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INTRODUCTION 
This presentation is somewhat unusual not similar to others, in that the conceptual architecture is usually formed before the as-built architecture 

is complete. Since the authors of this paper were not involved in either the design or implementation of the Linux system, this paper is the 

result of reverse engineering the Slackware 2.0.27 kernel source and documentation. A few architectural descriptions were used (in 
particular, [Rusling 1997] and [Wirzenius 1997] were quite helpful), but these descriptions were also based on the existing system 

implementation. By deriving the conceptual architecture from an existing implementation, this paper probably presents some implementation 
details as conceptual architecture. 

 

In addition, the mechanisms used to derive the information in this paper omitted the best source of information -- the live knowledge of the 
system architects and developers. For a proper abstraction of the system architecture, interviews with these individuals would be required. 

Only in this way can an accurate mental model of the system architecture be described. 
Despite these problems, this paper offers a useful conceptualization of the Linux kernel software, although it cannot be taken as an accurate 

depiction of the system as implemented. 

 

System Architecture 

2.1 System Overview 

The Linux kernel is useless in isolation; it participates as one part in a larger system that, as a whole, is useful. As such, it makes sense to 

discuss the kernel in the context of the entire system. Figure 2.1 shows a decomposition of the entire Linux operating system: 

 

Figure 2.1: Decomposition of Linux System into Major Subsystems 

The Linux operating system is composed of four major subsystems: 

1. User Applications -- the set of applications in use on a particular Linux system will be different depending on what the computer 
system is used for, but typical examples include a word-processing application and a web-browser. 

2. O/S Services -- these are services that are typically considered part of the operating system (a windowing system, command 
shell, etc.); also, the programming interface to the kernel (compiler tool and library) is included in this subsystem. 

3. Linux Kernel -- this is the focused  area of interest in this paper; the kernel abstracts and mediates access to the hardware 
resources, including the CPU. 

4. Hardware Controllers -- this subsystem is comprised of all the possible physical devices in a Linux installation; for example, the 
CPU, memory hardware, hard disks, and network hardware are all members of this subsystem 

This decomposition follows Garlan and Shaw's Layered style discussed in [Garlan 1994]; each subsystem layer can only communicate with 

the subsystem layers that are immediately adjacent to it. In addition, the dependencies between subsystems are from the top down: layers 
pictured near the top depend on lower layers, but subsystems nearer the bottom do not depend on higher layers. 

Since the primary interest of this paper is the Linux kernel, we will completely ignore the User Applications subsystem, and only consider the 
Hardware and O/S Services subsystems to the extent that they interface with the Linux kernel subsystem. 

  

2.2 Purpose of the Kernel 
The Linux kernel presents a virtual machine interface to user processes. Processes are written without needing any knowledge of what physical 
hardware is installed on a computer -- the Linux kernel abstracts all hardware into a consistent virtual interface. In addition, Linux supports 

multi-tasking in a manner that is transparent to user processes: each process can act as though it is the only process on the computer, with 

exclusive use of main memory and other hardware resources. The kernel actually runs several processes concurrently, and is responsible for 
mediating access to hardware resources so that each process has fair access while inter-process security is maintained. 

 

2.3 Overview of the Kernel Structure 

The Linux kernel is composed of five main subsystems: 
1. The Process Scheduler (SCHED) is responsible for controlling process access to the CPU. The scheduler enforces a policy that 

ensures that processes will have fair access to the CPU, while ensuring that necessary hardware actions are performed by the kernel 

on time. 
2. The Memory Manager (MM) permits multiple process to securely share the machine's main memory system. In addition, the 

memory manager supports virtual memory & extended memory that allows Linux to support processes that use more memory than 
is available in the system. Unused memory is swapped out to persistent storage using the file system then swapped back in when 

it is needed. 
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3. The Virtual File System (VFS) abstracts the details of the variety of hardware devices by presenting a common file interface to 

all devices. In addition, the VFS supports several file system formats that are compatible with other operating systems. 
4. The Network Interface (NET) provides access to several networking standards and a variety of network hardware. 

5. The Inter-Process Communication (IPC) subsystem supports several mechanisms for process-to-process communication on a 

single Linux system. 

Figure 2.2 shows a high-level decomposition of the Linux kernel, where lines are drawn from dependent subsystems to the subsystems they 

depend on: 

 

Figure 2.2: Kernel Subsyste Overview 

 This diagram emphasizes that the most central subsystem is the process scheduler: all other subsystems depend on the process scheduler 

since all subsystems need to suspend and resume processes. Usually a subsystem will suspend a process(A) that is waiting for a hardware 

operation to complete, and resume the process(B) when the operation is finished. For example, when a process attempts to send a message 
across the network, the network interface may need to suspend the process until the hardware has completed sending the message successfully. 

After the message has been sent (or the hardware returns a failure), the network interface then resumes the process with a return code indicating 

the success or failure of the operation. The other subsystems (memory manager, virtual file system, and inter-process communication) all 
depend on the process scheduler for similar reasons. 

The other dependencies are somewhat less obvious, but equally important: 

 The process-scheduler subsystem uses the memory manager to adjust the hardware memory map for a specific process when that 
process is resumed. 

 The inter-process communication subsystem depends on the memory manager to support a shared-memory communication 
mechanism. This mechanism allows two processes to access an area of common memory in addition to their usual private memory. 

 The virtual file system uses the network interface to support a network file system (NFS), and also uses the memory manager to 
provide a ramdisk device. 

 The memory manager uses the virtual file system to support swapping; this is the only reason that the memory manager depends 

on the process scheduler. When a process accesses memory that is currently swapped out, the memory manager makes a request 
to the file system to fetch the memory from persistent storage, and suspends the process. 

In addition to the dependencies that are shown explicitly, all subsystems in the kernel rely on some common resources that are not shown in 
any subsystem. These include procedures that all kernel subsystems use to allocate and free memory for the kernel's use, procedures to print 

warning or error messages, and system debugging routines. These resources will not be referred to explicitly since they are assumed 

ubiquitously available and used within the kernel layer of Figure 2.1. 
The architectural style at this level resembles the Data Abstraction style discussed by Garlan and Shaw in [Garlan 1994]. Each of the depicted 

subsystems contains state information that is accessed using a procedural interface, and the subsystems are each responsible for maintaining 
the integrity of their managed resources. 

 

2.4 Supporting Multiple Developers 

The Linux system was developed by a large number of volunteers (the current CREDITS file lists 196 developers that have 

worked on the Linux system). The large number of developers and the fact that they are volunteers has an impact on how the 

system should be architected. With such a large number of geographically dispersed developers, a tightly coupled system 

would be quite difficult to develop -- developers would be constantly treading on each others code. For this reason, the Linux 

system was architected to have the subsystems that were anticipated to need the most modification -- the file systems, hardware 

interfaces, and network system -- designed to be highly modular. For example, an implementation of Linux can be expected 

to support many hardware devices which each have distinct interfaces; a naive architecture would put the implementation of 

all hardware devices into one subsystem. An approach that better supports multiple developers is to separate the code for each 

hardware device into a device driver that is a distinct module in the file system. Analyzing the credits file gives Figure 2.3: 
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Figure 2.3: Division of Developer Responsibilities 

 Figure 2.3 shows most of the developers who have worked on the Linux kernel, and the areas that they appeared to have implemented. A few 

developers modified many parts of the kernel; for clarity, these developers were not included. For example, Linus Torvalds was the original 

implementor of most of the kernel subsystems, although subsequent development was done by others. This diagram can't be considered 
accurate because developer signatures were not maintained consistently during the development of the kernel, but it gives a general idea of 

what systems developers spent most of their effort implementing. 

This diagram confirms the large-scale structure of the kernel as outlined earlier. It is interesting to note that very few developers worked on 
more than one system; where this did occur, it occurred mainly where there is a subsystem dependency. The organization supports the well-

known rule of thumb stated by Melvin Conway (see [Raymond 1993]) that system organization often reflects developer organization. Most 
of the developers worked on hardware device drivers, logical file system modules, network device drivers, and network protocol modules. It's 

not surprising that these four areas of the kernel have been architected to support extensibility the most. 

 

2.5 System Data Structures 
2.5.1 Task List 

The process scheduler maintains a block of data for each process that is active. These blocks of data are stored in a linked list called the task 
list; the process scheduler always maintains a current pointer that indicates the current process that is active. 

2.5.2 Memory Map 

The memory manager stores a mapping of virtual to physical addresses on a per-process basis, and also stores additional information on how 
to fetch and replace particular pages. This information is stored in a memory-map data structure that is stored in the process scheduler's task 

list. 

2.5.3 I-nodes 

The Virtual File System uses index-nodes (i-nodes) to represent files on a logical file system. The i-node data structure stores the mapping of 

file block numbers to physical device addresses. I-node data structures can be shared across processes if two processes have the same file 

open. This sharing is accomplished by both task data blocks pointing to the same i-node. 

2.5.4 Data Connection 

All of the data structures are rooted at the task list of the process scheduler. Each process on the system has a data structure containing a 
pointer to its memory mapping information, and also pointers to the i-nodes representing all of the opened files. Finally, the task data structure 

also contains pointers to data structures representing all of the opened network connections associated with each task. 

Data Structure Implementations 

 Subsystem Architectures 

3.1 Process Scheduler Architecture 

3.1.1 Goals 

The process scheduler is the most important subsystem in the Linux kernel. Its purpose is to control access to the computer's CPU(s). This 

includes not only access by user processes, but also access for other kernel subsystems. 

3.1.2 Modules 

The scheduler is divided into four main modules: 
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1. The scheduling policy module is responsible for judging which process will have access to the CPU; the policy is designed so that 

processes will have fair access to the CPU. 
2. Architecture-specific modules are designed with a common interface to abstract the details of any particular computer architecture. 

These modules are responsible for communicating with a CPU to suspend and resume a process. These operations involve knowing 

what registers and state information need to be preserved for each process and executing the assembly code to effect a suspend or 
resume operation. 

3. The architecture-independent module communicates with the policy module to determine which process will execute next, then 
calls the architecture-specific module to resume the appropriate process. In addition, this module calls the memory manager to 

ensure that the memory hardware is restored properly for the resumed process. 

The system call interface module permits user processes access to only those resources that are explicitly exported by the kernel. This limits 

the dependency of user processes on the kernel to a well-defined interface that rarely changes, despite changes in the implementation of other 

kernel modules. 

 

Figure 3.1: Process Scheduler Subsystem in Context 

  

3.1.3 Data Representation 

The scheduler maintains a data structure, the task list, with one entry for each active process. This data structure contains enough information 
to suspend and resume the processes, but also contains additional accounting and state information. This data structure is publicly available 

throughout the kernel layer 

3.1.4 Dependencies, Data Flow, and Control Flow 

The process scheduler calls the memory manager subsystem as mentioned earlier; because of this, the process scheduler subsystem depends 

on the memory manager subsystem. In addition, all of the other kernel subsystems depend on the process scheduler to suspend and resume 
processes while waiting for hardware requests to complete. These dependencies are expressed through function calls and access to the shared 

task list data structure. All kernel subsystems read and write the data structure representing the current task, leading to bi-directional data flow 

throughout the system. 

In addition to the data and control flow within the kernel layer, the O/S services layer provides an interface for user processes to register for 
timer notification. This corresponds to the implicit execution architectural style described in[Garlan 1994]. This leads to a flow of control 

from the scheduler to the user processes. The usual case of resuming a dormant process is not considered a flow of control in the normal sense 

because the user process cannot detect this operation. Finally, the scheduler communicates with the CPU to suspend and resume processes; 
this leads to a data flow, and a flow of control. The CPU is responsible for interrupting the currently executing process and allowing the kernel 

to schedule another process. 

3.2 Memory Manager Architecture 

3.2.1 Goals 

The memory manager subsystem is responsible for controlling process access to the hardware memory resources. This is accomplished through 

a hardware memory-management system that provides a mapping between process memory references and the machine's physical memory. 

The memory manager subsystem maintains this mapping on a per process basis, so that two processes can access the same virtual memory 
address and actually use different physical memory locations. In addition, the memory manager subsystem supports swapping; it moves unused 

memory pages to persistent storage to allow the computer to support more virtual memory than there is physical memory. 

3.2.2 Modules 

The memory manager subsystem is composed of three modules: 

1. The architecture specific module presents a virtual interface to the memory management hardware 

2. The architecture independent manager performs all of the per-process mapping and virtual memory swapping. This module is 

responsible for determining which memory pages will be evicted when there is a page fault -- there is no separate policy module 
since it is not expected that this policy will need to change. 

3. A system call interface is provided to provide restricted access to user processes. This interface allows user processes to allocate 
and free storage, and also to perform memory mapped file I/O. 
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3.2.3 Data Representation 

The memory manager stores a per-process mapping of physical addresses to virtual addresses. This mapping is stored as a reference in the 

process scheduler's task list data structure. In addition to this mapping, additional details in the data block tell the memory manager how to 

fetch and store pages. For example, executable code can use the executable image as a backing store, but dynamically allocated data must be 
backed to the system paging file. Finally, the memory manager stores permissions and accounting information in this data structure to ensure 

system security. 

 

Figure 3.2: Memory Manager subsystem in context 

  

3.2.4 Data Flow, Control Flow, and Dependencies 

The memory manager controls the memory hardware, and receives a notification from the hardware when a page fault occurs -- this means 
that there is bi-directional data and control flow between the memory manager modules and the memory manager hardware. Also, the memory 

manager uses the file system to support swapping and memory mapped I/O. This requirement means that the memory manager needs to make 

procedure calls to the file system to store and fetch memory pages from persistent storage. Because the file system requests cannot be 
completed immediately, the memory manager needs to suspend a process until the memory is swapped back in; this requirement causes the 

memory manager to make procedure calls into the process scheduler. Also, since the memory mapping for each process is stored in the process 
scheduler's data structures, there is a bi-directional data flow between the memory manager and the process scheduler. User processes can set 

up new memory mappings within the process address space, and can register themselves for notification of page faults within the newly 

mapped areas. This introduces a control flow from the memory manager, through the system call interface module, to the user processes. 
There is no data flow from user processes in the traditional sense, but user processes can retrieve some information from the memory manager 

using select system calls in the system call interface module. 

3.3 Virtual File System Architecture 

 

Figure 3.3: Virtual File System in Context 

  

3.3.1 Goals 

The virtual file system is designed to present a consistent view of data as stored on hardware devices. Almost all hardware devices in a 
computer are represented using a generic device driver interface. The virtual file system goes further, and allows the system administrator to 

mount any of a set of logical file systems on any physical device. Logical file systems promote compatibility with other operating system 

standards, and permit developers to implement file systems with different policies. The virtual file system abstracts the details of both physical 
device and logical file system, and allows user processes to access files using a common interface, without necessarily knowing what physical 

or logical system the file resides on. 

In addition to traditional file-system goals, the virtual file system is also responsible for loading new executable programs. This responsibility 

is accomplished by the logical file system module, and this allows Linux to support several executable formats. 
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3.3.2 Modules 

1. There is one device driver module for each supported hardware controller. Since there are a large number of incompatible hardware 

devices, there are a large number of device drivers. The most common extension of a Linux system is the addition of a new device 

driver. 
2. The Device Independent Interface module provides a consistent view of all devices. 

3. There is one logical file system module for each supported file system. 
4. The system independent interface presents a hardware and logical-file-system independent view of the hardware resources. This 

module presents all resources using either a block-oriented or character-oriented file interface. 

5. Finally, the system call interface provides controlled access to the file system for user processes. The virtual file system exports 
only specific functionality to user processes. 

3.3.3 Data Representation 

All files are represented using i-nodes. Each i-node structure contains location information for specifying where on the physical device the 
file blocks are. In addition, the i-node stores pointers to routines in the logical file system module and device driver that will perform required 

read and write operations. By storing function pointers in this fashion, logical file systems and device drivers can register themselves with the 
kernel without having the kernel depend on any specific module. 

3.3.4 Data Flow, Control Flow, and Dependencies 

One specific device driver is a ramdisk; this device allocates an area of main memory and treats it as a persistent-storage device. This device 
driver uses the memory manager to accomplish its tasks, and thus there is a dependency, control flow, and data flow between the file system 

device drivers and the memory manager. 

One of the specific logical file systems that is supported is the network file system (as a client only). This file system accesses files on another 

machine as if they were part of the local machine. To accomplish this, one of the logical file system modules uses the network subsystem to 
complete its tasks. This introduces a dependency, control flow, and data flow between the two subsystems. 

As mentioned in section 3.2, the memory manager uses the virtual file system to accomplish memory swapping and memory-mapped I/O. 
Also, the virtual file system uses the process scheduler to disable processes while waiting for hardware requests to complete, and resume them 

once the request has been completed. Finally, the system call interface allows user processes to call in to the virtual file system to store or 
retrieve data. Unlike the previous subsystems, there is no mechanism for users to register for implicit invocation, so there is no control flow 

from the virtual file system towards user processes (resuming processes is not considered control flow). 

3.4 Network Interface Architecture 

3.4.1 Goals 

The network subsystem allows Linux systems to connect to other systems over a network. There are a number of possible hardware devices 
that are supported, and a number of network protocols that can be used. The network subsystem abstracts both of these implementation details 

so that user processes and other kernel subsystems can access the network without necessarily knowing what physical devices or protocol is 
being used. 

3.4.2 Modules 

1. Network device drivers communicate with the hardware devices. There is one device driver module for each possible hardware 
device. 

2. The device independent interface module provides a consistent view of all of the hardware devices so that higher levels in the 

subsystem don't need specific knowledge of the hardware in use. 
3. The network protocol modules are responsible for implementing each of the possible network transport protocols. 

4. The protocol independent interface module provides an interface that is independent of hardware devices and network protocol. 
This is the interface module that is used by other kernel subsystems to access the network without having a dependency on particular 

protocols or hardware. 

Finally, the system calls interface module restricts the exported routines that user processes can access. 

 

Figure 3.4: Network Interface Subsystem in Context 
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3.4.3 Data Representation 

Each network object is represented as a socket. Sockets are associated with processes in the same way that i-nodes are associated; sockets can 
be share amongst processes by having both of the task data structures pointing to the same socket data structure. 

3.4.4 Data Flow, Control Flow, and Dependencies 

The network subsystem uses the process scheduler to suspend and resume processes while waiting for hardware requests to complete (leading 
to a subsystem dependency and control and data flow). In addition, the network subsystem supplies the virtual file system with the 

implementation of a logical file system (NFS) leading to the virtual file system depending on the network interface and having data and control 
flow with it. 

3.5 Inter-Process Communication Architecture 

The architecture of the inter-process communication subsystem is omitted for brevity since it is not as interesting as the other subsystems. 

Data structure uses 

 LIST_HEAD_INIT - Initialize the task list node embedded in the task_struct. container_of(ptr, type, member) - Returns the parent structure 

containing a list_Head (circular doubly linked list node). 1. Linux Kernel Data Structure Task list – It’s a circular doubly linked list. Each 

entry contains a structure (task_struct). Each structure contains detailed information about corresponding process and a task list node. The 

node contains previous and next pointer only). Macros to Initialize / manipulate Task list:  

  list_for_each_entry_safe_continue (pos, n, head, member) - safe against entry removal while continuing after current point pos: pointer type 

to use as a loop cursor. n: pointer type to store next pointer. head: the head for your list (struct list_head *head) member: the name of the 

list_struct (struct list_head *list) list_for_each_entry_reverse_safe(pos, n, head, member) safe against entry removal while traversing the list 

backward  list_for_each_entry_reverse(pos, head, member) – Traverse given list backward  list_for_each_entry_safe(pos, n, head, 

member) – safe against entry removal while traversing the list  list_for_each_entry(pos, head, member) – Traverse given list 2. Linux 

Kernel Data Structure Macros to Initialize / manipulate Task list:  

  list_del_init(struct list_head *entry) – delete a node from a linked list and reinitialize the given list head list_del(struct list_head *entry) – 

delete a node from the list  list_add_tail( struct list_head *new, struct list_head *head) - add the new node to the list immediately before the 

head node  list_add(struct list_head *new, struct list_head *head) - add a node to given list 3. Linux Kernel Data Structure Functions to 

Initialize/manipulate Task list:  

  list_splice_init(struct list_head *list, struct list_head *head) – Join two lists and initialize first list list_splice(struct list_head *list, struct 

list_head *head) – Join two lists  list_empty(struct list_head *head) – verify if list is empty  list_move_tail list_move(struct list_head *list, 

struct list_head *head) ) – Remove the node from the list and add the node add the node before head node in the given list.  list_move(struct 

list_head *list, struct list_head *head) – Remove the node from the list and add the node after head node in the given list. 4. Linux Kernel 

Data Structure Functions to Initialize/manipulate Task list:  

  unsigned int kfifo_in(struct kfifo *fifo, const void *from, unsigned int len) – add data of size “len” from memory pointed to by “from pointer” 

to queue static inline bool kfifo_initialized(struct kfifo *fifo) – verify if queue is initialized  void kfifo_init(struct kfifo *fifo, void *buffer, 

unsigned int size)- creates a queue and initializes with “size” bytes from the memory pointed by buffer  int kfifo_alloc(struct kfifo *fifo, 

unsigned int size, gfp_t gfp_mask) – creates a queue and initializes with “size” bytes 5. Linux Kernel Data Structure Kfifo - Generic Queue 

used by Linux kernel Functions to Initialize/manipulate Queue:  

  static inline void kfifo_reset_out(struct kfifo *fifo) – does not remove entire contents of queue static inline void kfifo_reset(struct kfifo 

*fifo) – remove entire contents of queue  unsigned int kfifo_out_peek(struct kfifo *fifo, void *to, unsigned int len, unsigned offset) – peek 

data within the queue without removing it  unsigned unsigned int kfifo_out(struct kfifo *fifo, void *to, unsigned int len)– remove from queue 

data of size “len” and copy to memory pointed by “to pointer” from queue 6. Linux Kernel Data Structure Functions to Initialize/manipulate 

Queue:  

  void kfifo_free(struct kfifo *fifo) – free memory allocated to queue using kfifo_alloc() unsigned int kfifo_avail(struct kfifo *fifo) – returns 

no of bytes available in the queue  static inline unsigned int kfifo_len(struct kfifo *fifo) – returns queue size  int kfifo_is_full (struct kfifo 

*fifo) - verify if queue is full  int kfifo_is_empty(struct kfifo *fifo) – verify if queue is empty 7. Linux Kernel Data Structure Functions to 

Initialize/manipulate Queue:  

 8. Linux Kernel Data Structure IDR – It is the map implementation of Linux . Struct idr is used for mapping user-space UIDs to their associated 
kernel data structure Functions to Initialize/manipulate IDR: void idr_init(struct idr *idp)- initialize Map (idr) Allocating a new UID (create a 
new map entry) 2 steps: 1. int idr_pre_get(struct idr *idp, gfp_t gfp_mask) Resizes the backing tree 2. int idr_get_new(struct idr *idp, void 

*ptr, int *id)Uses the idr pointed at by idp to allocate a new UID and associate it with the pointer ptr 

 9. Linux Kernel Data Structure Functions to Initialize/manipulate Queue: void *idr_find(struct idr *idp, int id)– look up a UID void 
idr_remove(struct idr *idp, int id) Remove a UID from an idr void idr_remove_all(struct idr *idp) – remove all entries from idr void 

idr_destroy(struct idr *idp) - Destroy entire idr 

 10. Linux Kernel Data Structure Rbtree (red-black tree) – It is the Linux’s implementation of (semi) Balanced Binary search tree. It is useful 
for inserting and searching efficiently. prio_tree (PST) - It is the Linux’s implementation of radix priority search tree which is a mix of heap 
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and radix trees. It is useful for storing intervals. e.g. consider a vma as a closed interval of file pages [offset_begin, offset_end], and store all 

vmas that map a file in a PST. 

Conclusions 

The Linux kernel is one layer in the architecture of the entire Linux system. The kernel is conceptually composed of five major subsystems: 
the process scheduler, the memory manager, the virtual file system, the network interface, and the inter-process communication interface. 
These subsystems interact with each other using function calls and shared data structures. 

At the highest level, the architectural style of the Linux kernel is closes to Garlan and Shaw's Data Abstraction style ([Garlan1994]); the kernel 
is composed of subsystems that maintain internal representation consistency by using a specific procedural interface. As each of the subsystems 

is elaborated, we see an architectural style that is similar to the layered style presented by Garlan and Shaw. Each of the subsystems is 
composed of modules that communicate only with adjacent layers. 

The conceptual architecture of the Linux kernel has proved its success; essential factors for this success were the provision for the organization 
of developers, and the provision for system extensibility. The Linux kernel architecture was required to support a large number of independent 

volunteer developers. This requirement suggested that the system portions that require the most development -- the hardware device drivers 

and the file and network protocols -- be implemented in an extensible fashion. The Linux architect chose to make these systems be extensible 
using a data abstraction technique: each hardware device driver is implemented as a separate module that supports a common interface. In this 

way, a single developer can add a new device driver, with minimal interaction required with other developers of the Linux kernel. The success 
of the kernel implementation by a large number of volunteer developers proves the correctness of this strategy. 

Another important extension to the Linux kernel is the addition of more supported hardware platforms. The architecture of the system supports 
this extensibility by separating all hardware-specific code into distinct modules within each subsystem. In this way, a small group of developers 

can effect a port of the Linux kernel to a new hardware architecture by re-implementing only the machine-specific portions of the kernel. 
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