the localization of the points of the bisector of the 
graph. The non-significant P-value generated by the HL test (Figure 1B) is further confirmation of the good 
statistical agreement between predicted and observed prevalence values.

Notably, among the three PRS we compared, the SCT PRS we developed used the largest number of SNPs 
(Table 1). To see whether this affected the predictive performance, we aggregated different PRS into new 
meta-PRS (e.g. Khera+SCT or Mavaddat+SCT), however this did not result in significant changes in AUC 
compared to the SCT PRS.



PRS is more effective at predicting BC risk than family history

Family history is a well-recognized risk factor of BC and prospective studies have demonstrated a consistent 
association with the disease [10]. Current prevention guidelines recommend that family history to be 
incorporated into the risk estimation process that guides treatment decisions for BC [11]. We therefore 
considered the relationship between family history and genetic risk factors for BC. The aim of this was to 
answer the following questions:

1. Can SCT BC PRS stratify risk in people with family history?
2. Is SCT BC PRS a better predictor than family history?
3. Does prediction performance increase if a combination of family history and PRS is used?

We next evaluated the ability of the SCT BC PRS to stratify BC risk for the female population in the testing 
dataset. We divided the PRS distribution into percentiles and computed the prevalence of BC in each 
percentile. Here we use disease prevalence in the test dataset as a measure of the risk of developing BC. Risk 
stratification for women in the test dataset is shown in Figure 1C. BC risk rises sharply as PRS percentile 
increases, ranging from 1.64% to 24.6%, for the lowest and highest percentiles respectively.

We also estimated the relative increased risk, which is the ratio between the prevalence at the top 5% of the 
PRS distribution and the prevalence in the average of the distribution (defined as between the 40% and the 
60% percentiles, dashed line in Figure 1C). For the female test population, the relative risk in the top 5% is 2.9 
times higher than the average.

Figure 1: Risk for BC according to the SCT BC PRS panel. A) Distributions (scaled to a mean of 0 
and a standard deviation of 1) of the per-individual PRS in female testing populations. B) Comparison of 
fraction of cases between observed and predicted BC. Observed fraction of cases has been calculated 
as the per-percentile fraction of cases of BC in the per-individual PRS distribution. 



We computed scaled per-individual distributions for BC cases and controls for those individuals in the test 
dataset with at least one first-degree relative with a history of BC. Risk distributions for cases and controls are 
shown in Figure 2A. As before, both distributions are gaussian with cases having a higher median value than 
controls (median: 0.70 and 0.17, respectively). This suggests that the good discriminatory ability of the SCT BC 
PRS is maintained even in the smaller number of individuals already considered at BC risk based on family 
history.

(Figure 1 cont.)Predicted BC fraction of cases was calculated for each individual using a logistic 
regression model with per-individual PRS as predictive variables. Within each percentile of the PRS 
distribution, BC probability was averaged and this returned the predicted fraction of cases of BC. C) 
Fraction of cases of BC per percentile of the per-individual PRS distribution calculated in the women 
from the testing population. Dashed horizontal line: fraction of cases of the average of the PRS 
distribution (defined as between the 40% and the 60% percentiles)

Figure 2: Risk for BC according to the SCT BC PRS panel in presence of Family history of BC. 
A) Distributions (scaled to a mean of 0 and a standard deviation of 1) of the per-individual PRS score 
for BC cases and control individuals with at least one first-degree relative with a history of BC. B) AUC 
values on the testing set of UKBB calculated with logistic regression models having family history of 
BC (FH), per-individual PRS calculated with the SCT BC PRS panel (PRS), or both (FH + PRS) as 
explanatory variables. The response variable of the logistic regression model was absence/presence of 
BC. The logistic regression model comprised additional covariates as control variables such as: age, 
genotyping array, and the first 4 principal components (PCs) of ancestry. C) Observed fraction of cases 
of BC per percentile of the per-individual PRS score distribution calculated in the testing population for 
women with at least one first-degree relative with history of BC. Dashed horizontal line: fraction of 
cases of BC for the average of the PRS distribution (defined as between the 40% and the 60% 
percentiles).



Modeling BC risk at 75 years of age

The total Test dataset was divided in two sub-populations: women with and without family history of BC. These 
two subpopulations were divided into percentiles and average percentile values were used as predictive 
variable in Cox-proportional hazard models with age of event (BC or follow-up) as timescale. The Hazard 
Ratios estimated in the two Cox models were used to calculate the dependence of the probability (cumulative 
incidence) of BC by age 75 from BC SCT PRS percentiles, conditioned on the mean values of control 
covariates: Genotyping Array and first four principal components of ancestry. Figure 3 show that lifetime risk of 
BC increases with increasing PRS percentiles for both populations (without and with family history of BC).

We then evaluated the ability of the SCT BC PRS to stratify BC risk in the sub-population of women with at 
least one first-degree relative with a history of BC. As before, we calculated the per-individual PRS distributions 
and BC prevalence for each percentile of the PRS distributions. BC risk stratification for women with family 
history of BC are shown in Figure 2B. Even with individuals considered at higher risk based on family history, 
the SCT BC PRS is able to further stratify BC risk over a range of values comprised between 2.3% and 35.8%, 
for the lowest and highest percentiles, respectively. The observed prevalence is higher in women with family 
history than in the general population for any percentile considered. For women with family
history of BC the relative risk in the top 5% is 2.6 folds higher than the average.

Lastly, we assessed the predictive performance of family history, BC PRS, and the combination of the two, by 
computing AUC. Figure 2B shows that the BC PRS displays a higher AUC value than family history and it is 
therefore a better predictor of BC disease. When both risk factors are combined, the predictive performances 
further improves slightly.

These findings demonstrate that family history and PRS capture different components of the risk of BC and 
family history should not be considered in isolation without further PRS risk stratification. This is in line with 
complex genetic structure of the BC disease that can be caused by either rare mutations with high penetrance 
or by the combination of multiple common BC susceptibility loci.

Figure 3: Probability of BC by 
age 75 for women with and 
without family history of BC.



In this article we have described the development of a PRS for Breast cancer. We tested its prediction and risk 
stratification performances in the UK Biobank, which is the largest population dataset currently available. When 
compared with previously published PRS, the PRS showed highest predictive performance (Table 1). 
Additionally, we have demonstrated that PRS for BC is able to identify a notable fraction of the UK Biobank 
population (5%) with a 3 fold or higher increased risk of developing BC compared to the population average. 
The risk stratification ability of PRS is maintained even in individuals already considered at risk based on family 
history.

We have developed an easy to use, intuitive software suite to perform PRS analysis, which is now available to 
clinical laboratories and research groups as a fully automated, HIPPA and GDPR compliant and certified as a 
CE marked medical device. The software calculates Polygenic Risk Scores for a number of complex diseases 
and can analyse thousands of samples in parallel having the potential to improve health care prevention 
through its large scale implementation into public health practice.

CONCLUSIONS
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