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1 Introduction

Investors aim to maximize their portfolio’s expected return while minimizing risk, typically measured
by the variance of returns. This trade-off between risk and return lies at the heart of modern
portfolio theory. Risk, quantified as the variance of portfolio returns, represents the uncertainty
associated with the future performance of investments, while the expected return reflects the
anticipated profit from a portfolio. Striking the right balance between these two competing
objectives is crucial for successful investment strategies.

One of the foundational concepts in portfolio optimization was introduced by Harry Markowitz in
1952 [9], marking a significant breakthrough in financial theory. Markowitz introduced the notion that
diversification—spreading investments across a range of assets—can reduce the overall risk of a
portfolio without sacrificing returns. This idea revolutionized the way investors construct portfolios,
emphasizing that an optimal portfolio should focus not only on maximizing returns but also on
minimizing risk. Markowitz’s work laid the foundation for Modern Portfolio Theory (MPT), which
remains a cornerstone of financial economics.

A widely adopted metric for evaluating the performance of a portfolio relative to its risk is the
Sharpe ratio, denoted by S . The Sharpe ratio, introduced by William F. Sharpe, measures the excess
return per unit of risk, defined as the portfolio’s standard deviation of returns:

S =
E(R)− r0

σ(R)
(1)

where:

• E(R) is the expected return of the portfolio,

• r0 is the risk-free interest rate, and

• σ(R) is the standard deviation of the portfolio’s returns, which reflects risk.

The Sharpe ratio provides a standardized way to compare different portfolios or investments by
adjusting the expected return above the risk-free rate for the risk taken. A higher Sharpe ratio
indicates that an investment offers better returns per unit of risk, making it a key measure for
performance evaluation.

While the Sharpe ratio is valuable, investors may also prioritize different metrics depending on their
risk tolerance. For risk-averse investors, minimizing risk might take precedence, leading to portfolios
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that emphasize low variance even at the cost of lower expected returns. On the other hand, more
risk-tolerant investors may accept higher volatility in exchange for the potential of higher returns.
Thus, portfolio optimization becomes a dynamic process, tailored to an investor’s risk preferences
and financial objectives.

Portfolio Optimization with Quantum Computing

Quantum computing promises significant improvements in solution quality and computing speed
when solving large-scale optimization problems due to quantum parallelism. Studies using
Variational Quantum Eigensolver (VQE) or Quantum Approximate Optimization Algorithms (QAOA)
on gate-based machines as well as quantum annealers [12, 4, 10, 3] have shown encouraging results
for portfolio optimization. However, these studies rely on binary encoding, limiting decision
variables to "yes/no" choices for asset inclusion. For finer control over portfolio allocation (how
much to invest in each asset), binary encoding becomes unsuitable. This necessitates a mapping
step to translate continuous variables into a format compatible with quantum hardware, leading to
the increase in problem size and dynamic range. This limitation can be bypassed using Dirac-3 QCi’s
quantum sum-constrained continuous solver which allows easy direct mapping of the natural
objective function for portfolio optimization which will be outlined in 2.2.

2 Method

2.1 Management Factors
The portfolio management method proposed seeks to build an optimal portfolio by minimizing the
risk and maximizing the return based on previous performance in a recent time period (the
"look-back window"). This method assumes that the performance of this portfolio will be close to
previous performance in the near future (the "look-forward window"). The look-forward time period
is usually much shorter than the look-back period.

To prevent investors from losing all risking large losses in a specific asset, constraints are used to
ensure diversification. These could be minimum or maximum weightings for specific asset classes
or limitations on individual asset correlations within the portfolio.

2.2 Model
Let K be the total number of available stocks to choose from, that is the size of the stock pool. For
example, we can use the collection of all stocks in an index such as the Nasdaq-100 index as our
stock pool. We want to choose the weights of stocks such that the portfolio risk is minimized, while
the portfolio expected return is maximized:

min
{wi}i∈{1,2,...,K}

[−E(R)RB + ξVAR(R)] (2)
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where R is the daily returns of the portfolio over some period of time, VAR(R) and E(R) are the
variance and expectation of daily returns, ξ and RB are hyper-parameters, and {wi} is the weight of
stock i in the portfolio; i ∈ {1, 2, ..., K}. We call RB the base interest rate; it is introduced so that the
two added terms in the objective function are on an equal footing. Obviously, RB can be absorbed
into ξ. A large value of ξ means the focus of optimization is to increase return, whereas a small value
indicates the reduction of risk is more important. We obviously want to the weights to sum to 1. So
the optimization is subject to

K∑
i=1

wi = 1 (3)

We also want to make the portfolio diverse. So we can apply an upper limit on all weights wi,

wi ≤ Wmax (4)

The portfolio daily return over a time periodm can be written as a linear combination of daily returns
of its constituent stocks over the same time period. We have,

R(m)(t) =
K∑
i=1

wir
(m)
i (t) (5)

where r
(m)
i (t) is the daily return of stock i at time t during time periodm.

The expectation of portfolio daily return over time periodm can thus be expanded as,

E(R(m)) =
K∑
i=1

wiE(r
(m)
i ) (6)

and the variance of portfolio daily returns over time periodm is expanded as,

VAR(R(m)) =
K∑
i=1

K∑
j=1

wiwjCOV(r
(m)
i , r

(m)
j ) (7)

where COV is the covariant function.

To impose the inequality constraints in Equation 4, we can introduce K auxiliary variables
wK+1, wK+2, ..., w2K , and impose K equality constraints as,
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wi + wi+K = Wmax (8)

where

2K∑
i=1

wi = KWmax (9)

Substituting Equations 6 and 7 into Equation 2, the objective function f (m) becomes,

f (m)(w) =
K∑

i,j=1

wiA
(m)
ij wj +

K∑
i=1

wib
(m)
i + α(

K∑
i=1

wi − 1)2 + β
K∑
i=1

(wi + wi+K −Wmax)
2 (10)

where

A
(m)
ij = ξCOV (r

(m)
i , r

(m)
j ) (11)

b
(m)
i = −RBE(r

(m)
i ) (12)

To avoid overfitting on the portfolio data, we can minimize the average of the cost function overM
overlapping time periods, that ism ∈ {1, 2, ...,M}. The problem becomes,

f(w) =
1

M

M∑
m=1

f (m)(w) (13)

Adding the constraints in Equations 3 and 8 to the objective function in Equation 13, the optimization
problem reduces to,

min
wi

2K∑
i=1

2K∑
j=1

Jijwiwj +
2K∑
i=1

hiwi (14)

where the two body coupling coefficients Jij are defined as,
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Jij =



1
M

∑M
m=1A

(m)
ij + α + βδij if i, j ≤ K

β if i ≤ K, j = i+K

β if i = j +K, j ≤ K

βδij if i > K, j > K

0 otherwise

(15)

and the linear coefficients hi are defined as,

hi =

{
bi − 200α− 2βWmax if i ≤ K

−2βWmax if i > K
(16)

2.3 Advantages of using Dirac-3
No need for an additional embedding step: The construction of the portfolio optimization model in
Equation 14 requires continuous variables wi. This requires an additional embedding step to convert
the problem into a Quadratic Unconstrained Binary Optimization (QUBO) format [5, 1]. Dirac-3
quantum optimization machine offers a significant advantage. Due to its ability to perform
optimization with discrete variables encoded in a high-dimensional time-energy mode [13], Dirac-3
can handle the input from Equation 14 directly. This eliminates the conversion step and reduces the
overall complexity of the problem represented.

Increased problem size and accuracy-complexity trade-off: Replacing continuous variables with
binary ones inflates the problem size. This creates a trade-off: higher accuracy demands a larger
number of variables, which can surpass the hardware’s limitations in terms of both problem
complexity and dynamic range. Here, the dynamic range is defined as the ratio of largest to
smallest element of the Hamiltonian in decibels. QCi’s Dirac-3 is designed to have an optimal
performance for problems with a dynamic range of less than 23 decibels.

Limited connectivity impacts: On many other quantum devices, the device topology directly
affects the optimization performance. Forcing a problem to conform to a device-specific
configuration can lead to scenarios where there are increases in error rates, execution times, and in
some cases an inability to run the problem entirely [7, 2, 11, 8].
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3 Results

look-back window 60 days
look-forward window 30 days

window-size 30 days
window-overlap 15 days

RB (annual) 5%
Wmax 8%
α 5
β 1
ξ 1

Table 1: Parameters used for portfolio optimization algorithm run on Dirac-3.

Our algorithm was implemented and executed on QCi’s Dirac-3 quantum optimization machine. We
tested its performance on a 21-year period, from January 1st, 2003, to March 31st, 2024. The model
parameters used are detailed in Table 1. While these choices of hyper-parameters are believed to
be reasonable, a thorough study is needed to understand the impact of each parameter and to
choose an optimal value. Note that the values used for α and β ensure that the equality constraint 3
and inequality constraint 4 are satisfied. The only hyperparameter which we have studied in this
work is ξ. With the assumption of monthly portfolio rebalancing, each test over the 21 year period
involved solving 255 optimization problems on Dirac-3.

3.1 Availability of historical data
:

At each point of time during the 21-year period, the constituents of Nasdaq-100 at that time are
used. Some of these stocks were delisted a long time ago and, as such, their historical prices may
not be available or easily accessible. We have used multiple sources to get the stock prices.
However, the historical prices of some constituents of Nasdaq-100 for older dates are not available.

Figure 1 shows the count of constituent stocks with historical data available in each month since
2003. As can be seen, only since 2016 the historical prices of about 100 of the Nasdaq-100
constituents are available; only the stocks with available historical prices during all periods were
used for testing.

3.2 Comparison of the optimized portfolio to Nasdaq-100 index
Figure 2 compares the values of the optimal portfolio constructed by our algorithm with the
Nasdaq-100 index over the 21-year period, assuming an initial investment of $1million in each on
January 1st, 2003. As the figure shows, the optimal portfolio delivers a higher overall return than the
Nasdaq-100 index.
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Figure 1: Counts of stocks used in the optimized portfolio over time.

Figure 2: An optimized portfolio values result from Dirac-3 (blue) over a 21 year time period
compared to the Nasdaq-100 index (orange). Porfolio optimized by Dirac-3 performed superior to
Nasdaq-100 consistently through out this time frame.

Figure 3 shows the monthly returns of the optimal portfolio, adjusted with the Nasdaq-100 (Symbol
NDX) returns. Thus, the positive values (green bars) correspond to the months in which the optimal
portfolio outperforms Nasdaq-100 index, and the negative values (red bars) are related to the
months of inferior performance; the optimal portfolio has outperformed the index in 138 out of 255

Copyright 2024 Quantum Computing Inc. 8



Figure 3: Monthly returns of the optimized portfolio, adjusted by Nasdaq-100 returns in the same
calendar month, over a 21 year time period. A positive value (green) indicates out-performance, and
a negative value (red) implies under-performance compared to the Nasdaq-100 index.

months, that is a rate of 54.1%. On average, the optimal portfolio outperforms the index by a monthly
return of 1.15% +/- 5.41%, compared to Nasdaq-100 that delivered a monthly return of 1.10% +/-
6.80% over the 21 year period; the optimal portfolio delivered a slightly higher return with a
significantly lower risk.

3.3 Hyperparameter study
Some parameter tuning was done to better understand the effect of parameters on the
corresponding optimal portfolio. However, a more comprehensive study is needed to get a
complete picture of how these parameters affect the portfolio performance and what the optimal
choices are.

Table 2 shows the average and standard deviation of monthly returns for optimal portfolios with
different values of ξ from 0.01 to 5, compared to those of Nasdaq-100. As can be seen, all of the
optimal portfolios yield superior monthly returns over the index, while keeping the return volatility,
presented by the standard deviation of monthly returns, well below that of the index. As can be
seen, a choice of ξ = 1 seems to perform better than all other choices of ξ, although the statistical
significance of this result cannot be judged based on the present limited study.

Table 3 shows the count and percentage of calendar months in which the optimal portfolio
outperformed the index for different values of ξ. As can be seen, the statistics are more or less the
same fort all choices of ξ.
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Portfolio Average Monthly Return Monthly Return Standard Deviation
ξ = 0.01 1.1375% 5.4024 %
ξ = 0.1 1.1231% 5.3993%
ξ = 1.0 1.1510% 5.4115%
ξ = 5.0 1.1280% 5.3994%

Nasdaq-100 1.1095% 6.7804%

Table 2: Average monthly returns and monthly return standard deviations for optimal portfolios with
different values of ξ, compared to Nasdaq-100; α = 5, β = 1.

Portfolio Number of Outperformed Months Rate
ξ = 0.1 137 53.7%
ξ = 0.5 137 53.7%
ξ = 1.0 138 54.1%
ξ = 5.0 137 53.7%

Table 3: The count and fraction of months (over a 252 months period) that optimal portfolios
corresponding to different ξs outperform Nasdaq-100 index; α = 5, β = 1.

3.4 The impact of relaxation schedule
Dirac-3 offers four relaxation schedules, each determining the time allocated for the system to
evolve and converge towards the ground state. Schedules 1, 2, 3, and 4 correspond to different time
settings, with higher schedule numbers indicating slower system evolution and, consequently, a
higher probability of obtaining favorable results.

Table 4 shows the average and standard deviation of monthly returns for different relaxation
schedules. As expected, the highest relaxation schedule of 4 yields superior results; however, using
a relaxation schedule of 3 yields similar results with a significantly improved runtime. Table 5 shows
the runtimes (in seconds) of each optimization solved on Dirac3 for different relaxation schedules.
Note that each test over the 21 year period consists of 255 optimization problems. As can be seen,
the runtime improves significantly as we change the relaxation schedule from 4 to 3. However,
further decreasing the relaxation schedule does not seem to improve the runtime.

Relaxation Schedule Average Monthly Return Monthly Return Standard Deviation
4 1.1510% 5.4115%
3 1.1438% 5.4191%
2 1.1265% 5.4077%
1 1.1357% 5.4220%

Table 4: Average monthly returns and monthly return standard deviations for optimal portfolios with
different values of ξ, compared to Nasdaq-100; ξ = 1, α = 5, β = 1.
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Relaxation Schedule Optimization Runtime (seconds)
4 209 +/- 28
3 60 +/- 16
2 62 +/- 17
1 72 +/- 13

Table 5: Average optimization runtimes; ξ = 1, α = 5, β = 1.

Figure 4: Solution energies; Dirac-3 vs. classical.

3.5 Comparison to a classical solver
We ran the portfolio optimization test over the 21 year period using LocalSolver (Hexaly)
Optimizer [6], a leading classical optimization technology.

Figure 4 shows the solution energies of LocalSolver and Dirac-3. As can be seen, the energies are
similar, although LocalSolver yields a slightly lower energy for some of the solutions.
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4 Conclusion

We demonstrated a method for portfolio allocation that leverages investment fundamentals to
maximize returns while minimizing risk. The method is implemented on a commercially available
Dirac-3 quantum optimization machine. The results demonstrate the machine’s effectiveness in
solving continuous quadratic optimization problems with multi-level variables. This achievement
paves the way for tackling complex combinatorial optimization problems directly on quantum
hardware, eliminating the need for binary conversion or graph mapping, which can cause significant
problem size and dynamic range issues. Consequently, portfolios optimized using Dirac-3 achieve
superior performance compared to the Nasdaq-100 index, delivering higher returns with lower
monthly volatility.

5 Future Work

Our future research will explore the following avenues:

Device Tuning and Relaxation Schedules: We will investigate whether device tuning and exploring
different relaxation schedules can further improve the results.

Benchmarking: We will conduct a benchmark comparison against classical methods like Monte
Carlo simulation to assess the solution quality obtained by Dirac-3.

Time-to-Solution Analysis: A comparative analysis of the time-to-solution between Dirac-3,
classical methods, and the QUBO format on other quantum hardware platforms would further
solidify the efficiency and processing power of the Dirac-3 optimization machine.
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