



# Aortic trauma

MD, PhD Lina Padervinskienė Lithuanian University of Health Sciences The Hospital of LUHS Kauno Klinikos

> The 12th Nordic Course in Trauma Radiology 12/06/2024 Stocholm



I have nothing to declare.

2







Classification

Radiological evaluation

Cases



## **Classification – based on trauma mechanism**

### Blunt

• High energy trauma

### Penetrating

• Direct stab or cut





## **Classification – based on trauma mechanism**

### Blunt

• High energy trauma



### Penetrating

• Direct stab or cut



### latrogenic aorta injury

- During transcatheter interventions
- Vertebral transpedicular bone grafting

Foreign body in the oesophagus/trachea





## **Overview**

- Rare but lethal
- Overall incidence <1%
- 80-90% immediately fatal
- The second leading cause of death in blunt trauma
- Mortality rate who were treated in the emergency department ~19%.
- Often present with multiple associated injuries









Eric M. Isselbacher. Circulation. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines, Volume: 146, Issue: 24, Pages: e334-e482, DOI: (10.1161/CIR.000000000001106)

 $\ensuremath{\textcircled{\sc 0}}$  2022 by the American College of Cardiology Foundation and the American Heart Association, Inc.







## **Classification – based on location**

### Thoracic

• More common (95%)



### Abdomen

• Uncommon (5%)



### MOKSLŲ UNIVERSITETAS

## **AAST Injury Scoring Scale**

### **Thoracic Vascular Injury Scale**

| Grade* | Description of injury                             |  |
|--------|---------------------------------------------------|--|
|        |                                                   |  |
| I      | Intercostal artery/vein                           |  |
|        | Internal mammary artery/vein                      |  |
|        | Bronchial artery/vein                             |  |
|        | Esophageal artery/vein                            |  |
|        | Hemizygous vein                                   |  |
|        | Unnamed artery/vein                               |  |
| II     | Azygos vein                                       |  |
|        | Internal jugular vein                             |  |
|        | Subclavian vein                                   |  |
|        | Innominate vein                                   |  |
| 111    | Carotid artery                                    |  |
|        | Innominate artery                                 |  |
|        | Subclavian artery                                 |  |
| IV     | Thoracic aorta, descending                        |  |
|        | Inferior vena cava (intrathoracic)                |  |
|        | Pulmonary artery, primary intraparenchymal branch |  |
|        | Pulmonary vein, primary intraparenchymal branch   |  |
| V      | Thoracic aorta, ascending and arch                |  |
|        | Superior vena cava                                |  |
|        | Pulmonary artery, main trunk                      |  |
|        | Pulmonary vein, main trunk                        |  |
| VI     | Uncontained total transection of                  |  |
|        | thoracic aorta or pulmonary                       |  |

#### Abdominal vascular injury scale

#### Grade\* Description of injury

| l   | Non-named superior mesenteric artery or superior mesenteric vein branches |
|-----|---------------------------------------------------------------------------|
|     | Non-named inferior mesenteric artery or inferior mesenteric vein branches |
|     | Phrenic artery or vein                                                    |
|     | Lumbar artery or vein                                                     |
|     | Gonadal artery or vein                                                    |
|     | Ovarian artery or vein                                                    |
|     | Other non-named small arterial or venous structures requiring ligation    |
| II  | Right, left, or common hepatic artery                                     |
|     | Splenic artery or vein                                                    |
|     | Right or left gastric arteries                                            |
|     | Gastroduodenal artery                                                     |
|     | Inferior mesenteric artery, or inferior mesenteric vein, trunk            |
|     | Primary named branches of messenteric artery (e.g., ileocolic             |
|     | artery) or messenteric vein                                               |
|     | Other names abdominal vessels requiring ligation or repair                |
| III | Superior mesenteric vein, trunk                                           |
|     | Renal artery or vein                                                      |
|     | Illiac artery or vein                                                     |
|     | Hypogastric artery or vein                                                |
|     | Vena cava, infrarenal                                                     |
| IV  | Superior mesenteric artery, trunk                                         |
|     | Celiac axis proper                                                        |
|     | Vena cava, suprarenal and infrahepatic                                    |
|     | Aorta, infrarenal                                                         |
| V   | Portal vein Extraparenchymal hepatic vein                                 |
|     |                                                                           |
|     | Vena cava, retrohepatic or suprahepatic                                   |

Aorta suprarenal, subdiaphragmatic



## Diagnosis

- Mechanism
- MVC
- Fall

### **Clinical presentation**

- Shock
- Normal hemodynamics
- Chest pain
- Asymptomatic
- Other injuries symptoms



## **GUIDELINES**

### **ACC/AHA CLINICAL PRACTICE GUIDELINE**

2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines

Developed in collaboration with and endorsed by the American Association for Thoracic Surgery, American College of Radiology, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, and Society for Vascular Surgery

Endorsed by the Society of Interventional Radiology and Society for Vascular Medicine

#### Writing Committee Members\*

Eric M. Isselbacher, MD, MSc, FACC, Chair; Ourania Preventza, MD, MBA, Vice Chair; James Hamilton Black III, MD, DFSVS, Vice Chair; John G. Augoustides, MD, FAHA†; Adam W. Beck, MD, DFSVS; Michael A. Bolen, MD‡; Alan C. Braverman, MD, FACC; Bruce E. Bray, MD, FACC§; Maya M. Brown-Zimmerman, MPH||; Edward P. Chen, MD, FAHA; Tyrone J. Collins, MD, MSCAI, FACC, FAHA, FSVM¶; Abe DeAnda Jr, MD, FAHA; Christina L. Fanola, MD, MSc; Leonard N. Girardi, MD, FAHA#; Caitlin W. Hicks, MD, MS, FSVS\*\*; Dawn S. Hui, MD; William Schuyler Jones, MD, FACC††; Vidyasagar Kalahasti, MD, FACC; Karen M. Kim, MD, MS‡‡; Dianna M. Milewicz, MD, PhD; Gustavo S. Oderich, MD; Laura Ogbechie, MSN; Susan B. Promes, MD, MBA; Elsie Gyang Ross, MD, MSc; Marc L. Schermerhorn, MD, DFSVS§§; Sabrina Singleton Times, DHSc, MPH||||; Elaine E. Tseng, MD, FAHA; Grace J. Wang, MD, MSCE; Y. Joseph Woo, MD, FACC, FAHA††



## Location

### MOKSLŲ UNIVERSITETAS



- ➢ 60−90% aortic isthmus
- > 8–27% proximal ascending aorta
- ➢ 8−18% aortic arch
- 11–21% distal descending thoracic aorta





## **Thoracic aorta segments**



Source: Adapted from Yahia AA, Bouvier A, Nedelcu C, et al. Imaging of thoracic aortic injury. Diagn Interv Imaging. 2015;96(1):79–88. https://doi.org/10.1016/j.diii.2014.02.003

### • Parts

- Intrapericardial
- Extrapericardial







Case from The Hospital of LUHS Kauno Klinikos

## **Classification System for BTTAIs**









## **BTTAI High-Risk Imaging Features**

| Posterior<br>mediastinal<br>hematoma >10<br>mm    | Mediastinal<br>hematoma causing<br>mass effect                      |     |
|---------------------------------------------------|---------------------------------------------------------------------|-----|
| Lesion to normal<br>aortic diameter<br>ratio >1.4 | Pseudocoarctation<br>of the aorta                                   | SLA |
| Large left<br>hemothorax                          | Ascending aortic,<br>aortic arch, or<br>great vessel<br>involvement |     |
| Aorti<br>hema                                     | ic arch<br>atoma                                                    |     |

## **BTTAIs Classification System**

### MOKSLŲ UNIVERSITETAS



#### \* ? LIETUVOS SVEIKATOS MOKSLŲ UNIVERSITETAS

NO

YES



Kapoor H. Published Online: October 02, 2020 https://doi.org/10.1148/rg.2020200066

### **RSNA**°

RadioGraphics



## **Aortic injury CT signs**

### **Direct signs:**

### **Undirect signs:**

- Intraluminal filling defect (intimal flap or clot)
- Abnormal aortic contour (mural hematoma)
  - sudden change in and/or decreased diameter
- Pseudoaneurysm
- Extravasation of contrast

- Mediastinal hematoma
- Periaortic fat stranding
- Other chest injuries

Aorta Intimal injury
- Strands of tissue or tissue flaps within the lumen

- Eccentric thrombus







# Cases





## Motorcyclist/M45



## Motorcyclist/M45







## Motorcyclist/M45





Kapoor H. Published Online: October 02, 2020 https://doi.org/10.1148/rg.2020200066













## Fall/M25







Kapoor H. Published Online: October 02, 2020 https://doi.org/10.1148/rg.2020200066



### Fall/F54 - Trauma surgeon steps

### Whole body CT without contrast

- No abdominal organs traumatic injury or free blood
- Recommendations: treat in orthopedics or admit for other injury





### Fall/F54 What do we see?







## Fall/F54 - Radiologist steps

### SOS !!!!!

**CTA** – severe traumatic aortic injury





Treatment endovascular stents

Kapoor H. Published Online: October 02, 2020 https://doi.org/10.1148/rg.2020200066



## **MVH driver/M21**





## **MVH driver/M21**





## **False positive findings**

### **Ductus diverticulum:**

- smooth bulge
- -inferior aortic arch
- -level of the aortic isthmus.



### Traumatic pseudoaneurysm: -narrow base, -irregular margins, -Acute angles







## Motocyclist/M48







## Motocyclist/M48





## Conclusions

Four grades + High risk imaging features

Look for minimal aortic injuries

Major traumatic aortic injury MUST BE recognized ASAP

ALWAYS use CONTRAST in CT for severe trauma

Indirect signs (Mediastinal hematoma) – need more imaging



## Literature

S. Rodes Brown et al. Acute traumatic injury of the aorta: presentation, diagnosis, and treatment. Annals of Translational Medicine. 2021;9(14):1193

Rajput, M. Z. et al. Imaging of Acute Traumatic Aortic Injury. Current Radiology Reports, (2018). 6(6).

Eric M. Isselbacher. Circulation. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines, Volume: 146, Issue: 24, Pages: e334-e482.

Mellnick, V.M., McDowell, C., Lubner, M. et al. CT features of blunt abdominal aortic injury. Emerg Radiol 19, 301–307 (2012)

LOREN F. PARMLEY et.al. Nonpenetrating Traumatic Injury of the Aorta. Circulation. 1958;17:1086–1101

BARRIE HJ, TOWNROW V. Perforation of the aorta by a foreign body in the oesophagus. J Laryngol Otol. 1946 Jan;61:38-42.

Rodriguez RM et al. Derivation and validation of two decision instruments for selective chest CT in blunt trauma: a multicenter prospective observational study (NEXUS Chest CT). PLoS Med. 2015 Oct 6;12(10):e1001883

Akhmerov A et al. Blunt Thoracic Aortic Injury: Current Therapies, Outcomes, and Challenges. Ann Vasc Dis. 2019 Mar 25;12(1):1-5.

Miguel A. Lopez-Viego et al. Penetrating abdominal report of 129 cases. Journal of Vascular Surgery. 1992 Sep 3:15.





# Aortic trauma

MD, PhD Lina Padervinskienė Lithuanian University of Health Sciences The Hospital of LUHS Kauno Klinikos

> The 12th Nordic Course in Trauma Radiology 12/06/2024 Stocholm