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Abstract: We propose a novel framework for photonic computing specialized in solving
discrete optimization problems by leveraging the quantum Zeno effect. We demonstrate the
efficiency of this computing paradigm within a hybrid quantum optimization machine.
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Discrete optimization problems involve finding an optimal object from a finite and discrete set of objects. Many
of the well-known discrete optimization problems such as the traveling salesman, knapsack, graph coloring, span-
ning tree, set covering, set packing, etc [1]. are classified as NP-hard, meaning no known algorithm can solve
all instances in polynomial time with respect to the problem size. Conventional von Neumann computers are
hitting the limit due to the saturation of semiconductor miniaturization. Thus, a logical progression is shifting
away from universal Turing Machines and exploring alternative computing methodologies for specific tasks. Sig-
nificant progress has been made in unconventional computing approaches where the mathematical formulation
can be mapped into the evolution of physical systems. A notable development portion of alternative computing
research, particularly in the area of quantum annealing, focuses on solving Ising problems. However, there are
many NP problems do not naturally map to binary spin states and two-body interaction, but rather higher discrete
space and multi-body interaction. Developing an effective mapping that accurately represents the original problem
within the Ising framework can be highly non-trivial. Modern quantum technologies using matter are designed as
closed quantum systems to isolate from environmental interactions, which constrains scalability for practical im-
plementation and energy efficiency. Here, we propose and demonstrate a novel room temperature hybrid quantum
optimization machine that builds on interaction with a reservoir in conjunction with the quantum Zeno blockade
to efficiently search for ground states of complex Hamiltonians.

Fig. 1. A schematic of the proposed hybrid quantum optimization machine.

The working principle of the proposed technology is schematically depicted in Fig. 1. It consists of a hybrid
optical-electronic feedback loop, which includes an optical amplifier, a photon-mode mixer/encoder, and a loss
medium with both linear and nonlinear loss mechanisms. The quantum states are encoded into a train of time-bin
states of light in the photon-number Hilbert space [2]. During each loop, optical signals are amplified by a fixed-
power optical amplifier. The output is sent into the mixer and encoder that performs linear transformation of the
time modes according to the desirable Hamiltonian, by using a series of beamsplitters, optical delay lines, and
optical switches, all controlled opto-electronically. The transformed signals are sent to the loss medium, which
causes differential loss to each time mode. The loss rate for each mode is the sum of a constant term, correspond-
ing to linear “chemical potential energy” of that mode, and a photon-number dependent term, corresponding to
the nonlinear interaction energy. The nonlinear loss can be realized by two-photon absorption, second-harmonic



generation, and quantum Zeno blockade. In the current machine offering, it is emulated by time correlated sin-
gle photon counting and feedback through an electro-optical modulation. Together, the mixer/encoder and loss
medium realize an open quantum system governed by a non-Hermitian Hamiltonian. As a result, after many
loops, the system will relax to and stabilize on a quantum state with the least loss, which corresponds to the lowest
energy state: the ground state. This approach induces loss or decoherence into the system to suppress the evolu-
tion of unwanted states while promotes least loss states evolution. We thus called this ”entropy computing”. This
optimization machine is governed by the minimization of the following cost function E over variables Vi:

E = ∑
i

CiVi +∑
i, j

Ji jViVj + ∑
i, j,k

Ti jkViVjVk + ∑
i, j,k,l

Qi jklViVjVkVl + ∑
i, j,k,l,m

Pi jklmViVjVkVlVm . (1)

Here, Vi (i = 1,2,3, · · · ,N) are real numbers over a discrete space, Ci is the linear return of each variable which
must be real numbers, Ji j, Ti jk, Qi jkl , Pi jklm represent interaction coefficients that are real numbers subject to the
tensors J, T , Q, and P being symmetric under all permutations of the indices.

In stark contrast with the Ising Hamiltonian, which is the basis model for the majority of quantum annealers, the
above objective function involves polynomial terms (up to fifth order) over discrete variables. In this regard, the
proposed hybrid quantum optimization machine offers two immediate advantages over an Ising solver; (i) it can
naturally represent non-binary optimization problems, and (ii) it involves k-body interaction terms (k = 2,3,4,5).
Accordingly, it offers great potential in efficiently solving continuous and integer variables as well as problems
that naturally involve higher-order interaction terms such as the satisfiability boolean, without requiring additional
complex encoding or incorporating auxiliary variables that adds to the size of the problem in case of an Ising
solver. Furthermore, the proposed machine naturally allows for dense long-range interactions in all orders of the
interactions which alleviates the requirement for complex embedding algorithms. Here, we report results from
our first commercially available machine, which we call Dirac-3. Dirac-3 is a discrete optimization solver which
implements the entropy computing paradigm discussed above. As a first example, we consider QPLIB 0018, a
non-convex quadratic optimization problem with 50 continuous variables over a fully connected weighted graph,
selected from QPLIB, a library of quadratic programming instances. Linear terms are added to the problem which
produce an offset of 1 from the original formulation’s objective value for all solutions. Figures 2(a-c) shows the
energy distribution over 50 runs and its evolution with iteration on Dirac-3 (red) compared with a gradient descent
algorithm (blue). Dirac-3 successfully lands in the ground state in 84% of instances. As another example, we
consider the MAX-CUT problem on a 100-node graph, g05 100.6, from the Biq Mac Library. For 100 runs on
Dirac-3, the results distribute around the ground state as shown in Fig. 2(d).

Fig. 2. (a,b) Energy distribution over 50 runs of Dirac-3 (red) and gradient descent algorithm (blue).
(c) Energy evolution versus the number of iterations on Dirac-3 (red) and gradient descent (blue).
(d) Energy distribution (cut value) for the MAX-CUT problem over 100 runs of Dirac-3.

In summary, we demonstrated discrete optimization with a hybrid quantum optimization machine Dirac-3. Our
results highlight the performance of Dirac-3 for efficiently solving non-convex polynomial problems as well as
combinatorial and integer programming problems. Our next-generation of entropy computing technology will
focus on implementing optical interactions to realize an all-optical quantum optimization machine [3].
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