
Excel Journal of Engineering Technology and Management Science

(An International Multidisciplinary Journal)

Vol. I No.6 January-June 2014 (Online) ISSN 2277-3339

1 | P a g e

EDUCATION BASED ON FUNDAMENTAL CONCEPTS OF COMPUTER

SCIENCE & INFORMATION TECHNOLOGY

*Dr Rizwan Koilakh, Dr Babasaheb Ambedkar Marathwada University Aurangabad

**Mohammed Waseem Ashafque, Dr Babasaheb Ambedkar Marathwada University

Aurangabad

MOTIVATION

Although computer science is a regular subject in educational institutes’ for a long time, there

is still more and more discussion on how to teach computer science and what to teach: Should

computer science education be oriented more towards its applications or more towards its

fundamentals or more towards its social effects? How can we improve computer science

education with teachers who have not passed a full university education in that field? How

can we cope with the rapid developments of computer science, both with respect to curriculum

development and continuing education?

Just to explain the last point we see that after more than 40 years computer science is still

developing dynamically. Paradigm changes are constantly announced. This leads to a

complicated dichotomy: On the one hand, people seem to agree that this progress cannot be

carried over equally fast to education because of delays in change of curricula, pedagogical

reflection, teacher education etc. On the other hand, since each student will probably face

several paradigm changes in future life - with much of the respective knowledge becoming

obsolete each time - the skills acquired earlier must be robust enough to meet the challenges of

the latest fashion, and also enable the student to cope with changes.

The same argument holds with respect to teacher education. Teachers also have to be (re-)trained

in a way that enables them, with mild support by continuing education programs, to integrate

new results into their knowledge structure and to reflect and assess recent developments with

respect to future relevance, school adequacy and other pedagogical issues.

This competency is possibly achieved best if students and teachers are given a designed of the

fundamental concepts, principles, methods and ways of thinking of computer science, instead

of trying to teach them an incoherent set of recent technology-driven developments as is often

done by in-service teacher education programs. Only the fundamentals seem to remain valid

in the long term and enable students and teachers to acquire new concepts successfully during

their professional career, since these new concepts will then often appear to be just further

developments or variants of Concepts already familiar and so are comprehensible to students

and teachers more easily.

FUNDAMENTAL CONCEPTS AS AN EDUCATIONAL PRINCIPLE

Whitehead (1929) proposed to deal in school with “few general Concepts of far-reaching

importance” , since the students are bewildered by a multiplicity of detail, without apparent

relevance either to great Concepts or to ordinary thoughts. The same situation we often have - so are

the author’s experiences if teachers have passed a quick in-service education program in

different “modern” subjects of computer science that enables them neither to establish a stable

Excel Journal of Engineering Technology and Management Science

(An International Multidisciplinary Journal)

Vol. I No.6 January-June 2014 (Online) ISSN 2277-3339

2 | P a g e

cognitive structure integrating all these subjects nor to teach computer science to their students

in a suitable manner.

Bruner (1960) formulated the teaching principle that lessons should be based on the structure

of science which is defined by so-called fundamental concepts. He justified his approach as

follows: Learning is mainly for preparing us to master our future life more successfully. In

order to cope with changes occurring later in private life, economy and society students must

be able to transfer knowledge acquired earlier to new situations. Of particular interest here is the

non-specific transfer which relates to long-term (often life-long) effects: We should teach on a

meta-level fundamental notions, principles and ways of thinking (so-called fundamental

concepts) and may hope that students are able to use these abstract solution schemas in

modified (transfered) form for any (even absolutely new) problems they may face in their later

lives. Nonspecific transfer should dominate the entire educational process of schools providing

general education: Permanent creation, extension and consolidation of knowledge in form of

fundamental concepts. Therefore - and now we return to Bruner’s request - all curricula and

teaching methods in computer science classes as well as in-service or pre-service education

programs for teachers should stress the fundamental concepts of each topic. Teachers should be

enabled to analyze each new subject to be included into computer science lessons what concepts

it is based on and to present it according to the concept-oriented approach proposed in the rest

of the paper.

Unfortunately, Bruner as well as subsequent researchers do not provide an explicit definition of

fundamental concepts. Instead they give some examples from several subjects and leave it to the

reader to develop an intuitive concept of what the term might mean in general. As applied to

computer science we define the notion as follows:

A fundamental concept of computer science is a schema for thinking, acting, describing or

explaining which satisfies four criteria:

The Horizontal Benchmark. A fundamental concept is applicable or observable in multiple

ways and in different areas of computer science and organizes and integrates a wealth of

phenomena.

We call this property the Horizontal Benchmark, since the concept may be considered as a

horizontal line intersecting a large number of fields where it applies.

The Vertical Benchmark. A fundamental idea may be taught on every intellectual level.Bruner

(1960) said that „any subject can be taught effectively in some intellectually honest form to any

child at any stage of development“. This suggests that a fundamental idea organizes the topics of

a field also in a vertical dimension: An idea can be taught on the primary school level as well as

on the university level. Presentations differ only by level of detail and formalization. Thus, an

idea can serve as a guideline for lessons on every level of the entire educational process and

concepts can be revisited periodically in greater depth and complexity (so-called spiral principle,

see also below).

The Benchmark of Time. A fundamental idea can be clearly observed in the historical

development of computer science and will be relevant in the long run.

Excel Journal of Engineering Technology and Management Science

(An International Multidisciplinary Journal)

Vol. I No.6 January-June 2014 (Online) ISSN 2277-3339

3 | P a g e

This aspect is important for two reasons. First, it gives a clue as to how to find fundamental

concepts: Scientific notions, concepts or structures of computer science that have a definite

historical background are more likely fundamental concepts than are recent developments.

Second, lessons based on fundamental concepts will not become antiquated as quickly as

conventional lessons - a major advantage in teaching computer science given its dynamic

evolution.

The Benchmark of Sense. A fundamental idea also has meaning in everyday life and is

related to ordinary language and thinking - its context being pretheoretical and unscientific.

Only a precise definition turns an idea „with sense“ into an exact notion „without sense“. For

example, consider „reversibility“ as an idea „with sense“ and „inverse function“ as a purely

mathematical formalization of it „without sense“. While we can see examples of reversibility

in many everyday situations - do vs. undo - the term „inverse function“ has no everyday

meaning. From the pedagogical point of view this Benchmark is closely linked to the Vertical

Benchmark. Whenever we have to teach a fundamental idea on a low intellectual level, i.e. we

have to give students a first vague impression of the idea, we may begin with those situations

in everyday life where a funda- mental idea becomes apparent. For a more specific explanation

see Section 4.

FUNDAMENTAL CONCEPTS OF COMPUTER SCIENCE

By now fundamental concepts have been proposed mainly for mathematics (e.g. Halmos

(1981)) and some of its branches (e.g. Heitele (1975)), but there are very few comments on

how these concepts have been worked out. We have tried to determine fundamental concepts by

abstracting from the contents of computer science to its concepts in three steps: (1) Analysis of

the concrete activities of computer science and their relationships and analogies. Since a

central purpose of computer science is to investigate the software development process in its

broadest sense and to provide methods for it, it seemed reasonable to first analyze for

fundamental concepts the concrete activities during this process and then to establish

relationships and analogies to the field of computer science in general; (2) Revision and

improvement of the results obtained in step 1 by checking whether each idea satisfies the four

criteria for fundamental concepts;

(3) Structuring the collection of concepts according to their relevance in computer science.

Due to space limitations we only present the final results. There are three fundamental

concepts that dominate all stages of software development as well as all activities in

computer science - algorithmization, structured dissection and language, each of which gives -

on further analysis - a wealth of other fundamental concepts (below written in italics). These

three are explained in turn in more detail now.

Algorithmization

By algorithmization we denote the entire process of designing, implementing and running an

algorithm. The strong relevance of algorithmization within computer science, as required by

the Horizontal Benchmark, seems obvious.

Excel Journal of Engineering Technology and Management Science

(An International Multidisciplinary Journal)

Vol. I No.6 January-June 2014 (Online) ISSN 2277-3339

4 | P a g e

A careful analysis of the activities when developing algorihms gives a wealth of other

fundamental concepts which may be assigned to four large domains - design, programming,

execution, evaluation: During design of an algorihm one often uses powerful paradigms such

as divide and conquer, backtracking etc. Afterwards this design is carried over into a program

using several basic concepts to describe data and control structures, e.g. concatenation,

repetition, recursion of commands and data. The finished program is executed on one or more

processors. A fundamental idea here is the notion of process, i.e. the separation of description

and execution of an algorithm. The last group of concepts deals with assessing the quality of

algorithms. The two main criteria are correctness and complexity each related to several

corresponding concepts.

Structured discetion

Dissection covers the process of subdividing an object into several parts in a structured way.

That includes a detailed description of the parts, their relations to the whole as well as

interactions between the parts. Typical ‚objects‘ in computer science which are dissected in

this manner are problems (into subproblems), algorithms (into procedures or modules),

modules (into smaller modules, called hierarchical modularization), the software life cycle (into

different phases), languages and machines (into different complexity classes), etc.

We can distinguish two aspects of dissection, a vertical aspect called hierarchization (Figure

1(a)), i.e. the construction of certain levels of abstraction often distinguished by different

language levels, and a horizontal aspect called modularization (Figure 1(b)) where an object is

subdivided into different parts all of the same level of abstraction. The well-known hierarchical

modularization is obtained by merging these two aspects (Figure 1(c)). The idea of

hierarchization can be observed in many different contexts, e.g. level-oriented models of

computer architecture, language hierarchies (main example is the Chomsky hierarchy), machine

models, complexity and computability classes, virtual machines, ISO-OSI reference model.

With both hierarchization and modularization many other „small“ fundamental concepts are

connected.

Obviously every dissection procedure comes to an end some time, at the latest if an atomic level

is achieved. This observation leads us to the third fundamental idea within structured

dissection - orthogonalization -, which is, roughly speaking, the definition of a small set of

constituents that spans a certain domain. Due to space limitations we cannot explain this idea

in more detail. often represented tree-like

Excel Journal of Engineering Technology and Management Science

(An International Multidisciplinary Journal)

Vol. I No.6 January-June 2014 (Online) ISSN 2277-3339

5 | P a g e

Languag

e

Language plays an important role, not only for programming (programming languages), for

specification (specification languages), for verification (logic calculations), in data bases

(query languages), in operating systems (command languages), but there seems to be a general

trend in computer science to formulate any facts by a language. This approach has the following

advantage: First, it simplifies the view of facts, since every problem can be considered as a

problem upon words now; second, manipulation of languages has been successfully investigated

in the past: There are powerful theoretical results and efficient algorithms for translation. In close

relation to languages there are two fundamental concepts -syntax and semantics.

We conclude these brief considerations by presenting part of the catalog of fundamental

concepts of computer science (Figure 2). The complete catalog will appear elsewhere. Note that

names written in italics have been added for systematization only and denote groups of

concepts but are not concepts themselves.

COMPUTER SCIENCE EDUCATION WITH FUNDAMENTAL CONCEPTS

Bruner said that lessons oriented towards fundamental concepts have to be organized according

to the spiral principle which he describes as „The early teaching of science, mathematics, social

studies, and literature should be designed to teach these subjects with scrupulous intellectual

honesty, but with an emphasis upon the intuitive grasp of concepts and upon the use of these

basic concepts. A curricu- lum as it develops should revisit these basic concepts repeatedly,

building upon them until the student has grasped the full formal apparatus that goes with

them.“ (Bruner, 1960)

Bruner (1966) also recommended three representations of concepts to be learned: Before the

symbolic demonstration of notions or concepts (by formulas etc.) and their structural analysis

students should obtain an intuitive idea of the notions by pictures (iconic) and actions

(enactive).

Excel Journal of Engineering Technology and Management Science

(An International Multidisciplinary Journal)

Vol. I No.6 January-June 2014 (Online) ISSN 2277-3339

6 | P a g e

The following examples illustrate the spiral principle and also demonstrate the Vertical

Benchmark for three fundamental concepts by designeding subjects for lessons in primary

school (P), in grades 5-9 (S1) and in grades 10 and above (S2).

Divide-and-conquer approach

(P) A child may sort a stack of paper cards by size by dividing the stack, giving the parts to his

or her class-mates and merging the sorted stacks he or she is given back. Numbers may be

guessed by binar searching.

(S1) Algorithms in computational geometry, e.g. for computing the convex hull, may be used to

extend the knowledge.

(S2) Complexity considerations for general divide-and-conquer algorithms; establishing and

solving a recurrence relation for the runtime.

Worst case analysis

 (P) Worst case considerations can start with questions like: How long does it take to get to

institutes’ in the worst case, if the bus is late, if all traffic lights are red, if the roads are

improper? Or: How many questions are necessary in order to guess a number using binary

search?

(S1) A more formal approach may follow at this level, e.g. by relating the runtime to the length of

the input and determining the worst case for each input length.

(S2) Formal definition of worst case runtime and proof of lower bounds.

 Abstract data types

 (P) The blocks world may be defined as an abstract data type: On a table there is a

number of cubic blocks that may be piled up. The only two operations are (1) putting one block

onto another one and (2) testing whether a block lies on another one or whether it lies

immediately on the table. Is it possible to establish any situation in the blocks world by these two

operations (also related are the concepts of completeness and orthogonalization)?

Excel Journal of Engineering Technology and Management Science

(An International Multidisciplinary Journal)

Vol. I No.6 January-June 2014 (Online) ISSN 2277-3339

7 | P a g e

(S1) The example in (P) may be made more precise here. Problems concerning consistency and

completeness of an abstract data type may follow. Which laws hold for the operations in the

blocks world?

(S2) On this level a formal notation for abstract data types may be introduced using more

complex examples (stack, queue, file). Considerations of implementation may follow.

CONCLUSIONS

We have applied J.S. Bruner’s principle of orienting lessons towards fundamental concepts to

computer science education of students and teachers. So far this approach seems to have the

following advantages:

• A subject is more comprehensible if students and teachers grasp its fundamental

principles.

• Fundamental concepts condense information by organizing uncoherent details into a linking

structure which will be kept in mind for a longer time. Details can be reconstructed from this

structure more easily.

• Fundamental concepts enable teachers (1) to evaluate all the current buzz-words and modern

themes of computer science according to school relevance, (2) to find the „beef“, if any, in these

subjects, and (3) to teach these subjects to their students pedagogically sound.

• Fundamental concepts reduce the lag between current research findings and what is taught in

schools (Vertical Benchmark). This expresses the conviction of Bruner (1960) that „intellectual

activity is the same anywhere, whether the person is a third grader or a research scientist.“

• While fundamental concepts remain modern even in the long term (Benchmark of Time), details

become antiquated very early. So, computer science education based on fundamental concepts

can free itself from the innovative pressure of science without the content getting out-of-date.

At the present time, computer science has no „philosophy of computer science“ while

established sciences have evolved such philosophies. A collection of fundamental concepts

may serve as a first approach in this direction, may help to determine the essence of computer

science and to dissociate it from other sciences, and may provide a useful way for thinking

about teaching computer science in the classroom.

REFERENCES

1. Bruner, J.S. (1960) The process of education. Harvard University Press, Cambridge MA.

2. Bruner, J.S. (1966) Toward a theory of instruction. Harvard University Press, Cambridge

3. MA. Halmos, P.R. (1981) Does mathematics have elements? The Mathematical

Intelligencer, 3, 147-153.

4. Heitele, D. (1975) An epistemological view on fundamental stochastic concepts.

Educational Studies in Mathematics, 6, 187-205.

5. Whitehead, A.N. (1929) The Aims of Education, MacMillan.

