Excel Journal of Engineering Technology and Management Science
(An International Multidisciplinary Journal)
Vol.I No.6 January-June 2014 (Online) ISSN 2277-3339

EDUCATION BASED ON FUNDAMENTAL CONCEPTS OF COMPUTER
SCIENCE & INFORMATION TECHNOLOGY

*Dr Rizwan Koilakh, Dr Babasaheb Ambedkar Marathwada University Aurangabad
**Mohammed Waseem Ashafque, Dr Babasaheb Ambedkar Marathwada University
Aurangabad

MOTIVATION

Although computer science is a regular subject in educational institutes’ for a long time, there
is still more and more discussion on how to teach computer science and what to teach: Should
computer science education be oriented more towards its applications or more towards its
fundamentals or more towards its social effects? How can we improve computer science
education with teachers who have not passed a full university education in that field? How
can we cope with the rapid developments of computer science, both with respect to curriculum
development and continuing education?

Just to explain the last point we see that after more than 40 years computer science is still
developing dynamically. Paradigm changes are constantly announced. This leads to a
complicated dichotomy: On the one hand, people seem to agree that this progress cannot be
carried over equally fast to education because of delays in change of curricula, pedagogical
reflection, teacher education etc. On the other hand, since each student will probably face
several paradigm changes in future life - with much of the respective knowledge becoming
obsolete each time - the skills acquired earlier must be robust enough to meet the challenges of
the latest fashion, and also enable the student to cope with changes.

The same argument holds with respect to teacher education. Teachers also have to be (re-)trained
in a way that enables them, with mild support by continuing education programs, to integrate
new results into their knowledge structure and to reflect and assess recent developments with
respect to future relevance, school adequacy and other pedagogical issues.

This competency is possibly achieved best if students and teachers are given a designed of the
Jfundamental concepts, principles, methods and ways of thinking of computer science, instead
of trying to teach them an incoherent set of recent technology-driven developments as is often
done by in-service teacher education programs. Only the fundamentals seem to remain valid
in the long term and enable students and teachers to acquire new concepts successfully during
their professional career, since these new concepts will then often appear to be just further
developments or variants of Concepts already familiar and so are comprehensible to students
and teachers more easily.

FUNDAMENTAL CONCEPTS AS AN EDUCATIONAL PRINCIPLE

Whitehead (1929) proposed to deal in school with “few general Concepts of far-reaching
importance” , since the students are bewildered by a multiplicity of detail, without apparent
relevance either to great Concepts or to ordinary thoughts. The same situation we often have - so are
the author’s experiences if teachers have passed a quick in-service education program in
different “modern” subjects of computer science that enables them neither to establish a stable

1|Page

Excel Journal of Engineering Technology and Management Science
(An International Multidisciplinary Journal)
Vol.I No.6 January-June 2014 (Online) ISSN 2277-3339

cognitive structure integrating all these subjects nor to teach computer science to their students
in a suitable manner.

Bruner (1960) formulated the teaching principle that lessons should be based on the structure
of science which is defined by so-called fundamental concepts. He justified his approach as
follows: Learning is mainly for preparing us to master our future life more successfully. In
order to cope with changes occurring later in private life, economy and society students must
be able to transfer knowledge acquired earlier to new situations. Of particular interest here is the
non-specific transfer which relates to long-term (often life-long) effects: We should teach on a
meta-level fundamental notions, principles and ways of thinking (so-called fundamental
concepts) and may hope that students are able to use these abstract solution schemas in
modified (transfered) form for any (even absolutely new) problems they may face in their later
lives. Nonspecific transfer should dominate the entire educational process of schools providing
general education: Permanent creation, extension and consolidation of knowledge in form of
fundamental concepts. Therefore - and now we return to Bruner’s request - all curricula and
teaching methods in computer science classes as well as in-service or pre-service education
programs for teachers should stress the fundamental concepts of each topic. Teachers should be
enabled to analyze each new subject to be included into computer science lessons what concepts
it is based on and to present it according to the concept-oriented approach proposed in the rest
of the paper.

Unfortunately, Bruner as well as subsequent researchers do not provide an explicit definition of
fundamental concepts. Instead they give some examples from several subjects and leave it to the
reader to develop an intuitive concept of what the term might mean in general. As applied to
computer science we define the notion as follows:

A fundamental concept of computer science is a schema for thinking, acting, describing or
explaining which satisfies four criteria:

The Horizontal Benchmark. A fundamental concept is applicable or observable in multiple
ways and in different areas of computer science and organizes and integrates a wealth of
phenomena.

We call this property the Horizontal Benchmark, since the concept may be considered as a
horizontal line intersecting a large number of fields where it applies.

The Vertical Benchmark. A fundamental idea may be taught on every intellectual level.Bruner
(1960) said that ,,any subject can be taught effectively in some intellectually honest form to any
child at any stage of development®. This suggests that a fundamental idea organizes the topics of
a field also in a vertical dimension: An idea can be taught on the primary school level as well as
on the university level. Presentations differ only by level of detail and formalization. Thus, an
idea can serve as a guideline for lessons on every level of the entire educational process and
concepts can be revisited periodically in greater depth and complexity (so-called spiral principle,
see also below).

The Benchmark of Time. A fundamental idea can be clearly observed in the historical
development of computer science and will be relevant in the long run.

2|Page

Excel Journal of Engineering Technology and Management Science
(An International Multidisciplinary Journal)
Vol.I No.6 January-June 2014 (Online) ISSN 2277-3339

This aspect is important for two reasons. First, it gives a clue as to how to find fundamental
concepts: Scientific notions, concepts or structures of computer science that have a definite
historical background are more likely fundamental concepts than are recent developments.
Second, lessons based on fundamental concepts will not become antiquated as quickly as
conventional lessons - a major advantage in teaching computer science given its dynamic
evolution.

The Benchmark of Sense. A fundamental idea also has meaning in everyday life and is
related to ordinary language and thinking - its context being pretheoretical and unscientific.

Only a precise definition turns an idea ,,with sense* into an exact notion ,,without sense*. For
example, consider ,,reversibility as an idea ,,with sense* and ,,inverse function* as a purely
mathematical formalization of it ,,without sense“. While we can see examples of reversibility
in many everyday situations - do vs. undo - the term ,,inverse function® has no everyday
meaning. From the pedagogical point of view this Benchmark is closely linked to the Vertical
Benchmark. Whenever we have to teach a fundamental idea on a low intellectual level, i.e. we
have to give students a first vague impression of the idea, we may begin with those situations
in everyday life where a funda- mental idea becomes apparent. For a more specific explanation
see Section 4.

FUNDAMENTAL CONCEPTS OF COMPUTER SCIENCE

By now fundamental concepts have been proposed mainly for mathematics (e.g. Halmos
(1981)) and some of its branches (e.g. Heitele (1975)), but there are very few comments on
how these concepts have been worked out. We have tried to determine fundamental concepts by
abstracting from the contents of computer science to its concepts in three steps: (1) Analysis of
the concrete activities of computer science and their relationships and analogies. Since a
central purpose of computer science is to investigate the software development process in its
broadest sense and to provide methods for it, it seemed reasonable to first analyze for
fundamental concepts the concrete activities during this process and then to establish
relationships and analogies to the field of computer science in general; (2) Revision and
improvement of the results obtained in step 1 by checking whether each idea satisfies the four
criteria for fundamental concepts;

(3) Structuring the collection of concepts according to their relevance in computer science.

Due to space limitations we only present the final results. There are three fundamental
concepts that dominate all stages of software development as well as all activities in
computer science - algorithmization, structured dissection and language, each of which gives -
on further analysis - a wealth of other fundamental concepts (below written in italics). These
three are explained in turn in more detail now.

Algorithmization

By algorithmization we denote the entire process of designing, implementing and running an
algorithm. The strong relevance of algorithmization within computer science, as required by
the Horizontal Benchmark, seems obvious.

3|Page

Excel Journal of Engineering Technology and Management Science
(An International Multidisciplinary Journal)
Vol.I No.6 January-June 2014 (Online) ISSN 2277-3339

A careful analysis of the activities when developing algorihms gives a wealth of other
fundamental concepts which may be assigned to four large domains - design, programming,
execution, evaluation: During design of an algorihm one often uses powerful paradigms such
as divide and conquer, backtracking etc. Afterwards this design is carried over into a program
using several basic concepts to describe data and control structures, e.g. concatenation,
repetition, recursion of commands and data. The finished program is executed on one or more
processors. A fundamental idea here is the notion of process, i.e. the separation of description
and execution of an algorithm. The last group of concepts deals with assessing the quality of
algorithms. The two main criteria are correctness and complexity each related to several
corresponding concepts.

Structured discetion

Dissection covers the process of subdividing an object into several parts in a structured way.
That includes a detailed description of the parts, their relations to the whole as well as
interactions between the parts. Typical ,objects® in computer science which are dissected in
this manner are problems (into subproblems), algorithms (into procedures or modules),
modules (into smaller modules, called hierarchical modularization), the software life cycle (into
different phases), languages and machines (into different complexity classes), etc.

We can distinguish two aspects of dissection, a vertical aspect called hierarchization (Figure
1(a)), i.e. the construction of certain levels of abstraction often distinguished by different
language levels, and a horizontal aspect called modularization (Figure 1(b)) where an object is
subdivided into different parts all of the same level of abstraction. The well-known hierarchical
modularization is obtained by merging these two aspects (Figure 1(c)). The idea of
hierarchization can be observed in many different contexts, e.g. level-oriented models of
computer architecture, language hierarchies (main example is the Chomsky hierarchy), machine
models, complexity and computability classes, virtual machines, ISO-OSI reference model.
With both hierarchization and modularization many other ,,small* fundamental concepts are
connected.

Obviously every dissection procedure comes to an end some time, at the latest if an atomic level
is achieved. This observation leads us to the third fundamental idea within structured
dissection - orthogonalization -, which is, roughly speaking, the definition of a small set of
constituents that spans a certain domain. Due to space limitations we cannot explain this idea
in more detail. often represented tree-like

4|Page

Excel Journal of Engineering Technology and Management Science
(An International Multidisciplinary Journal)
Vol.I No.6 January-June 2014 (Online) ISSN 2277-3339

often represented tree-like:

]

(a) (b) (©)

Figure 1 (a) Hierarchization; (b) Modularization; (c) Hierarchical modularization.

Languag
e

Language plays an important role, not only for programming (programming languages), for
specification (specification languages), for verification (logic calculations), in data bases
(query languages), in operating systems (command languages), but there seems to be a general
trend in computer science to formulate any facts by a language. This approach has the following
advantage: First, it simplifies the view of facts, since every problem can be considered as a
problem upon words now; second, manipulation of languages has been successfully investigated
in the past: There are powerful theoretical results and efficient algorithms for translation. In close
relation to languages there are two fundamental concepts -syntax and semantics.

We conclude these brief considerations by presenting part of the catalog of fundamental
concepts of computer science (Figure 2). The complete catalog will appear elsewhere. Note that
names written in italics have been added for systematization only and denote groups of
concepts but are not concepts themselves.

COMPUTER SCIENCE EDUCATION WITH FUNDAMENTAL CONCEPTS

Bruner said that lessons oriented towards fundamental concepts have to be organized according
to the spiral principle which he describes as ,,The early teaching of science, mathematics, social
studies, and literature should be designed to teach these subjects with scrupulous intellectual
honesty, but with an emphasis upon the intuitive grasp of concepts and upon the use of these
basic concepts. A curricu- lum as it develops should revisit these basic concepts repeatedly,
building upon them until the student has grasped the full formal apparatus that goes with
them.* (Bruner, 1960)

Bruner (1966) also recommended three representations of concepts to be learned: Before the
symbolic demonstration of notions or concepts (by formulas etc.) and their structural analysis
students should obtain an intuitive idea of the notions by pictures (iconic) and actions
(enactive).

5|Page

Excel Journal of Engineering Technology and Management Science
(An International Multidisciplinary Journal)
Vol.I No.6 January-June 2014 (Online) ISSN 2277-3339

The following examples illustrate the spiral principle and also demonstrate the Vertical
Benchmark for three fundamental concepts by designeding subjects for lessons in primary
school (P), in grades 5-9 (S1) and in grades 10 and above (S2).

| argorithmization |

divide-and-conguer

backtracking l l repetition (while, list. file. sta ck. ...}

recursion (rec. procedure. tree. s earch tree)

[structured dissection |

[hierarchization | 1qrthognnaliza1ion

Sereseniation] (reat=ation]

top-down method abstract data type nesting transiation
bottom-up Mmethod team work tree interpretation

language

Figure Z Fundamental ideas of computer science.

Divide-and-conquer approach

(P) A child may sort a stack of paper cards by size by dividing the stack, giving the parts to his
or her class-mates and merging the sorted stacks he or she is given back. Numbers may be
guessed by binar searching.

(S1) Algorithms in computational geometry, e.g. for computing the convex hull, may be used to
extend the knowledge.

(S2) Complexity considerations for general divide-and-conquer algorithms; establishing and
solving a recurrence relation for the runtime.

Worst case analysis

(P) Worst case considerations can start with questions like: How long does it take to get to
institutes’ in the worst case, if the bus is late, if all traffic lights are red, if the roads are
improper? Or: How many questions are necessary in order to guess a number using binary
search?

(ST) A more formal approach may follow at this level, e.g. by relating the runtime to the length of
the input and determining the worst case for each input length.

(§2) Formal definition of worst case runtime and proof of lower bounds.

Abstract data types

(P) The blocks world may be defined as an abstract data type: On a table there is a
number of cubic blocks that may be piled up. The only two operations are (1) putting one block
onto another one and (2) testing whether a block lies on another one or whether it lies
immediately on the table. Is it possible to establish any situation in the blocks world by these two
operations (also related are the concepts of completeness and orthogonalization)?

6|Page

Excel Journal of Engineering Technology and Management Science
(An International Multidisciplinary Journal)
Vol.I No.6 January-June 2014 (Online) ISSN 2277-3339

(S1) The example in (P) may be made more precise here. Problems concerning consistency and
completeness of an abstract data type may follow. Which laws hold for the operations in the
blocks world?

(§2) On this level a formal notation for abstract data types may be introduced using more
complex examples (stack, queue, file). Considerations of implementation may follow.

CONCLUSIONS

We have applied J.S. Bruner’s principle of orienting lessons towards fundamental concepts to
computer science education of students and teachers. So far this approach seems to have the
following advantages:

* A subject is more comprehensible if students and teachers grasp its fundamental
principles.

* Fundamental concepts condense information by organizing uncoherent details into a linking
structure which will be kept in mind for a longer time. Details can be reconstructed from this
structure more easily.

* Fundamental concepts enable teachers (1) to evaluate all the current buzz-words and modern
themes of computer science according to school relevance, (2) to find the ,,beef*, if any, in these
subjects, and (3) to teach these subjects to their students pedagogically sound.

* Fundamental concepts reduce the lag between current research findings and what is taught in
schools (Vertical Benchmark). This expresses the conviction of Bruner (1960) that ,,intellectual
activity is the same anywhere, whether the person is a third grader or a research scientist.*

* While fundamental concepts remain modern even in the long term (Benchmark of Time), details
become antiquated very early. So, computer science education based on fundamental concepts
can free itself from the innovative pressure of science without the content getting out-of-date.

At the present time, computer science has no ,,philosophy of computer science” while
established sciences have evolved such philosophies. A collection of fundamental concepts
may serve as a first approach in this direction, may help to determine the essence of computer
science and to dissociate it from other sciences, and may provide a useful way for thinking
about teaching computer science in the classroom.

REFERENCES

1. Bruner, J.S. (1960) The process of education. Harvard University Press, Cambridge MA.
. Bruner, J.S. (1966) Toward a theory of instruction. Harvard University Press, Cambridge
3. MA. Halmos, P.R. (1981) Does mathematics have elements? The Mathematical
Intelligencer, 3, 147-153.
4. Heitele, D. (1975) An epistemological view on fundamental stochastic concepts.
Educational Studies in Mathematics, 6, 187-205.
5. Whitehead, A.N. (1929) The Aims of Education, MacMillan.

7|Page

