
Profiling of CVQBoost
Algorithm: Fraud

Detection
December 2024

Quantum Computing Inc
quantumcomputinginc.com

(703) 436-2161



Abstract

This study evaluates the performance of CVQBoost, a novel extension of the QBoost algorithm
leveraging quadratic optimization solvers like QCi’s Dirac-3, for a challenging fraud detection task.
Using the imbalanced Kaggle Credit Card Fraud Detection dataset, we benchmark CVQBoost
against the state-of-the-art XGBoost algorithm across varying dataset sizes, feature counts, and
class imbalance ratios. Our results demonstrate that CVQBoost achieves superior runtime
performance, particularly as the size of the training data and the number of features increase,
where its scaling advantage becomes increasingly evident.

In terms of accuracy, assessed using the Area Under the Curve (AUC), XGBoost initially exhibits
higher performance when balancing is minimal, and the minority-to-majority class ratio remains
extremely low. However, as the training data becomes more balanced—using strategies such as
ADASYN, SMOTE, SMOTE-SVM, and downsampling—CVQBoost consistently catches up and
achieves comparable AUC scores. Notably, with the ADASYN balancing strategy, CVQBoost
eventually surpasses XGBoost in accuracy for higher class ratios. These findings highlight
CVQBoost’s superior scalability and competitive accuracy, making it a promising alternative for
large-scale, imbalanced classification problems such as fraud detection.

In summary, benchmarking results show that CVQBoost on Dirac-3 perform superior speed in
time as number of features and amount of data increases while giving competitive accuracy.

1 Introduction

The CVQBoost algorithm presented here is our extension of the QBoost algorithm introduced by
Neven et al. (2009), is a classification method that leverages quadratic optimization solvers, such as
QCi’s Dirac machines, to achieve superior speed and power efficiency compared to classical
approaches. CVQBoost is an adaptation of the classical boosting algorithm, a powerful machine
learning technique that combines the outputs of several weak classifiers to create a strong classifier.

In classical boosting algorithms like AdaBoost, the weights of weak classifiers are iteratively
adjusted based on their performance, aiming to minimize the overall classification error. CVQBoost
innovates by utilizing quantum computing to solve this optimization problem. It encodes the
boosting task as a quadratic optimization problem, leveraging the Dirac machine’s capability to
explore multiple solutions simultaneously and efficiently escape local minima, surpassing the
efficiency of classical algorithms.

In the sections that follow, the runtime of a Dirac-3 implementation of CVQBoost is benchmarked
against a state-of-the-art classical method: the XGBoost classification algorithm. Experiments are
conducted across varying data sizes and feature counts, with a detailed breakdown of runtimes for
different components of the CVQBoost algorithm presented.

2

https://arxiv.org/abs/0912.0779


2 Formulation

The idea is based on the concept of boosting. Let us assume that we have a collection of N "weak"
classifiers hi where i = 1, 2, ..., N . The goal is to construct a "strong" classifier as a linear
superposition of these weak classifiers, that is,

y =
N∑
i=1

wihi(x) (1)

where x is a vector of input features and y ∈ {−1, 1}. The goal is find wi, weights associated with the
weak classifiers.

We use a training set {(xs, ys)|s = 1, 2, ..., S} of size S . We can determine optimal weights wi by
minimizing,

min
w

S∑
s=1

|
N∑
i=1

wihi(xs)− ys|2 + λ
N∑
i=1

(wi)
2 (2)

where the regularization term λ
∑N

i=1(wi)
2 penalizes non-zero weights; λ is the regularization

coefficient.

min
w

N∑
i=1

N∑
j=1

Jijwiwj +
N∑
i=1

Ciwi (3)

where

Jij =
S∑

s=1

hi(xs)hj(xs) (4)

and

Ci = −2
S∑

s=1

yshi(xs) (5)

subject to,

3



N∑
i=1

wi = 1 (6)

Note that the above algorithm assumes that the total number of weak classifiers, that is N , is less
than the number of available qudits on Dirac-3.

2.1 Choices of Weak Classifiers
There are many ways to design a subset of weak classifiers. We have tested CVQBoost using
logistic regression, decision tree, naive Bayesian, and Gaussian process classifiers. Each weak
classifier is constructed using one or two of the features chosen from all features. This yields a set
of weak classifiers that can be used to construct a strong classifier.

3 Use Case

3.1 Dataset
The dataset used in this study is the Kaggle Credit Card Fraud Detection dataset, a widely
recognized resource for machine learning research, particularly in anomaly detection.

This dataset comprises transactions made by European credit cardholders over a two-day period in
September 2013. It contains 284,807 transactions, of which 492 (approximately 0.172%) are labeled
as fraudulent. The significant class imbalance makes it ideal for exploring techniques tailored to
imbalanced classification problems.

A total of 38 features are included in the dataset.

3.2 Time Profiling

3.2.1 Impact of Training Data Count on Runtimes

Table 1 presents the runtimes of CVQBoost and XGBoost across varying training dataset sizes,
ranging from 1,000 to 150,000 samples. All runtimes are reported in seconds, with each experiment
repeated multiple times to ensure reliability. The table provides both the mean and standard
deviation of the runtimes, as well as a breakdown of CVQBoost’s runtime components. Notably, the
Dirac-3 component accounts for a substantial portion of the total runtime for CVQBoost.

A comparison between CVQBoost and XGBoost reveals that XGBoost achieves shorter runtimes on
smaller datasets. However, as the training dataset size increases, XGBoost’s runtime grows
significantly faster than CVQBoost’s. This trend is further illustrated in Figure 1, which plots training
runtimes against dataset size.

4

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud


These results suggest that while XGBoost excels in speed for smaller datasets, CVQBoost offers a
clear performance advantage as dataset sizes increase. Specifically, CVQBoost begins to
outperform XGBoost when the training sample size approaches 50,000 samples, highlighting its
scalability for larger datasets.

train data count cvqboost train time xgboost train time dirac3 time

1000 7.3 +/- 1.3 0.9 +/- 0.1 1.3 +/- 0.5
2000 7.9 +/- 1.3 1.8 +/- 0.1 1.7 +/- 0.5
5000 7.4 +/- 1.2 3.7 +/- 0.1 1.4 +/- 0.5
10000 7.3 +/- 1.1 7.2 +/- 0.2 1.1 +/- 0.3
20000 9.0 +/- 1.3 14.6 +/- 0.3 1.7 +/- 0.9
50000 10.5 +/- 3.2 37.4 +/- 1.2 2.3 +/- 3.1
100000 12.3 +/- 1.1 78.0 +/- 2.9 1.2 +/- 0.4
150000 15.1 +/- 1.4 117.4 +/- 4.0 1.3 +/- 0.5

Table 1: Breakdown of CVQBoost and XGBoost runtimes for different training data counts; number
of features: 38.

5



Figure 1: Training runtime of CVQBoost vs. count of training data samples. The 95% confidence
intervals are shown.

3.2.2 Number of Features

Table 2 summarizes the runtimes of CVQBoost and XGBoost for varying numbers of features,
ranging from 5 to 38. All runtimes are reported in seconds, with each experiment repeated multiple
times to ensure reliability. The table includes both the mean and standard deviation of the runtimes,
as well as the breakdown of CVQBoost’s runtime, where the Dirac-3 component constitutes a
significant portion of the total runtime.

As the number of features increases, the runtimes of both CVQBoost and XGBoost grow. However,
CVQBoost consistently demonstrates significantly shorter runtimes compared to XGBoost.

Figure 2 further illustrates the relationship between runtime and feature count for both methods.
Notably, CVQBoost exhibits a more favorable runtime scaling as the feature dimension increases,
making it particularly advantageous for datasets with a larger number of features.

4 Accuracy Profiling

Handling class imbalance is a central challenge in machine learning, particularly in applications
such as fraud detection, where the minority class represents rare events. In the original dataset
used for this study, fraud cases (the minority class) constitute less than 0.1% of the data. To address

6



num features cvqboost train time xgboost train time dirac3 time

5 7.6 +/- 1.3 13.7 +/- 0.3 1.2 +/- 0.4
10 7.3 +/- 1.3 18.2 +/- 0.8 1.2 +/- 0.4
20 8.8 +/- 1.3 26.3 +/- 0.5 1.4 +/- 0.5
30 9.5 +/- 1.2 34.4 +/- 3.8 1.2 +/- 0.4
38 10.0 +/- 1.4 41.1 +/- 6.6 1.6 +/- 0.5

Table 2: Breakdown of CVQBoost and XGBoost runtimes for different counts of features; training
data count: 50,000.

this extreme imbalance, four widely-used data balancing strategies—ADASYN, SMOTE,
SMOTE-SVM, and majority class downsampling—were applied to the training data. The test data
remained unchanged to ensure an unbiased evaluation of model performance. The accuracy of
CVQBoost and XGBoost was assessed across six levels of class imbalance, characterized by
minority-to-majority class ratios of 0.01, 0.02, 0.05, 0.1, 0.5, and 1.0. The Area Under the Curve (AUC),
calculated on the test data, was used to measure model accuracy. Table 3 provides a detailed
comparison of AUC values across all experiments, while Figures 3–6 illustrate the trends for each
balancing strategy.

The results reveal interesting patterns that provide insight into the behavior of the two algorithms
under varying levels of class imbalance. When the balancing is minimal—that is, when the
minority-to-majority class ratio remains small (0.01 or 0.02)—XGBoost achieves higher AUC scores
compared to CVQBoost. This suggests that XGBoost is better able to leverage the heavily skewed
class distribution in the early stages of balancing. However, as the class ratio increases and the
training data becomes more balanced, CVQBoost’s performance improves steadily and catches up
to that of XGBoost, eventually achieving comparable AUC scores.

The effect of balancing strategies is particularly noticeable when using ADASYN. ADASYN
generates synthetic samples by focusing on regions of the feature space that are prone to
misclassification, thereby improving the representation of the minority class. As the
minority-to-majority class ratio increases, CVQBoost not only matches but eventually surpasses
XGBoost in terms of AUC. This can be seen clearly in both the table and Figure 3, where CVQBoost
achieves a slight but consistent improvement over XGBoost at higher class ratios. This suggests
that CVQBoost is particularly effective at learning from the diversity introduced by
ADASYN-generated synthetic samples.

A similar trend is observed with SMOTE and SMOTE-SVM, where both algorithms benefit as the
class ratio increases. However, while XGBoost maintains a slight edge at smaller ratios, CVQBoost
consistently narrows the gap as the balancing becomes more pronounced. The superior
performance of CVQBoost at higher class ratios reflects its ability to generalize better when
sufficient representation of the minority class is provided.

In the case of majority class downsampling, where no synthetic data is introduced and the majority
class is simply reduced in size, both algorithms demonstrate gradual improvements in AUC as the

7



Figure 2: Training runtime of CVQBoost vs. number of features. The 95% confidence intervals are
shown.

class ratio increases. However, the rate of improvement is less pronounced compared to the
oversampling methods. Even in this scenario, CVQBoost matches and, at times, exceeds the
performance of XGBoost as the training data becomes more balanced.

Overall, these results indicate that XGBoost is initially more effective at learning from highly
imbalanced data with minimal balancing, as reflected by its superior AUC scores at low class ratios.
However, as the minority-to-majority class ratio increases, CVQBoost catches up and often
surpasses XGBoost, particularly when using ADASYN. This highlights the adaptability and
robustness of CVQBoost, especially in scenarios where synthetic balancing methods enhance the
representation of the minority class. Table 3 and Figures 3–6 collectively demonstrate that
CVQBoost becomes increasingly advantageous as class imbalance is mitigated, offering superior
performance for moderately to highly balanced training data.

8



Figure 3: AUC score of CVQBoost vs. minority to majority class ration in training dataset. The
balancing strategy used is ADASYN. The 95% confidence intervals are shown.

Figure 4: AUC score of CVQBoost vs. minority to majority class ration in training dataset. The
balancing strategy used is SMOTE. The 95% confidence intervals are shown.

9



Figure 5: AUC score of CVQBoost vs. minority to majority class ration in training dataset. The
balancing strategy used is SVM-SMOTE. The 95% confidence intervals are shown.

Figure 6: AUC score of CVQBoost vs. minority to majority class ration in training dataset. The
balancing strategy used is majority class downsampling. The 95% confidence intervals are shown.

10



sampling strategy minority to majority class ratio cvqboost auc xgboost auc

ADASYN 0.01 0.7105 +/- 0.0 0.9003 +/- 0.0
ADASYN 0.02 0.7388 +/- 0.0 0.8946 +/- 0.0
ADASYN 0.05 0.7642 +/- 0.0 0.8881 +/- 0.0
ADASYN 0.1 0.799 +/- 0.0 0.8904 +/- 0.0
ADASYN 0.5 0.8555 +/- 0.0002 0.8843 +/- 0.0
ADASYN 1.0 0.8855 +/- 0.0019 0.8826 +/- 0.0
SMOTE 0.01 0.7493 +/- 0.0 0.9037 +/- 0.0
SMOTE 0.02 0.7697 +/- 0.0 0.8998 +/- 0.0
SMOTE 0.05 0.7948 +/- 0.0 0.8842 +/- 0.0
SMOTE 0.1 0.8164 +/- 0.0 0.8836 +/- 0.0
SMOTE 0.5 0.855 +/- 0.0004 0.8836 +/- 0.0
SMOTE 1.0 0.8498 +/- 0.0021 0.8824 +/- 0.0
SVMSMOTE 0.01 0.7674 +/- 0.0 0.9058 +/- 0.0
SVMSMOTE 0.02 0.7902 +/- 0.0 0.9019 +/- 0.0
SVMSMOTE 0.05 0.8092 +/- 0.0 0.9027 +/- 0.0
SVMSMOTE 0.1 0.8263 +/- 0.0 0.9051 +/- 0.0
SVMSMOTE 0.5 0.8582 +/- 0.0014 0.9033 +/- 0.0
SVMSMOTE 1.0 0.8569 +/- 0.001 0.902 +/- 0.0
Downsampling 0.01 0.7415 +/- 0.0 0.9105 +/- 0.0
Downsampling 0.02 0.7698 +/- 0.0 0.9056 +/- 0.0
Downsampling 0.05 0.7948 +/- 0.0 0.9079 +/- 0.0
Downsampling 0.1 0.8167 +/- 0.0 0.9007 +/- 0.0
Downsampling 0.5 0.8689 +/- 0.0004 0.8915 +/- 0.0
Downsampling 1.0 0.8508 +/- 0.0016 0.8872 +/- 0.0

Table 3: AUC scores for CVQBoost and XGBoost using different balancing strategies and minority to
majority class rations.

11


	Introduction
	Formulation
	Choices of Weak Classifiers

	Use Case
	Dataset
	Time Profiling

	Accuracy Profiling

