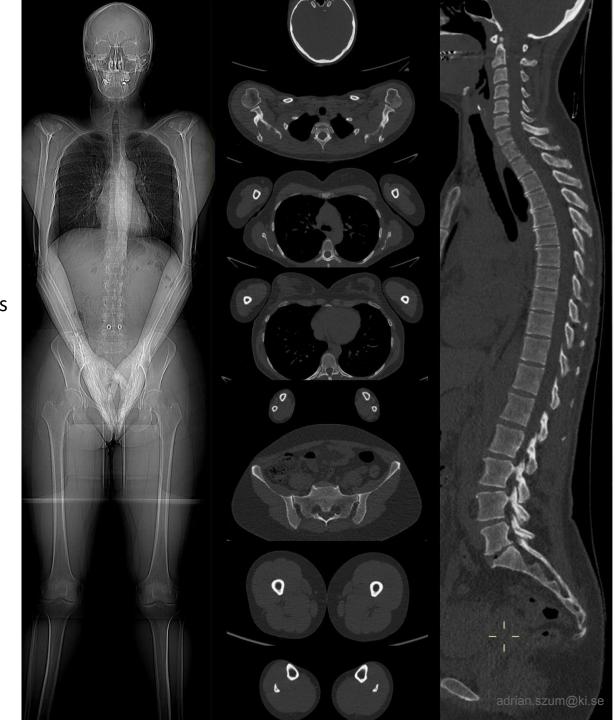
Photon-counting CT Future Prospects in Trauma

Adrian Szum

Radiologist, Fellow in Neuroradiology PhD student, MD Radiological Leadership Function (RaLF)

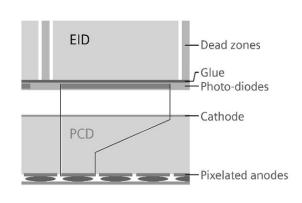
Department of Neuroradiology Medical Diagnostics Karolinska Karolinska University Hospital

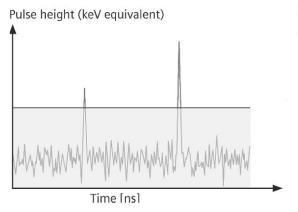
No financial interests to disclose.

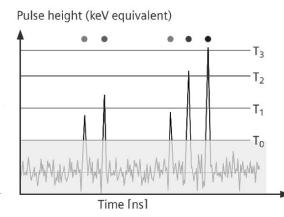


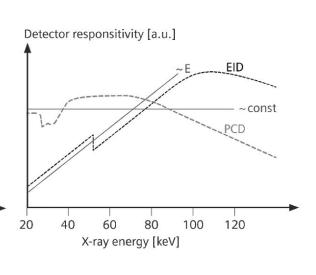
Trauma Applications

- Head
 - Detection of hemorrhages and ischemic changes
- Chest


 - Pulmonary structures Lung contusions, pneumothorax, mediastinal injuries
- Abdominal and Pelvic


 - Solid organs (liver, spleen, kidneys) Internal bleeding, vascular injuries, organ damage
- Spine and Extremity
 Spine injuries
 Complex fractures, soft tissue injuries
- Pediatric
 - Radiation dose reduction
 - Imaging small anatomical structures
- Geriatric
 - Reduced iodine dose





Smaller pixels

Higher resolution

No background noise

Lower radiation dose

Multiple Energy levels

Always Dual Energy Quantitative

Faster scans (13x)

Higher sensitivity

Lower IV contrast (80% lower)

Challenges with CT imaging

- Image quality challenges
 - Soft tissue differentiation
 - Spatial resolution: Complex fractures, small bone fragments, inner ear structures
 - Temporal resolution: Motion artifacts
 - Overweight patients
 - Beam hardening and metal artifacts: dense material
- IV contrast
 - Decreased Renal Clearance
 - Allergy
- Radiation exposure
 - Pediatric / Pregnant
 - Follow-up studies and cancer screening

ANNO 1810

- Higher spatial resolution
- Higher low contrast detectability
- Lower IV contrast
- Lower radiation dose
- Better 3 material decomposition
 - Iodine / VNC maps
 - Bone marrow edema

- Higher total tube output
- Water cooling
- Rapid Multi-Phase Imaging
- Bore size 82 cm
- 3D camera positioning → 1 shorter topogram
- Workflow automation:
 - Planning
 - Contrast injection
 - Rapid results:
 - MPR, MIP, Labeling, Dual Energy, Perfusion, 3D

240 kW	Siemens NAEOTOM Alpha / SOMATOM Force
120 kW	Philips Spectral CT 7500
108 kW	Revolution Apex Elite
100 kW	Canon AQUILION One

Summary

What is photon-counting CT?

Next-generation

Why is it needed?

Lower radiation dose
Lower contrast medium dose
Better spatial resolution
More stable HU values
Monoenergetic Imaging

Is it just for research?

No! Clinically approved with real clinical benefits

